-
James Willis authoredJames Willis authored
cache.h 14.54 KiB
/*******************************************************************************
* This file is part of SWIFT.
* Copyright (c) 2016 James Willis (jame.s.willis@durham.ac.uk)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
#ifndef SWIFT_CACHE_H
#define SWIFT_CACHE_H
/* Config parameters. */
#include "../config.h"
/* Local headers */
#include "cell.h"
#include "error.h"
#include "part.h"
#include "sort_part.h"
#include "vector.h"
#define NUM_VEC_PROC 2
#define CACHE_ALIGN 64
#define C2_CACHE_SIZE (NUM_VEC_PROC * VEC_SIZE * 6) + (NUM_VEC_PROC * VEC_SIZE)
#define C2_CACHE_ALIGN sizeof(float) * VEC_SIZE
#ifdef WITH_VECTORIZATION
/* Cache struct to hold a local copy of a cells' particle
* properties required for density/force calculations.*/
struct cache {
/* Particle x position. */
float *restrict x __attribute__((aligned(CACHE_ALIGN)));
/* Particle y position. */
float *restrict y __attribute__((aligned(CACHE_ALIGN)));
/* Particle z position. */
float *restrict z __attribute__((aligned(CACHE_ALIGN)));
/* Particle smoothing length. */
float *restrict h __attribute__((aligned(CACHE_ALIGN)));
/* Particle mass. */
float *restrict m __attribute__((aligned(CACHE_ALIGN)));
/* Particle x velocity. */
float *restrict vx __attribute__((aligned(CACHE_ALIGN)));
/* Particle y velocity. */
float *restrict vy __attribute__((aligned(CACHE_ALIGN)));
/* Particle z velocity. */
float *restrict vz __attribute__((aligned(CACHE_ALIGN)));
/* Maximum distance of particles into neighbouring cell. */
float *restrict max_d __attribute__((aligned(CACHE_ALIGN)));
/* Cache size. */
int count;
};
/* Secondary cache struct to hold a list of interactions between two
* particles.*/
struct c2_cache {
/* Separation between two particles squared. */
float r2q[C2_CACHE_SIZE] __attribute__((aligned(C2_CACHE_ALIGN)));
/* x separation between two particles. */
float dxq[C2_CACHE_SIZE] __attribute__((aligned(C2_CACHE_ALIGN)));
/* y separation between two particles. */
float dyq[C2_CACHE_SIZE] __attribute__((aligned(C2_CACHE_ALIGN)));
/* z separation between two particles. */
float dzq[C2_CACHE_SIZE] __attribute__((aligned(C2_CACHE_ALIGN)));
/* Mass of particle pj. */
float mq[C2_CACHE_SIZE] __attribute__((aligned(C2_CACHE_ALIGN)));
/* x velocity of particle pj. */
float vxq[C2_CACHE_SIZE] __attribute__((aligned(C2_CACHE_ALIGN)));
/* y velocity of particle pj. */
float vyq[C2_CACHE_SIZE] __attribute__((aligned(C2_CACHE_ALIGN)));
/* z velocity of particle pj. */
float vzq[C2_CACHE_SIZE] __attribute__((aligned(C2_CACHE_ALIGN)));
};
/**
* @brief Allocate memory and initialise cache.
*
* @param c The cache.
* @param count Number of particles to allocate space for.
*/
__attribute__((always_inline)) INLINE void cache_init(struct cache *c,
size_t count) {
/* Align cache on correct byte boundary and pad cache size to be a multiple of
* the vector size
* and include 2 vector lengths for remainder operations. */
unsigned int pad = 2 * VEC_SIZE, rem = count % VEC_SIZE;
if (rem > 0) pad += VEC_SIZE - rem;
unsigned int sizeBytes = (count + pad) * sizeof(float);
int error = 0;
/* Free memory if cache has already been allocated. */
if (c->count > 0) {
free(c->x);
free(c->y);
free(c->z);
free(c->m);
free(c->vx);
free(c->vy);
free(c->vz);
free(c->h);
free(c->max_d);
}
error += posix_memalign((void **)&c->x, CACHE_ALIGN, sizeBytes);
error += posix_memalign((void **)&c->y, CACHE_ALIGN, sizeBytes);
error += posix_memalign((void **)&c->z, CACHE_ALIGN, sizeBytes);
error += posix_memalign((void **)&c->m, CACHE_ALIGN, sizeBytes);
error += posix_memalign((void **)&c->vx, CACHE_ALIGN, sizeBytes);
error += posix_memalign((void **)&c->vy, CACHE_ALIGN, sizeBytes);
error += posix_memalign((void **)&c->vz, CACHE_ALIGN, sizeBytes);
error += posix_memalign((void **)&c->h, CACHE_ALIGN, sizeBytes);
error += posix_memalign((void **)&c->max_d, CACHE_ALIGN, sizeBytes);
if (error != 0)
error("Couldn't allocate cache, no. of particles: %d", (int)count);
c->count = count;
}
/**
* @brief Populate cache by reading in the particles in unsorted order.
