Skip to content
Snippets Groups Projects
common_io.c 29.72 KiB
/*******************************************************************************
 * This file is part of SWIFT.
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk),
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk).
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

/* This object's header. */
#include "common_io.h"

/* Local includes. */
#include "chemistry_io.h"
#include "engine.h"
#include "error.h"
#include "gravity_io.h"
#include "hydro.h"
#include "hydro_io.h"
#include "io_properties.h"
#include "kernel_hydro.h"
#include "part.h"
#include "part_type.h"
#include "stars_io.h"
#include "threadpool.h"
#include "units.h"
#include "version.h"

/* Some standard headers. */
#include <math.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#if defined(HAVE_HDF5)

#include <hdf5.h>

/* MPI headers. */
#ifdef WITH_MPI
#include <mpi.h>
#endif

/**
 * @brief Converts a C data type to the HDF5 equivalent.
 *
 * This function is a trivial wrapper around the HDF5 types but allows
 * to change the exact storage types matching the code types in a transparent
 *way.
 */
hid_t io_hdf5_type(enum IO_DATA_TYPE type) {

  switch (type) {
    case INT:
      return H5T_NATIVE_INT;
    case UINT:
      return H5T_NATIVE_UINT;
    case LONG:
      return H5T_NATIVE_LONG;
    case ULONG:
      return H5T_NATIVE_ULONG;
    case LONGLONG:
      return H5T_NATIVE_LLONG;
    case ULONGLONG:
      return H5T_NATIVE_ULLONG;
    case FLOAT:
      return H5T_NATIVE_FLOAT;
    case DOUBLE:
      return H5T_NATIVE_DOUBLE;
    case CHAR:
      return H5T_NATIVE_CHAR;
    default:
      error("Unknown type");
      return 0;
  }
}

/**
 * @brief Return 1 if the type has double precision
 *
 * Returns an error if the type is not FLOAT or DOUBLE
 */
int io_is_double_precision(enum IO_DATA_TYPE type) {

  switch (type) {
    case FLOAT:
      return 0;
    case DOUBLE:
      return 1;
    default:
      error("Invalid type");
      return 0;
  }
}

/**
 * @brief Reads an attribute from a given HDF5 group.
 *
 * @param grp The group from which to read.
 * @param name The name of the attribute to read.
 * @param type The #IO_DATA_TYPE of the attribute.
 * @param data (output) The attribute read from the HDF5 group.
 *
 * Calls #error() if an error occurs.
 */
void io_read_attribute(hid_t grp, const char* name, enum IO_DATA_TYPE type,
                       void* data) {

  const hid_t h_attr = H5Aopen(grp, name, H5P_DEFAULT);
  if (h_attr < 0) error("Error while opening attribute '%s'", name);

  const hid_t h_err = H5Aread(h_attr, io_hdf5_type(type), data);
  if (h_err < 0) error("Error while reading attribute '%s'", name);

  H5Aclose(h_attr);
}

/**
 * @brief Write an attribute to a given HDF5 group.
 *
 * @param grp The group in which to write.
 * @param name The name of the attribute to write.
 * @param type The #IO_DATA_TYPE of the attribute.
 * @param data The attribute to write.
 * @param num The number of elements to write
 *
 * Calls #error() if an error occurs.
 */
void io_write_attribute(hid_t grp, const char* name, enum IO_DATA_TYPE type,
                        void* data, int num) {

  const hid_t h_space = H5Screate(H5S_SIMPLE);
  if (h_space < 0)
    error("Error while creating dataspace for attribute '%s'.", name);

  hsize_t dim[1] = {(hsize_t)num};
  const hid_t h_err = H5Sset_extent_simple(h_space, 1, dim, NULL);
  if (h_err < 0)
    error("Error while changing dataspace shape for attribute '%s'.", name);

  const hid_t h_attr =
      H5Acreate1(grp, name, io_hdf5_type(type), h_space, H5P_DEFAULT);
  if (h_attr < 0) error("Error while creating attribute '%s'.", name);

  const hid_t h_err2 = H5Awrite(h_attr, io_hdf5_type(type), data);
  if (h_err2 < 0) error("Error while reading attribute '%s'.", name);

