-
Matthieu Schaller authoredMatthieu Schaller authored
cell.c 15.47 KiB
/*******************************************************************************
* This file is part of SWIFT.
* Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
/* Config parameters. */
#include "../config.h"
/* Some standard headers. */
#include <float.h>
#include <limits.h>
#include <math.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
/* MPI headers. */
#ifdef WITH_MPI
#include <mpi.h>
#endif
/* Switch off timers. */
#ifdef TIMER
#undef TIMER
#endif
/* This object's header. */
#include "cell.h"
/* Local headers. */
#include "atomic.h"
#include "error.h"
#include "hydro.h"
#include "space.h"
#include "timers.h"
/* Global variables. */
int cell_next_tag = 0;
/**
* @brief Get the size of the cell subtree.
*
* @param c The #cell.
*/
int cell_getsize(struct cell *c) {
int k, count = 1;
/* Sum up the progeny if split. */
if (c->split)
for (k = 0; k < 8; k++)
if (c->progeny[k] != NULL) count += cell_getsize(c->progeny[k]);
/* Return the final count. */
return count;
}
/**
* @brief Unpack the data of a given cell and its sub-cells.
*
* @param pc An array of packed #pcell.
* @param c The #cell in which to unpack the #pcell.
* @param s The #space in which the cells are created.
*
* @return The number of cells created.
*/
int cell_unpack(struct pcell *pc, struct cell *c, struct space *s) {
int k, count = 1;
struct cell *temp;
/* Unpack the current pcell. */
c->h_max = pc->h_max;
c->t_end_min = pc->t_end_min;
c->t_end_max = pc->t_end_max;
c->count = pc->count;
c->tag = pc->tag;
/* Fill the progeny recursively, depth-first. */
for (k = 0; k < 8; k++)
if (pc->progeny[k] >= 0) {
temp = space_getcell(s);
temp->count = 0;
temp->loc[0] = c->loc[0];
temp->loc[1] = c->loc[1];
temp->loc[2] = c->loc[2];
temp->h[0] = c->h[0] / 2;
temp->h[1] = c->h[1] / 2;
temp->h[2] = c->h[2] / 2;
temp->dmin = c->dmin / 2;
if (k & 4) temp->loc[0] += temp->h[0];
if (k & 2) temp->loc[1] += temp->h[1];
if (k & 1) temp->loc[2] += temp->h[2];
temp->depth = c->depth + 1;
temp->split = 0;
temp->dx_max = 0.0;
temp->nodeID = c->nodeID;
temp->parent = c;
c->progeny[k] = temp;
c->split = 1;
count += cell_unpack(&pc[pc->progeny[k]], temp, s);
}
/* Return the total number of unpacked cells. */
return count;
}
/**
* @brief Link the cells recursively to the given part array.
*
* @param c The #cell.
* @param parts The #part array.
*
* @return The number of particles linked.
*/
int cell_link(struct cell *c, struct part *parts) {
int k, ind = 0;
c->parts = parts;
/* Fill the progeny recursively, depth-first. */
if (c->split)
for (k = 0; k < 8; k++)
if (c->progeny[k] != NULL) ind += cell_link(c->progeny[k], &parts[ind]);
/* Return the total number of unpacked cells. */
return c->count;
}
/**
* @brief Pack the data of the given cell and all it's sub-cells.
*
* @param c The #cell.
* @param pc Pointer to an array of packed cells in which the
* cells will be packed.
*
* @return The number of packed cells.
*/
int cell_pack(struct cell *c, struct pcell *pc) {
int k, count = 1;
/* Start by packing the data of the current cell. */
pc->h_max = c->h_max;
pc->t_end_min = c->t_end_min;
pc->t_end_max = c->t_end_max;
pc->count = c->count;
c->tag = pc->tag = atomic_inc(&cell_next_tag) % cell_max_tag;
/* Fill in the progeny, depth-first recursion. */
for (k = 0; k < 8; k++)
if (c->progeny[k] != NULL) {
pc->progeny[k] = count;
count += cell_pack(c->progeny[k], &pc[count]);
} else
pc->progeny[k] = -1;
/* Return the number of packed cells used. */
return count;
}
/**
* @brief Lock a cell and hold its parents.
*
* @param c The #cell.