*
* @param ci The #cell.
* @param ci_cache The cache.
*/
__attribute__((always_inline)) INLINE void cache_read_particles(
const struct cell *const ci, struct cache *const ci_cache) {
#if defined(GADGET2_SPH)
/* Shift the particles positions to a local frame so single precision can be
* used instead of double precision. */
#if defined(WITH_VECTORIZATION) && defined(__ICC)
#pragma vector aligned
#endif
for (int i = 0; i < ci->count; i++) {
ci_cache->x[i] = ci->parts[i].x[0] - ci->loc[0];
ci_cache->y[i] = ci->parts[i].x[1] - ci->loc[1];
ci_cache->z[i] = ci->parts[i].x[2] - ci->loc[2];
ci_cache->h[i] = ci->parts[i].h;
ci_cache->m[i] = ci->parts[i].mass;
ci_cache->vx[i] = ci->parts[i].v[0];
ci_cache->vy[i] = ci->parts[i].v[1];
ci_cache->vz[i] = ci->parts[i].v[2];
}
#endif
}
/**
* @brief Populate cache by reading in the particles from two cells in unsorted
* order.
*
* @param ci The i #cell.
* @param cj The j #cell.
* @param ci_cache The cache for cell ci.
* @param cj_cache The cache for cell cj.
* @param shift The amount to shift the particle positions to account for BCs
*/
__attribute__((always_inline)) INLINE void cache_read_two_cells(
const struct cell *const ci, const struct cell *const cj,
struct cache *const ci_cache, struct cache *const cj_cache,
const double *const shift) {
/* Shift the particles positions to a local frame (ci frame) so single
* precision can be
* used instead of double precision. Also shift the cell ci, particles
* positions due to BCs but leave cell cj. */
for (int i = 0; i < ci->count; i++) {
ci_cache->x[i] = ci->parts[i].x[0] - ci->loc[0] - shift[0];
ci_cache->y[i] = ci->parts[i].x[1] - ci->loc[1] - shift[1];
ci_cache->z[i] = ci->parts[i].x[2] - ci->loc[2] - shift[2];
ci_cache->h[i] = ci->parts[i].h;
ci_cache->m[i] = ci->parts[i].mass;
ci_cache->vx[i] = ci->parts[i].v[0];
ci_cache->vy[i] = ci->parts[i].v[1];
ci_cache->vz[i] = ci->parts[i].v[2];
}
for (int i = 0; i < cj->count; i++) {
cj_cache->x[i] = cj->parts[i].x[0] - ci->loc[0];
cj_cache->y[i] = cj->parts[i].x[1] - ci->loc[1];
cj_cache->z[i] = cj->parts[i].x[2] - ci->loc[2];
cj_cache->h[i] = cj->parts[i].h;
cj_cache->m[i] = cj->parts[i].mass;
cj_cache->vx[i] = cj->parts[i].v[0];
cj_cache->vy[i] = cj->parts[i].v[1];
cj_cache->vz[i] = cj->parts[i].v[2];
}
}
__attribute__((always_inline)) INLINE void cache_read_cell_sorted(
const struct cell *const ci, struct cache *const ci_cache,
const struct entry *restrict sort_i, double *const loc,
double *const shift) {
int idx;
/* Shift the particles positions to a local frame (ci frame) so single precision
* can be
* used instead of double precision. Also shift the cell ci, particles positions
* due to BCs but leave cell cj. */
#if defined(WITH_VECTORIZATION) && defined(__ICC)
#pragma simd
#endif
for (int i = 0; i < ci->count; i++) {
idx = sort_i[i].i;
ci_cache->x[i] = ci->parts[idx].x[0] - loc[0] - shift[0];
ci_cache->y[i] = ci->parts[idx].x[1] - loc[1] - shift[1];
ci_cache->z[i] = ci->parts[idx].x[2] - loc[2] - shift[2];
ci_cache->h[i] = ci->parts[idx].h;
ci_cache->m[i] = ci->parts[idx].mass;
ci_cache->vx[i] = ci->parts[idx].v[0];
ci_cache->vy[i] = ci->parts[idx].v[1];
ci_cache->vz[i] = ci->parts[idx].v[2];
}
}
/**
* @brief Populate cache by reading in the particles from two cells in sorted
* order.