  H5Sclose(h_space);
  H5Aclose(h_attr);
}

/**
 * @brief Write a string as an attribute to a given HDF5 group.
 *
 * @param grp The group in which to write.
 * @param name The name of the attribute to write.
 * @param str The string to write.
 * @param length The length of the string
 *
 * Calls #error() if an error occurs.
 */
void io_writeStringAttribute(hid_t grp, const char* name, const char* str,
                             int length) {

  const hid_t h_space = H5Screate(H5S_SCALAR);
  if (h_space < 0)
    error("Error while creating dataspace for attribute '%s'.", name);

  const hid_t h_type = H5Tcopy(H5T_C_S1);
  if (h_type < 0) error("Error while copying datatype 'H5T_C_S1'.");

  const hid_t h_err = H5Tset_size(h_type, length);
  if (h_err < 0) error("Error while resizing attribute type to '%i'.", length);

  const hid_t h_attr = H5Acreate1(grp, name, h_type, h_space, H5P_DEFAULT);
  if (h_attr < 0) error("Error while creating attribute '%s'.", name);

  const hid_t h_err2 = H5Awrite(h_attr, h_type, str);
  if (h_err2 < 0) error("Error while reading attribute '%s'.", name);

  H5Tclose(h_type);
  H5Sclose(h_space);
  H5Aclose(h_attr);
}

/**
 * @brief Writes a double value as an attribute
 * @param grp The group in which to write
 * @param name The name of the attribute
 * @param data The value to write
 */
void io_write_attribute_d(hid_t grp, const char* name, double data) {
  io_write_attribute(grp, name, DOUBLE, &data, 1);
}
/**
 * @brief Writes a float value as an attribute
 * @param grp The group in which to write
 * @param name The name of the attribute
 * @param data The value to write
 */
void io_write_attribute_f(hid_t grp, const char* name, float data) {
  io_write_attribute(grp, name, FLOAT, &data, 1);
}

/**
 * @brief Writes an int value as an attribute
 * @param grp The group in which to write
 * @param name The name of the attribute
 * @param data The value to write
 */
void io_write_attribute_i(hid_t grp, const char* name, int data) {
  io_write_attribute(grp, name, INT, &data, 1);
}

/**
 * @brief Writes a long value as an attribute
 * @param grp The group in which to write
 * @param name The name of the attribute
 * @param data The value to write
 */
void io_write_attribute_l(hid_t grp, const char* name, long data) {
  io_write_attribute(grp, name, LONG, &data, 1);
}

/**
 * @brief Writes a string value as an attribute
 * @param grp The group in which to write
 * @param name The name of the attribute
 * @param str The string to write
 */
void io_write_attribute_s(hid_t grp, const char* name, const char* str) {
  io_writeStringAttribute(grp, name, str, strlen(str));
}

/**
 * @brief Reads the Unit System from an IC file.
 * @param h_file The (opened) HDF5 file from which to read.
 * @param us The unit_system to fill.
 * @param mpi_rank The MPI rank we are on.
 *
 * If the 'Units' group does not exist in the ICs, cgs units will be assumed
 */
void io_read_unit_system(hid_t h_file, struct unit_system* us, int mpi_rank) {

  /* First check if it exists as this is *not* required. */
  const htri_t exists = H5Lexists(h_file, "/Units", H5P_DEFAULT);

  if (exists == 0) {

    if (mpi_rank == 0)
      message("'Units' group not found in ICs. Assuming CGS unit system.");

    /* Default to CGS */
    us->UnitMass_in_cgs = 1.;
    us->UnitLength_in_cgs = 1.;
    us->UnitTime_in_cgs = 1.;
    us->UnitCurrent_in_cgs = 1.;
    us->UnitTemperature_in_cgs = 1.;

    return;
  } else if (exists < 0) {
    error("Serious problem with 'Units' group in ICs. H5Lexists gives %d",
          exists);
  }

  if (mpi_rank == 0) message("Reading IC units from ICs.");
  hid_t h_grp = H5Gopen(h_file, "/Units", H5P_DEFAULT);