*/
int cell_locktree(struct cell *c) {
struct cell *finger, *finger2;
TIMER_TIC
/* First of all, try to lock this cell. */
if (c->hold || lock_trylock(&c->lock) != 0) {
TIMER_TOC(timer_locktree);
return 1;
}
/* Did somebody hold this cell in the meantime? */
if (c->hold) {
/* Unlock this cell. */
if (lock_unlock(&c->lock) != 0) error("Failed to unlock cell.");
/* Admit defeat. */
TIMER_TOC(timer_locktree);
return 1;
}
/* Climb up the tree and lock/hold/unlock. */
for (finger = c->parent; finger != NULL; finger = finger->parent) {
/* Lock this cell. */
if (lock_trylock(&finger->lock) != 0) break;
/* Increment the hold. */
atomic_inc(&finger->hold);
/* Unlock the cell. */
if (lock_unlock(&finger->lock) != 0) error("Failed to unlock cell.");
}
/* If we reached the top of the tree, we're done. */
if (finger == NULL) {
TIMER_TOC(timer_locktree);
return 0;
}
/* Otherwise, we hit a snag. */
else {
/* Undo the holds up to finger. */
for (finger2 = c->parent; finger2 != finger; finger2 = finger2->parent)
__sync_fetch_and_sub(&finger2->hold, 1);
/* Unlock this cell. */
if (lock_unlock(&c->lock) != 0) error("Failed to unlock cell.");
/* Admit defeat. */
TIMER_TOC(timer_locktree);
return 1;
}
}
int cell_glocktree(struct cell *c) {
struct cell *finger, *finger2;
TIMER_TIC
/* First of all, try to lock this cell. */
if (c->ghold || lock_trylock(&c->glock) != 0) {
TIMER_TOC(timer_locktree);
return 1;
}
/* Did somebody hold this cell in the meantime? */
if (c->ghold) {
/* Unlock this cell. */
if (lock_unlock(&c->glock) != 0) error("Failed to unlock cell.");
/* Admit defeat. */
TIMER_TOC(timer_locktree);
return 1;
}
/* Climb up the tree and lock/hold/unlock. */
for (finger = c->parent; finger != NULL; finger = finger->parent) {
/* Lock this cell. */
if (lock_trylock(&finger->glock) != 0) break;
/* Increment the hold. */
__sync_fetch_and_add(&finger->ghold, 1);
/* Unlock the cell. */
if (lock_unlock(&finger->glock) != 0) error("Failed to unlock cell.");
}
/* If we reached the top of the tree, we're done. */
if (finger == NULL) {
TIMER_TOC(timer_locktree);
return 0;
}
/* Otherwise, we hit a snag. */
else {
/* Undo the holds up to finger. */
for (finger2 = c->parent; finger2 != finger; finger2 = finger2->parent)
__sync_fetch_and_sub(&finger2->ghold, 1);
/* Unlock this cell. */
if (lock_unlock(&c->glock) != 0) error("Failed to unlock cell.");
/* Admit defeat. */
TIMER_TOC(timer_locktree);
return 1;
}
}
/**
* @brief Unlock a cell's parents.
*
* @param c The #cell.
*/
void cell_unlocktree(struct cell *c) {
struct cell *finger;
TIMER_TIC
/* First of all, try to unlock this cell. */
if (lock_unlock(&c->lock) != 0) error("Failed to unlock cell.");
/* Climb up the tree and unhold the parents. */
for (finger = c->parent; finger != NULL; finger = finger->parent)
__sync_fetch_and_sub(&finger->hold, 1);
TIMER_TOC(timer_locktree);
}
void cell_gunlocktree(struct cell *c) {
struct cell *finger;
TIMER_TIC
/* First of all, try to unlock this cell. */
if (lock_unlock(&c->glock) != 0) error("Failed to unlock cell.");
/* Climb up the tree and unhold the parents. */
for (finger = c->parent; finger != NULL; finger = finger->parent)
__sync_fetch_and_sub(&finger->ghold, 1);
TIMER_TOC(timer_locktree);
}
/**
* @brief Sort the parts into eight bins along the given pivots.
*
* @param c The #cell array to be sorted.
