Skip to content
Snippets Groups Projects
queue.c 8.38 KiB
/*******************************************************************************
 * This file is part of SWIFT.
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/* MPI headers. */
#ifdef WITH_MPI
#include <mpi.h>
#endif

/* This object's header. */
#include "queue.h"

/* Local headers. */
#include "atomic.h"
#include "const.h"
#include "error.h"

/**
 * @brief Enqueue all tasks in the incoming DEQ.
 *
 * @param q The #queue, assumed to be locked.
 */
void queue_get_incoming(struct queue *q) {

  int *tid = q->tid;
  struct task *tasks = q->tasks;

  /* Loop over the incoming DEQ. */
  while (1) {

    /* Is there a next element? */
    const int ind = q->first_incoming % queue_incoming_size;
    if (q->tid_incoming[ind] < 0) break;

    /* Get the next offset off the DEQ. */
    const int offset = atomic_swap(&q->tid_incoming[ind], -1);
    atomic_inc(&q->first_incoming);

    /* Does the queue need to be grown? */
    if (q->count == q->size) {
      int *temp;
      q->size *= queue_sizegrow;
      if ((temp = (int *)malloc(sizeof(int) * q->size)) == NULL)
        error("Failed to allocate new indices.");
      memcpy(temp, tid, sizeof(int) * q->count);
      free(tid);
      q->tid = tid = temp;
    }

    /* Drop the task at the end of the queue. */
    tid[q->count] = offset;
    q->count += 1;
    atomic_dec(&q->count_incoming);

    /* Shuffle up. */
    for (int k = q->count - 1; k > 0; k = (k - 1) / 2)
      if (tasks[tid[k]].weight > tasks[tid[(k - 1) / 2]].weight) {
        int temp = tid[k];
        tid[k] = tid[(k - 1) / 2];
        tid[(k - 1) / 2] = temp;
      } else
        break;

    /* Check the queue's consistency. */
    /* for (int k = 1; k < q->count; k++)
        if ( tasks[ tid[(k-1)/2] ].weight < tasks[ tid[k] ].weight )
            error( "Queue heap is disordered." ); */
  }
}

/**
 * @brief Insert a used tasks into the given queue.
 *
 * @param q The #queue.
 * @param t The #task.
 */
void queue_insert(struct queue *q, struct task *t) {
  /* Get an index in the DEQ. */
  const int ind = atomic_inc(&q->last_incoming) % queue_incoming_size;

  /* Spin until the new offset can be stored. */
  while (atomic_cas(&q->tid_incoming[ind], -1, t - q->tasks) != -1) {

    /* Try to get the queue lock, non-blocking, ensures that at
       least somebody is working on this queue. */
    if (lock_trylock(&q->lock) == 0) {

      /* Clean up the incoming DEQ. */
      queue_get_incoming(q);

      /* Release the queue lock. */
      if (lock_unlock(&q->lock) != 0) {
        error("Unlocking the qlock failed.\n");
      }
    }
  }

  /* Increase the incoming count. */
  atomic_inc(&q->count_incoming);
}

/**
 * @brief Initialize the given queue.
 *
 * @param q The #queue.
 * @param tasks List of tasks to which the queue indices refer to.
 */
void queue_init(struct queue *q, struct task *tasks) {

  /* Allocate the task list if needed. */
  q->size = queue_sizeinit;
  if ((q->tid = (int *)malloc(sizeof(int) * q->size)) == NULL)
    error("Failed to allocate queue tids.");

  /* Set the tasks pointer. */
  q->tasks = tasks;
  /* Init counters. */
  q->count = 0;

  /* Init the queue lock. */
  if (lock_init(&q->lock) != 0) error("Failed to init queue lock.");

  /* Init the incoming DEQ. */
  if ((q->tid_incoming = (int *)malloc(sizeof(int) * queue_incoming_size)) ==
      NULL)
    error("Failed to allocate queue incoming buffer.");
  for (int k = 0; k < queue_incoming_size; k++) {
    q->tid_incoming[k] = -1;
  }
  q->first_incoming = 0;
  q->last_incoming = 0;
  q->count_incoming = 0;
}