  /* Ok, Read the damn thing */
  io_read_attribute(h_grp, "Unit length in cgs (U_L)", DOUBLE,
                    &us->UnitLength_in_cgs);
  io_read_attribute(h_grp, "Unit mass in cgs (U_M)", DOUBLE,
                    &us->UnitMass_in_cgs);
  io_read_attribute(h_grp, "Unit time in cgs (U_t)", DOUBLE,
                    &us->UnitTime_in_cgs);
  io_read_attribute(h_grp, "Unit current in cgs (U_I)", DOUBLE,
                    &us->UnitCurrent_in_cgs);
  io_read_attribute(h_grp, "Unit temperature in cgs (U_T)", DOUBLE,
                    &us->UnitTemperature_in_cgs);

  /* Clean up */
  H5Gclose(h_grp);
}

/**
 * @brief Writes the current Unit System
 * @param h_file The (opened) HDF5 file in which to write
 * @param us The unit_system to dump
 * @param groupName The name of the HDF5 group to write to
 */
void io_write_unit_system(hid_t h_file, const struct unit_system* us,
                          const char* groupName) {

  const hid_t h_grpunit = H5Gcreate1(h_file, groupName, 0);
  if (h_grpunit < 0) error("Error while creating Unit System group");

  io_write_attribute_d(h_grpunit, "Unit mass in cgs (U_M)",
                       units_get_base_unit(us, UNIT_MASS));
  io_write_attribute_d(h_grpunit, "Unit length in cgs (U_L)",
                       units_get_base_unit(us, UNIT_LENGTH));
  io_write_attribute_d(h_grpunit, "Unit time in cgs (U_t)",
                       units_get_base_unit(us, UNIT_TIME));
  io_write_attribute_d(h_grpunit, "Unit current in cgs (U_I)",
                       units_get_base_unit(us, UNIT_CURRENT));
  io_write_attribute_d(h_grpunit, "Unit temperature in cgs (U_T)",
                       units_get_base_unit(us, UNIT_TEMPERATURE));

  H5Gclose(h_grpunit);
}

/**
 * @brief Writes the code version to the file
 * @param h_file The (opened) HDF5 file in which to write
 */
void io_write_code_description(hid_t h_file) {

  const hid_t h_grpcode = H5Gcreate1(h_file, "/Code", 0);
  if (h_grpcode < 0) error("Error while creating code group");

  io_write_attribute_s(h_grpcode, "Code", "SWIFT");
  io_write_attribute_s(h_grpcode, "Code Version", package_version());
  io_write_attribute_s(h_grpcode, "Compiler Name", compiler_name());
  io_write_attribute_s(h_grpcode, "Compiler Version", compiler_version());
  io_write_attribute_s(h_grpcode, "Git Branch", git_branch());
  io_write_attribute_s(h_grpcode, "Git Revision", git_revision());
  io_write_attribute_s(h_grpcode, "Git Date", git_date());
  io_write_attribute_s(h_grpcode, "Configuration options",
                       configuration_options());
  io_write_attribute_s(h_grpcode, "CFLAGS", compilation_cflags());
  io_write_attribute_s(h_grpcode, "HDF5 library version", hdf5_version());
  io_write_attribute_s(h_grpcode, "Thread barriers", thread_barrier_version());
  io_write_attribute_s(h_grpcode, "Allocators", allocator_version());
#ifdef HAVE_FFTW
  io_write_attribute_s(h_grpcode, "FFTW library version", fftw3_version());
#endif
#ifdef HAVE_LIBGSL
  io_write_attribute_s(h_grpcode, "GSL library version", libgsl_version());
#endif
#ifdef WITH_MPI
  io_write_attribute_s(h_grpcode, "MPI library", mpi_version());
#ifdef HAVE_METIS
  io_write_attribute_s(h_grpcode, "METIS library version", metis_version());
#endif
#else
  io_write_attribute_s(h_grpcode, "MPI library", "Non-MPI version of SWIFT");
#endif
  H5Gclose(h_grpcode);
}