*/
void cell_split(struct cell *c) {
int i, j, k, count = c->count, gcount = c->gcount;
struct part temp, *parts = c->parts;
struct xpart xtemp, *xparts = c->xparts;
struct gpart gtemp, *gparts = c->gparts;
int left[8], right[8];
double pivot[3];
/* Init the pivots. */
for (k = 0; k < 3; k++) pivot[k] = c->loc[k] + c->h[k] / 2;
/* Split along the x-axis. */
i = 0;
j = count - 1;
while (i <= j) {
while (i <= count - 1 && parts[i].x[0] <= pivot[0]) i += 1;
while (j >= 0 && parts[j].x[0] > pivot[0]) j -= 1;
if (i < j) {
temp = parts[i];
parts[i] = parts[j];
parts[j] = temp;
xtemp = xparts[i];
xparts[i] = xparts[j];
xparts[j] = xtemp;
}
}
/* for ( k = 0 ; k <= j ; k++ )
if ( parts[k].x[0] > pivot[0] )
error( "cell_split: sorting failed." );
for ( k = i ; k < count ; k++ )
if ( parts[k].x[0] < pivot[0] )
error( "cell_split: sorting failed." ); */
left[1] = i;
right[1] = count - 1;
left[0] = 0;
right[0] = j;
/* Split along the y axis, twice. */
for (k = 1; k >= 0; k--) {
i = left[k];
j = right[k];
while (i <= j) {
while (i <= right[k] && parts[i].x[1] <= pivot[1]) i += 1;
while (j >= left[k] && parts[j].x[1] > pivot[1]) j -= 1;
if (i < j) {
temp = parts[i];
parts[i] = parts[j];
parts[j] = temp;
xtemp = xparts[i];
xparts[i] = xparts[j];
xparts[j] = xtemp;
}
}
/* for ( int kk = left[k] ; kk <= j ; kk++ )
if ( parts[kk].x[1] > pivot[1] ) {
message( "ival=[%i,%i], i=%i, j=%i." , left[k] , right[k] , i , j );
error( "sorting failed (left)." );
}
for ( int kk = i ; kk <= right[k] ; kk++ )
if ( parts[kk].x[1] < pivot[1] )
error( "sorting failed (right)." ); */
left[2 * k + 1] = i;
right[2 * k + 1] = right[k];
left[2 * k] = left[k];
right[2 * k] = j;
}
/* Split along the z axis, four times. */
for (k = 3; k >= 0; k--) {
i = left[k];
j = right[k];
while (i <= j) {
while (i <= right[k] && parts[i].x[2] <= pivot[2]) i += 1;
while (j >= left[k] && parts[j].x[2] > pivot[2]) j -= 1;
if (i < j) {
temp = parts[i];
parts[i] = parts[j];
parts[j] = temp;
xtemp = xparts[i];
xparts[i] = xparts[j];
xparts[j] = xtemp;
}
}
/* for ( int kk = left[k] ; kk <= j ; kk++ )
if ( parts[kk].x[2] > pivot[2] ) {
message( "ival=[%i,%i], i=%i, j=%i." , left[k] , right[k] , i , j );
error( "sorting failed (left)." );
}
for ( int kk = i ; kk <= right[k] ; kk++ )
if ( parts[kk].x[2] < pivot[2] ) {
message( "ival=[%i,%i], i=%i, j=%i." , left[k] , right[k] , i , j );
error( "sorting failed (right)." );
} */
left[2 * k + 1] = i;
right[2 * k + 1] = right[k];
left[2 * k] = left[k];
right[2 * k] = j;
}
/* Store the counts and offsets. */
for (k = 0; k < 8; k++) {
c->progeny[k]->count = right[k] - left[k] + 1;
c->progeny[k]->parts = &c->parts[left[k]];
c->progeny[k]->xparts = &c->xparts[left[k]];
}
/* Re-link the gparts. */
for (k = 0; k < count; k++)
if (parts[k].gpart != NULL) parts[k].gpart->part = &parts[k];
/* Verify that _all_ the parts have been assigned to a cell. */
/* for ( k = 1 ; k < 8 ; k++ )
if ( &c->progeny[k-1]->parts[ c->progeny[k-1]->count ] !=
c->progeny[k]->parts )
error( "Particle sorting failed (internal consistency)." );
if ( c->progeny[0]->parts != c->parts )
error( "Particle sorting failed (left edge)." );
if ( &c->progeny[7]->parts[ c->progeny[7]->count ] != &c->parts[ count ] )
error( "Particle sorting failed (right edge)." ); */