*
* @param ci The i #cell.
* @param cj The j #cell.
* @param ci_cache The #cache for cell ci.
* @param cj_cache The #cache for cell cj.
* @param sort_i The array of sorted particle indices for cell ci.
* @param sort_j The array of sorted particle indices for cell ci.
* @param shift The amount to shift the particle positions to account for BCs
*/
__attribute__((always_inline)) INLINE void cache_read_two_cells_sorted(
const struct cell *const ci, const struct cell *const cj,
struct cache *const ci_cache, struct cache *const cj_cache,
const struct entry *restrict sort_i, const struct entry *restrict sort_j,
const double *const shift) {
int idx;
/* Shift the particles positions to a local frame (ci frame) so single precision
* can be
* used instead of double precision. Also shift the cell ci, particles positions
* due to BCs but leave cell cj. */
#if defined(WITH_VECTORIZATION) && defined(__ICC)
#pragma simd
#endif
for (int i = 0; i < ci->count; i++) {
idx = sort_i[i].i;
ci_cache->x[i] = ci->parts[idx].x[0] - ci->loc[0] - shift[0];
ci_cache->y[i] = ci->parts[idx].x[1] - ci->loc[1] - shift[1];
ci_cache->z[i] = ci->parts[idx].x[2] - ci->loc[2] - shift[2];
ci_cache->h[i] = ci->parts[idx].h;
ci_cache->m[i] = ci->parts[idx].mass;
ci_cache->vx[i] = ci->parts[idx].v[0];
ci_cache->vy[i] = ci->parts[idx].v[1];
ci_cache->vz[i] = ci->parts[idx].v[2];
}
#if defined(WITH_VECTORIZATION) && defined(__ICC)
#pragma simd
#endif
for (int i = 0; i < cj->count; i++) {
idx = sort_j[i].i;
cj_cache->x[i] = cj->parts[idx].x[0] - ci->loc[0];
cj_cache->y[i] = cj->parts[idx].x[1] - ci->loc[1];
cj_cache->z[i] = cj->parts[idx].x[2] - ci->loc[2];
cj_cache->h[i] = cj->parts[idx].h;
cj_cache->m[i] = cj->parts[idx].mass;
cj_cache->vx[i] = cj->parts[idx].v[0];
cj_cache->vy[i] = cj->parts[idx].v[1];
cj_cache->vz[i] = cj->parts[idx].v[2];
}
}
/**
* @brief Populate caches by only reading particles that are within range of
* each other within the adjoining cell.Also read the particles into the cache
* in sorted order.
*
* @param ci The i #cell.
* @param cj The j #cell.
* @param ci_cache The #cache for cell ci.
* @param cj_cache The #cache for cell cj.
* @param sort_i The array of sorted particle indices for cell ci.
* @param sort_j The array of sorted particle indices for cell ci.
* @param shift The amount to shift the particle positions to account for BCs
* @param first_pi The first particle in cell ci that is in range.
* @param last_pj The last particle in cell cj that is in range.
* @param num_vec_proc Number of vectors that will be used to process the
* interaction.