/**
 * @brief Write the #engine policy to the file.
 * @param h_file File to write to.
 * @param e The #engine to read the policy from.
 */
void io_write_engine_policy(hid_t h_file, const struct engine* e) {

  const hid_t h_grp = H5Gcreate1(h_file, "/Policy", 0);
  if (h_grp < 0) error("Error while creating policy group");

  for (int i = 1; i <= engine_maxpolicy; ++i)
    if (e->policy & (1 << i))
      io_write_attribute_i(h_grp, engine_policy_names[i + 1], 1);
    else
      io_write_attribute_i(h_grp, engine_policy_names[i + 1], 0);

  H5Gclose(h_grp);
}

#endif /* HAVE_HDF5 */

/**
 * @brief Returns the memory size of the data type
 */
size_t io_sizeof_type(enum IO_DATA_TYPE type) {

  switch (type) {
    case INT:
      return sizeof(int);
    case UINT:
      return sizeof(unsigned int);
    case LONG:
      return sizeof(long);
    case ULONG:
      return sizeof(unsigned long);
    case LONGLONG:
      return sizeof(long long);
    case ULONGLONG:
      return sizeof(unsigned long long);
    case FLOAT:
      return sizeof(float);
    case DOUBLE:
      return sizeof(double);
    case CHAR:
      return sizeof(char);
    default:
      error("Unknown type");
      return 0;
  }
}

/**
 * @brief Mapper function to copy #part or #gpart fields into a buffer.
 */
void io_copy_mapper(void* restrict temp, int N, void* restrict extra_data) {

  const struct io_props props = *((const struct io_props*)extra_data);
  const size_t typeSize = io_sizeof_type(props.type);
  const size_t copySize = typeSize * props.dimension;

  /* How far are we with this chunk? */
  char* restrict temp_c = (char*)temp;
  const ptrdiff_t delta = (temp_c - props.start_temp_c) / copySize;

  for (int k = 0; k < N; k++) {
    memcpy(&temp_c[k * copySize], props.field + (delta + k) * props.partSize,
           copySize);
  }
}

/**
 * @brief Mapper function to copy #part into a buffer of floats using a
 * conversion function.
 */
void io_convert_part_f_mapper(void* restrict temp, int N,
                              void* restrict extra_data) {

  const struct io_props props = *((const struct io_props*)extra_data);
  const struct part* restrict parts = props.parts;
  const struct xpart* restrict xparts = props.xparts;
  const struct engine* e = props.e;
  const size_t dim = props.dimension;

  /* How far are we with this chunk? */
  float* restrict temp_f = (float*)temp;
  const ptrdiff_t delta = (temp_f - props.start_temp_f) / dim;

  for (int i = 0; i < N; i++)
    props.convert_part_f(e, parts + delta + i, xparts + delta + i,
                         &temp_f[i * dim]);
}

/**
 * @brief Mapper function to copy #part into a buffer of doubles using a
 * conversion function.
 */
void io_convert_part_d_mapper(void* restrict temp, int N,
                              void* restrict extra_data) {

  const struct io_props props = *((const struct io_props*)extra_data);
  const struct part* restrict parts = props.parts;
  const struct xpart* restrict xparts = props.xparts;
  const struct engine* e = props.e;
  const size_t dim = props.dimension;

  /* How far are we with this chunk? */
  double* restrict temp_d = (double*)temp;
  const ptrdiff_t delta = (temp_d - props.start_temp_d) / dim;

  for (int i = 0; i < N; i++)
    props.convert_part_d(e, parts + delta + i, xparts + delta + i,
                         &temp_d[i * dim]);
}