/**
 * @brief Get a task free of dependencies and conflicts.
 *
 * @param q The task #queue.
 * @param prev The previous #task extracted from this #queue.
 * @param blocking Block until access to the queue is granted.
 */
struct task *queue_gettask(struct queue *q, const struct task *prev,
                           int blocking) {

  swift_lock_type *qlock = &q->lock;
  struct task *res = NULL;

  /* Grab the task lock. */
  if (blocking) {
    if (lock_lock(qlock) != 0) error("Locking the qlock failed.\n");
  } else {
    if (lock_trylock(qlock) != 0) return NULL;
  }

  /* Fill any tasks from the incoming DEQ. */
  queue_get_incoming(q);

  /* If there are no tasks, leave immediately. */
  if (q->count == 0) {
    lock_unlock_blind(qlock);
    return NULL;
  }

  /* Set some pointers we will use often. */
  int *qtid = q->tid;
  struct task *qtasks = q->tasks;
  const int old_qcount = q->count;

  /* Data for the sliding window in which to try the task with the
     best overlap with the previous task. */
  struct {
    int ind, tid;
    float score;
  } window[queue_search_window];
  int window_count = 0;
  int tid = -1;
  int ind = -1;

  /* Loop over the queue entries. */
  for (int k = 0; k < old_qcount; k++) {
    if (k < queue_search_window) {
      window[window_count].ind = k;
      window[window_count].tid = qtid[k];
      window[window_count].score = task_overlap(prev, &qtasks[qtid[k]]);
      window_count += 1;
    } else {
      /* Find the task with the largest overlap. */
      int ind_max = 0;
      for (int i = 1; i < window_count; i++)
        if (window[i].score > window[ind_max].score) ind_max = i;

      /* Try to lock that task. */
      if (task_lock(&qtasks[window[ind_max].tid])) {
        tid = window[ind_max].tid;
        ind = window[ind_max].ind;
        // message("best task has overlap %f.", window[ind_max].score);
        break;

        /* Otherwise, replace it with a new one from the queue. */
      } else {
        window[ind_max].ind = k;
        window[ind_max].tid = qtid[k];
        window[ind_max].score = task_overlap(prev, &qtasks[qtid[k]]);
      }
    }
  }

  /* If we didn't get a task, loop through whatever is left in the window. */
  if (tid < 0) {
    while (window_count > 0) {
      int ind_max = 0;
      for (int i = 1; i < window_count; i++)
        if (window[i].score > window[ind_max].score) ind_max = i;
      if (task_lock(&qtasks[window[ind_max].tid])) {
        tid = window[ind_max].tid;
        ind = window[ind_max].ind;
        // message("best task has overlap %f.", window[ind_max].score);
        break;
      } else {
        window_count -= 1;
        window[ind_max] = window[window_count];
      }
    }
  }

  /* Did we get a task? */
  if (ind >= 0) {

    /* Another one bites the dust. */
    const int qcount = q->count -= 1;

    /* Get a pointer on the task that we want to return. */
    res = &qtasks[tid];

    /* Swap this task with the last task and re-heap. */
    int k = ind;
    if (k < qcount) {
      qtid[k] = qtid[qcount];
      int w = qtasks[qtid[k]].weight;
      while (k > 0 && w > qtasks[qtid[(k - 1) / 2]].weight) {
        int temp = q->tid[k];
        q->tid[k] = q->tid[(k - 1) / 2];
        q->tid[(k - 1) / 2] = temp;
        k = (k - 1) / 2;
      }
      int i;
      while ((i = 2 * k + 1) < qcount) {
        if (i + 1 < qcount &&
            qtasks[qtid[i + 1]].weight > qtasks[qtid[i]].weight)
          i += 1;
        if (qtasks[qtid[i]].weight > w) {
          int temp = qtid[i];
          qtid[i] = qtid[k];
          qtid[k] = temp;
          k = i;
        } else
          break;
      }
    }

  } else
    res = NULL;

  /* Check the queue's consistency. */
  /* for ( k = 1 ; k < q->count ; k++ )
      if ( qtasks[ qtid[(k-1)/2] ].weight < qtasks[ qtid[k] ].weight )
          error( "Queue heap is disordered." ); */

  /* Release the task lock. */
  if (lock_unlock(qlock) != 0) error("Unlocking the qlock failed.\n");

  /* Take the money and run. */
  return res;
}

void queue_clean(struct queue *q) {

  free(q->tid);
  free(q->tid_incoming);
}