/* Verify a few sub-cells. */
/* for ( k = 0 ; k < c->progeny[0]->count ; k++ )
if ( c->progeny[0]->parts[k].x[0] > pivot[0] ||
c->progeny[0]->parts[k].x[1] > pivot[1] ||
c->progeny[0]->parts[k].x[2] > pivot[2] )
error( "Sorting failed (progeny=0)." );
for ( k = 0 ; k < c->progeny[1]->count ; k++ )
if ( c->progeny[1]->parts[k].x[0] > pivot[0] ||
c->progeny[1]->parts[k].x[1] > pivot[1] ||
c->progeny[1]->parts[k].x[2] <= pivot[2] )
error( "Sorting failed (progeny=1)." );
for ( k = 0 ; k < c->progeny[2]->count ; k++ )
if ( c->progeny[2]->parts[k].x[0] > pivot[0] ||
c->progeny[2]->parts[k].x[1] <= pivot[1] ||
c->progeny[2]->parts[k].x[2] > pivot[2] )
error( "Sorting failed (progeny=2)." ); */
/* Now do the same song and dance for the gparts. */
/* Split along the x-axis. */
i = 0;
j = gcount - 1;
while (i <= j) {
while (i <= gcount - 1 && gparts[i].x[0] <= pivot[0]) i += 1;
while (j >= 0 && gparts[j].x[0] > pivot[0]) j -= 1;
if (i < j) {
gtemp = gparts[i];
gparts[i] = gparts[j];
gparts[j] = gtemp;
}
}
left[1] = i;
right[1] = gcount - 1;
left[0] = 0;
right[0] = j;
/* Split along the y axis, twice. */
for (k = 1; k >= 0; k--) {
i = left[k];
j = right[k];
while (i <= j) {
while (i <= right[k] && gparts[i].x[1] <= pivot[1]) i += 1;
while (j >= left[k] && gparts[j].x[1] > pivot[1]) j -= 1;
if (i < j) {
gtemp = gparts[i];
gparts[i] = gparts[j];
gparts[j] = gtemp;
}
}
left[2 * k + 1] = i;
right[2 * k + 1] = right[k];
left[2 * k] = left[k];
right[2 * k] = j;
}
/* Split along the z axis, four times. */
for (k = 3; k >= 0; k--) {
i = left[k];
j = right[k];
while (i <= j) {
while (i <= right[k] && gparts[i].x[2] <= pivot[2]) i += 1;
while (j >= left[k] && gparts[j].x[2] > pivot[2]) j -= 1;
if (i < j) {
gtemp = gparts[i];
gparts[i] = gparts[j];
gparts[j] = gtemp;
}
}
left[2 * k + 1] = i;
right[2 * k + 1] = right[k];
left[2 * k] = left[k];
right[2 * k] = j;
}
/* Store the counts and offsets. */
for (k = 0; k < 8; k++) {
c->progeny[k]->gcount = right[k] - left[k] + 1;
c->progeny[k]->gparts = &c->gparts[left[k]];
}
/* Re-link the parts. */
for (k = 0; k < gcount; k++)
if (gparts[k].id > 0) gparts[k].part->gpart = &gparts[k];
}
/**
* @brief Initialises all particles to a valid state even if the ICs were stupid
*
* @param c Cell to act upon
* @param data Unused parameter
*/
void cell_init_parts(struct cell *c, void *data) {
struct part *p = c->parts;
struct xpart *xp = c->xparts;
for (int i = 0; i < c->count; ++i) {
p[i].t_begin = 0.;
p[i].t_end = 0.;
xp[i].v_full[0] = p[i].v[0];
xp[i].v_full[1] = p[i].v[1];
xp[i].v_full[2] = p[i].v[2];
hydro_first_init_part(&p[i], &xp[i]);
hydro_init_part(&p[i]);
hydro_reset_acceleration(&p[i]);
}
c->t_end_min = 0.;
}
/**
* @brief Converts hydro quantities to a valid state after the initial density
*calculation
*
* @param c Cell to act upon
* @param data Unused parameter
*/
void cell_convert_hydro(struct cell *c, void *data) {
struct part *p = c->parts;
for (int i = 0; i < c->count; ++i) {
hydro_convert_quantities(&p[i]);
}
}
/**
* @brief Cleans the links in a given cell.
*
* @param c Cell to act upon
* @param data Unused parameter
*/
void cell_clean_links(struct cell *c, void *data) {
c->density = NULL;
c->nr_density = 0;
c->force = NULL;
c->nr_force = 0;
}