/**
 * @brief Mapper function to copy #gpart into a buffer of floats using a
 * conversion function.
 */
void io_convert_gpart_f_mapper(void* restrict temp, int N,
                               void* restrict extra_data) {

  const struct io_props props = *((const struct io_props*)extra_data);
  const struct gpart* restrict gparts = props.gparts;
  const struct engine* e = props.e;
  const size_t dim = props.dimension;

  /* How far are we with this chunk? */
  float* restrict temp_f = (float*)temp;
  const ptrdiff_t delta = (temp_f - props.start_temp_f) / dim;

  for (int i = 0; i < N; i++)
    props.convert_gpart_f(e, gparts + delta + i, &temp_f[i * dim]);
}

/**
 * @brief Mapper function to copy #gpart into a buffer of doubles using a
 * conversion function.
 */
void io_convert_gpart_d_mapper(void* restrict temp, int N,
                               void* restrict extra_data) {

  const struct io_props props = *((const struct io_props*)extra_data);
  const struct gpart* restrict gparts = props.gparts;
  const struct engine* e = props.e;
  const size_t dim = props.dimension;

  /* How far are we with this chunk? */
  double* restrict temp_d = (double*)temp;
  const ptrdiff_t delta = (temp_d - props.start_temp_d) / dim;

  for (int i = 0; i < N; i++)
    props.convert_gpart_d(e, gparts + delta + i, &temp_d[i * dim]);
}

/**
 * @brief Copy the particle data into a temporary buffer ready for i/o.
 *
 * @param temp The buffer to be filled. Must be allocated and aligned properly.
 * @param e The #engine.
 * @param props The #io_props corresponding to the particle field we are
 * copying.
 * @param N The number of particles to copy
 * @param internal_units The system of units used internally.
 * @param snapshot_units The system of units used for the snapshots.
 */
void io_copy_temp_buffer(void* temp, const struct engine* e,
                         struct io_props props, size_t N,
                         const struct unit_system* internal_units,
                         const struct unit_system* snapshot_units) {

  const size_t typeSize = io_sizeof_type(props.type);
  const size_t copySize = typeSize * props.dimension;
  const size_t num_elements = N * props.dimension;

  /* Copy particle data to temporary buffer */
  if (props.conversion == 0) { /* No conversion */

    /* Prepare some parameters */
    char* temp_c = (char*)temp;
    props.start_temp_c = temp_c;

    /* Copy the whole thing into a buffer */
    threadpool_map((struct threadpool*)&e->threadpool, io_copy_mapper, temp_c,
                   N, copySize, 0, (void*)&props);

  } else { /* Converting particle to data */

    if (props.convert_part_f != NULL) {

      /* Prepare some parameters */
      float* temp_f = (float*)temp;
      props.start_temp_f = (float*)temp;
      props.e = e;

      /* Copy the whole thing into a buffer */
      threadpool_map((struct threadpool*)&e->threadpool,
                     io_convert_part_f_mapper, temp_f, N, copySize, 0,
                     (void*)&props);

    } else if (props.convert_part_d != NULL) {

      /* Prepare some parameters */
      double* temp_d = (double*)temp;
      props.start_temp_d = (double*)temp;
      props.e = e;

      /* Copy the whole thing into a buffer */
      threadpool_map((struct threadpool*)&e->threadpool,
                     io_convert_part_d_mapper, temp_d, N, copySize, 0,
                     (void*)&props);

    } else if (props.convert_gpart_f != NULL) {

      /* Prepare some parameters */
      float* temp_f = (float*)temp;
      props.start_temp_f = (float*)temp;
      props.e = e;

      /* Copy the whole thing into a buffer */
      threadpool_map((struct threadpool*)&e->threadpool,
                     io_convert_gpart_f_mapper, temp_f, N, copySize, 0,
                     (void*)&props);

    } else if (props.convert_gpart_d != NULL) {

      /* Prepare some parameters */
      double* temp_d = (double*)temp;
      props.start_temp_d = (double*)temp;
      props.e = e;