*/
__attribute__((always_inline)) INLINE void cache_read_two_partial_cells_sorted(
const struct cell *const ci, const struct cell *const cj,
struct cache *const ci_cache, struct cache *const cj_cache,
const struct entry *restrict sort_i, const struct entry *restrict sort_j,
const double *const shift, int *first_pi, int *last_pj,
const int num_vec_proc) {
int idx, ci_cache_idx;
/* Pad number of particles read to the vector size. */
int rem = (ci->count - *first_pi) % (num_vec_proc * VEC_SIZE);
if (rem != 0) {
int pad = (num_vec_proc * VEC_SIZE) - rem;
if (*first_pi - pad >= 0) *first_pi -= pad;
}
rem = *last_pj % (num_vec_proc * VEC_SIZE);
if (rem != 0) {
int pad = (num_vec_proc * VEC_SIZE) - rem;
if (*last_pj + pad < cj->count) *last_pj += pad;
}
int first_pi_align = *first_pi;
int last_pj_align = *last_pj;
/* Shift the particles positions to a local frame (ci frame) so single precision
* can be
* used instead of double precision. Also shift the cell ci, particles positions
* due to BCs but leave cell cj. */
#if defined(WITH_VECTORIZATION) && defined(__ICC)
#pragma vector aligned
#endif
for (int i = first_pi_align; i < ci->count; i++) {
/* Make sure ci_cache is filled from the first element. */
ci_cache_idx = i - first_pi_align;
idx = sort_i[i].i;
ci_cache->x[ci_cache_idx] = ci->parts[idx].x[0] - ci->loc[0] - shift[0];
ci_cache->y[ci_cache_idx] = ci->parts[idx].x[1] - ci->loc[1] - shift[1];
ci_cache->z[ci_cache_idx] = ci->parts[idx].x[2] - ci->loc[2] - shift[2];
ci_cache->h[ci_cache_idx] = ci->parts[idx].h;
ci_cache->m[ci_cache_idx] = ci->parts[idx].mass;
ci_cache->vx[ci_cache_idx] = ci->parts[idx].v[0];
ci_cache->vy[ci_cache_idx] = ci->parts[idx].v[1];
ci_cache->vz[ci_cache_idx] = ci->parts[idx].v[2];
}
/* Pad cache with fake particles that exist outside the cell so will not
* interact.*/
float fake_pix = 2.0f * ci->parts[sort_i[ci->count - 1].i].x[0];
for (int i = ci->count - first_pi_align;
i < ci->count - first_pi_align + VEC_SIZE; i++) {
ci_cache->x[i] = fake_pix;
ci_cache->y[i] = 1.f;
ci_cache->z[i] = 1.f;
ci_cache->h[i] = 1.f;
ci_cache->m[i] = 1.f;
ci_cache->vx[i] = 1.f;
ci_cache->vy[i] = 1.f;
ci_cache->vz[i] = 1.f;
}
#if defined(WITH_VECTORIZATION) && defined(__ICC)
#pragma vector aligned
#endif
for (int i = 0; i <= last_pj_align; i++) {
idx = sort_j[i].i;
cj_cache->x[i] = cj->parts[idx].x[0] - ci->loc[0];
cj_cache->y[i] = cj->parts[idx].x[1] - ci->loc[1];
cj_cache->z[i] = cj->parts[idx].x[2] - ci->loc[2];
cj_cache->h[i] = cj->parts[idx].h;
cj_cache->m[i] = cj->parts[idx].mass;
cj_cache->vx[i] = cj->parts[idx].v[0];
cj_cache->vy[i] = cj->parts[idx].v[1];
cj_cache->vz[i] = cj->parts[idx].v[2];
}
/* Pad cache with fake particles that exist outside the cell so will not
* interact.*/
float fake_pjx = 2.0f * cj->parts[sort_j[cj->count - 1].i].x[0];
for (int i = last_pj_align + 1; i < last_pj_align + 1 + VEC_SIZE; i++) {
cj_cache->x[i] = fake_pjx;
cj_cache->y[i] = 1.f;
cj_cache->z[i] = 1.f;
cj_cache->h[i] = 1.f;
cj_cache->m[i] = 1.f;
cj_cache->vx[i] = 1.f;
cj_cache->vy[i] = 1.f;
cj_cache->vz[i] = 1.f;
}
}
/* @brief Clean the memory allocated by a #cache object.
*
* @param c The #cache to clean.
*/
static INLINE void cache_clean(struct cache *c) {
if (c->count > 0) {
free(c->x);
free(c->y);
free(c->z);
free(c->m);
free(c->vx);
free(c->vy);
free(c->vz);
free(c->h);
free(c->max_d);
}
}
#endif /* WITH_VECTORIZATION */
#endif /* SWIFT_CACHE_H */