      /* Copy the whole thing into a buffer */
      threadpool_map((struct threadpool*)&e->threadpool,
                     io_convert_gpart_d_mapper, temp_d, N, copySize, 0,
                     (void*)&props);

    } else {
      error("Missing conversion function");
    }
  }

  /* Unit conversion if necessary */
  const double factor =
      units_conversion_factor(internal_units, snapshot_units, props.units);
  if (factor != 1.) {

    /* message("Converting ! factor=%e", factor); */

    if (io_is_double_precision(props.type)) {
      swift_declare_aligned_ptr(double, temp_d, (double*)temp,
                                IO_BUFFER_ALIGNMENT);
      for (size_t i = 0; i < num_elements; ++i) temp_d[i] *= factor;
    } else {
      swift_declare_aligned_ptr(float, temp_f, (float*)temp,
                                IO_BUFFER_ALIGNMENT);
      for (size_t i = 0; i < num_elements; ++i) temp_f[i] *= factor;
    }
  }
}

void io_prepare_dm_gparts_mapper(void* restrict data, int Ndm, void* dummy) {

  struct gpart* restrict gparts = (struct gpart*)data;

  /* Let's give all these gparts a negative id */
  for (int i = 0; i < Ndm; ++i) {

    /* 0 or negative ids are not allowed */
    if (gparts[i].id_or_neg_offset <= 0)
      error("0 or negative ID for DM particle %i: ID=%lld", i,
            gparts[i].id_or_neg_offset);

    /* Set gpart type */
    gparts[i].type = swift_type_dark_matter;
  }
}

/**
 * @brief Prepare the DM particles (in gparts) read in for the addition of the
 * other particle types
 *
 * This function assumes that the DM particles are all at the start of the
 * gparts array
 *
 * @param tp The current #threadpool.
 * @param gparts The array of #gpart freshly read in.
 * @param Ndm The number of DM particles read in.
 */
void io_prepare_dm_gparts(struct threadpool* tp, struct gpart* const gparts,
                          size_t Ndm) {

  threadpool_map(tp, io_prepare_dm_gparts_mapper, gparts, Ndm,
                 sizeof(struct gpart), 0, NULL);
}

struct duplication_data {

  struct part* parts;
  struct gpart* gparts;
  struct spart* sparts;
  int Ndm;
  int Ngas;
  int Nstars;
};

void io_duplicate_hydro_gparts_mapper(void* restrict data, int Ngas,
                                      void* restrict extra_data) {

  struct duplication_data* temp = (struct duplication_data*)extra_data;
  const int Ndm = temp->Ndm;
  struct part* parts = (struct part*)data;
  const ptrdiff_t offset = parts - temp->parts;
  struct gpart* gparts = temp->gparts + offset;

  for (int i = 0; i < Ngas; ++i) {

    /* Duplicate the crucial information */
    gparts[i + Ndm].x[0] = parts[i].x[0];
    gparts[i + Ndm].x[1] = parts[i].x[1];
    gparts[i + Ndm].x[2] = parts[i].x[2];

    gparts[i + Ndm].v_full[0] = parts[i].v[0];
    gparts[i + Ndm].v_full[1] = parts[i].v[1];
    gparts[i + Ndm].v_full[2] = parts[i].v[2];

    gparts[i + Ndm].mass = hydro_get_mass(&parts[i]);

    /* Set gpart type */
    gparts[i + Ndm].type = swift_type_gas;

    /* Link the particles */
    gparts[i + Ndm].id_or_neg_offset = -(long long)(offset + i);
    parts[i].gpart = &gparts[i + Ndm];
  }
}
/**
 * @brief Copy every #part into the corresponding #gpart and link them.
 *
 * This function assumes that the DM particles are all at the start of the
 * gparts array and adds the hydro particles afterwards
 *
 * @param tp The current #threadpool.
 * @param parts The array of #part freshly read in.
 * @param gparts The array of #gpart freshly read in with all the DM particles
 * at the start
 * @param Ngas The number of gas particles read in.
 * @param Ndm The number of DM particles read in.
 */
void io_duplicate_hydro_gparts(struct threadpool* tp, struct part* const parts,
                               struct gpart* const gparts, size_t Ngas,
                               size_t Ndm) {
  struct duplication_data data;
  data.parts = parts;
  data.gparts = gparts;
  data.Ndm = Ndm;

  threadpool_map(tp, io_duplicate_hydro_gparts_mapper, parts, Ngas,
                 sizeof(struct part), 0, &data);
}

void io_duplicate_hydro_sparts_mapper(void* restrict data, int Nstars,
                                      void* restrict extra_data) {

  struct duplication_data* temp = (struct duplication_data*)extra_data;
  const int Ndm = temp->Ndm;
  struct spart* sparts = (struct spart*)data;
  const ptrdiff_t offset = sparts - temp->sparts;
  struct gpart* gparts = temp->gparts + offset;

  for (int i = 0; i < Nstars; ++i) {

    /* Duplicate the crucial information */
    gparts[i + Ndm].x[0] = sparts[i].x[0];
    gparts[i + Ndm].x[1] = sparts[i].x[1];
    gparts[i + Ndm].x[2] = sparts[i].x[2];

    gparts[i + Ndm].v_full[0] = sparts[i].v[0];
    gparts[i + Ndm].v_full[1] = sparts[i].v[1];
    gparts[i + Ndm].v_full[2] = sparts[i].v[2];

    gparts[i + Ndm].mass = sparts[i].mass;

    /* Set gpart type */
    gparts[i + Ndm].type = swift_type_star;

    /* Link the particles */
    gparts[i + Ndm].id_or_neg_offset = -(long long)(offset + i);
    sparts[i].gpart = &gparts[i + Ndm];
  }
}

/**
 * @brief Copy every #spart into the corresponding #gpart and link them.
 *
 * This function assumes that the DM particles and gas particles are all at
 * the start of the gparts array and adds the star particles afterwards
 *
 * @param tp The current #threadpool.
 * @param sparts The array of #spart freshly read in.
 * @param gparts The array of #gpart freshly read in with all the DM and gas
 * particles at the start.
 * @param Nstars The number of stars particles read in.
 * @param Ndm The number of DM and gas particles read in.
 */
void io_duplicate_star_gparts(struct threadpool* tp, struct spart* const sparts,
                              struct gpart* const gparts, size_t Nstars,
                              size_t Ndm) {

  struct duplication_data data;
  data.gparts = gparts;
  data.sparts = sparts;
  data.Ndm = Ndm;

  threadpool_map(tp, io_duplicate_hydro_sparts_mapper, sparts, Nstars,
                 sizeof(struct spart), 0, &data);
}

/**
 * @brief Copy every DM #gpart into the dmparts array.
 *
 * @param gparts The array of #gpart containing all particles.
 * @param Ntot The number of #gpart.
 * @param dmparts The array of #gpart containg DM particles to be filled.
 * @param Ndm The number of DM particles.
 */
void io_collect_dm_gparts(const struct gpart* const gparts, size_t Ntot,
                          struct gpart* const dmparts, size_t Ndm) {

  size_t count = 0;

  /* Loop over all gparts */
  for (size_t i = 0; i < Ntot; ++i) {

    /* message("i=%zd count=%zd id=%lld part=%p", i, count, gparts[i].id,
     * gparts[i].part); */

    /* And collect the DM ones */
    if (gparts[i].type == swift_type_dark_matter) {
      dmparts[count] = gparts[i];
      count++;
    }
  }

  /* Check that everything is fine */
  if (count != Ndm)
    error("Collected the wrong number of dm particles (%zu vs. %zu expected)",
          count, Ndm);
}

/**
 * @brief Verify the io parameter file
 *
 * @param params The #swift_params
 * @param N_total The total number of each particle type.
 */
void io_check_output_fields(const struct swift_params* params,
                            const long long N_total[3]) {

  /* Create some fake particles as arguments for the writing routines */
  struct part p;
  struct xpart xp;
  struct spart sp;
  struct gpart gp;

  /* Copy N_total to array with length == 6 */
  const long long nr_total[swift_type_count] = {N_total[0], N_total[1], 0,
                                                0,          N_total[2], 0};

  /* Loop over all particle types to check the fields */
  for (int ptype = 0; ptype < swift_type_count; ptype++) {

    int num_fields = 0;
    struct io_props list[100];

    /* Don't do anything if no particle of this kind */
    if (nr_total[ptype] == 0) continue;

    /* Gather particle fields from the particle structures */
    switch (ptype) {

      case swift_type_gas:
        hydro_write_particles(&p, &xp, list, &num_fields);
        num_fields += chemistry_write_particles(&p, list + num_fields);
        break;

      case swift_type_dark_matter:
        darkmatter_write_particles(&gp, list, &num_fields);
        break;

      case swift_type_star:
        star_write_particles(&sp, list, &num_fields);
        break;

      default:
        error("Particle Type %d not yet supported. Aborting", ptype);
    }

    /* loop over each parameter */
    for (int param_id = 0; param_id < params->paramCount; param_id++) {
      const char* param_name = params->data[param_id].name;

      char section_name[PARSER_MAX_LINE_SIZE];

      /* Skip if wrong section */
      sprintf(section_name, "SelectOutput:");
      if (strstr(param_name, section_name) == NULL) continue;

      /* Skip if wrong particle type */
      sprintf(section_name, "_%s", part_type_names[ptype]);
      if (strstr(param_name, section_name) == NULL) continue;

      int found = 0;

      /* loop over each possible output field */
      for (int field_id = 0; field_id < num_fields; field_id++) {
        char field_name[PARSER_MAX_LINE_SIZE];
        sprintf(field_name, "SelectOutput:%s_%s", list[field_id].name,
                part_type_names[ptype]);

        if (strcmp(param_name, field_name) == 0) {
          found = 1;
          /* check if correct input */
          int retParam = 0;
          char str[PARSER_MAX_LINE_SIZE];
          sscanf(params->data[param_id].value, "%d%s", &retParam, str);

          /* Check that we have a 0 or 1 */
          if (retParam != 0 && retParam != 1)
            message(
                "WARNING: Unexpected input for %s. Received %i but expect 0 or "
                "1. ",
                field_name, retParam);

          /* Found it, so move to the next one. */
          break;
        }
      }
      if (!found)
        message(
            "WARNING: Trying to dump particle field '%s' (read from '%s') that "
            "does not exist.",
            param_name, params->fileName);
    }
  }
}

/**
 * @brief Write the output field parameters file
 *
 * @param filename The file to write
 */
void io_write_output_field_parameter(const char* filename) {

  FILE* file = fopen(filename, "w");
  if (file == NULL) error("Error opening file '%s'", filename);

  /* Loop over all particle types */
  fprintf(file, "SelectOutput:\n");
  for (int ptype = 0; ptype < swift_type_count; ptype++) {

    int num_fields = 0;
    struct io_props list[100];

    /* Write particle fields from the particle structure */
    switch (ptype) {

      case swift_type_gas:
        hydro_write_particles(NULL, NULL, list, &num_fields);
        num_fields += chemistry_write_particles(NULL, list + num_fields);
        break;

      case swift_type_dark_matter:
        darkmatter_write_particles(NULL, list, &num_fields);
        break;

      case swift_type_star:
        star_write_particles(NULL, list, &num_fields);
        break;

      default:
        break;
    }

    if (num_fields == 0) continue;

    /* Output a header for that particle type */
    fprintf(file, "  # Particle Type %s\n", part_type_names[ptype]);

    /* Write all the fields of this particle type */
    for (int i = 0; i < num_fields; ++i)
      fprintf(file, "  %s_%s: 1\n", list[i].name, part_type_names[ptype]);

    fprintf(file, "\n");
  }

  fclose(file);

  printf(
      "List of valid ouput fields for the particle in snapshots dumped in "
      "'%s'.\n",
      filename);
}