-
Matthieu Schaller authoredMatthieu Schaller authored
gravity_derivatives.h 12.59 KiB
/*******************************************************************************
* This file is part of SWIFT.
* Copyright (c) 2016 Matthieu Schaller (matthieu.schaller@durham.ac.uk)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
#ifndef SWIFT_GRAVITY_DERIVATIVE_H
#define SWIFT_GRAVITY_DERIVATIVE_H
/**
* @file gravity_derivatives.h
* @brief Derivatives (up to 5th order) of the gravitational potential.
*
* We use the notation of Dehnen, Computational Astrophysics and Cosmology,
* 1, 1, pp. 24 (2014), arXiv:1405.2255
*/
/* Config parameters. */
#include "../config.h"
/* Local headers. */
#include "inline.h"
#include "kernel_gravity.h"
/**
* @brief Structure containing all the derivatives of the potential field
* required for the M2L kernel
*/
struct potential_derivatives_M2L {
/* 0th order terms */
float D_000;
#if SELF_GRAVITY_MULTIPOLE_ORDER > 0
/* 1st order terms */
float D_100, D_010, D_001;
#endif
#if SELF_GRAVITY_MULTIPOLE_ORDER > 1
/* 2nd order terms */
float D_200, D_020, D_002;
float D_110, D_101, D_011;
#endif
#if SELF_GRAVITY_MULTIPOLE_ORDER > 2
/* 3rd order terms */
float D_300, D_030, D_003;
float D_210, D_201;
float D_120, D_021;
float D_102, D_012;
float D_111;
#endif
#if SELF_GRAVITY_MULTIPOLE_ORDER > 3
/* 4th order terms */
float D_400, D_040, D_004;
float D_310, D_301;
float D_130, D_031;
float D_103, D_013;
float D_220, D_202, D_022;
float D_211, D_121, D_112;
#endif
#if SELF_GRAVITY_MULTIPOLE_ORDER > 4
/* 5th order terms */
float D_005, D_014, D_023;
float D_032, D_041, D_050;
float D_104, D_113, D_122;
float D_131, D_140, D_203;
float D_212, D_221, D_230;
float D_302, D_311, D_320;
float D_401, D_410, D_500;
#endif
#if SELF_GRAVITY_MULTIPOLE_ORDER > 5
#error "Missing implementation for order >5"
#endif
};
/**
* @brief Structure containing all the derivatives of the potential field
* required for the M2P kernel
*/
struct potential_derivatives_M2P {
/* 1st order terms */
float D_100, D_010, D_001;
/* 3rd order terms */
float D_300, D_030, D_003;
float D_210, D_201;
float D_120, D_021;
float D_102, D_012;
float D_111;
};
/**
* @brief Compute all the relevent derivatives of the softened and truncated
* gravitational potential for the M2L kernel.
*
* @param r_x x-component of distance vector
* @param r_y y-component of distance vector
* @param r_z z-component of distance vector
* @param r2 Square norm of distance vector
* @param r_inv Inverse norm of distance vector
* @param eps Softening length.
* @param eps_inv Inverse of softening length.
* @param pot (return) The structure containing all the derivatives.
*/
__attribute__((always_inline)) INLINE static void
compute_potential_derivatives_M2L(float r_x, float r_y, float r_z, float r2,
float r_inv, float eps, float eps_inv,
struct potential_derivatives_M2L *pot) {
float Dt_1;
#if SELF_GRAVITY_MULTIPOLE_ORDER > 0
float Dt_3;
#endif
#if SELF_GRAVITY_MULTIPOLE_ORDER > 1
float Dt_5;
#endif
#if SELF_GRAVITY_MULTIPOLE_ORDER > 2
float Dt_7;
#endif
#if SELF_GRAVITY_MULTIPOLE_ORDER > 3
float Dt_9;
#endif
#if SELF_GRAVITY_MULTIPOLE_ORDER > 4
float Dt_11;
#endif
/* Un-softened case */
if (r2 > eps * eps) {
Dt_1 = r_inv;
#if SELF_GRAVITY_MULTIPOLE_ORDER > 0
const float r_inv2 = r_inv * r_inv;
Dt_3 = -1.f * Dt_1 * r_inv2; /* -1 / r^3 */
#endif
#if SELF_GRAVITY_MULTIPOLE_ORDER > 1
Dt_5 = -3.f * Dt_3 * r_inv2; /* 3 / r^5 */
#endif
#if SELF_GRAVITY_MULTIPOLE_ORDER > 2
Dt_7 = -5.f * Dt_5 * r_inv2; /* -15 / r^7 */
#endif
#if SELF_GRAVITY_MULTIPOLE_ORDER > 3
Dt_9 = -7.f * Dt_7 * r_inv2; /* 105 / r^9 */
#endif
#if SELF_GRAVITY_MULTIPOLE_ORDER > 4
Dt_11 = -9.f * Dt_9 * r_inv2; /* -945 / r^11 */
#endif
#if SELF_GRAVITY_MULTIPOLE_ORDER > 5
#error "Missing implementation for order >5"
#endif
} else {
const float r = r2 * r_inv;
const float u = r * eps_inv;
const float u_inv = r_inv * eps;
Dt_1 = eps_inv * D_soft_1(u, u_inv);
#if SELF_GRAVITY_MULTIPOLE_ORDER > 0
const float eps_inv2 = eps_inv * eps_inv;
const float eps_inv3 = eps_inv * eps_inv2;
Dt_3 = -eps_inv3 * D_soft_3(u, u_inv);
#endif
#if SELF_GRAVITY_MULTIPOLE_ORDER > 1
const float eps_inv5 = eps_inv3 * eps_inv2;
Dt_5 = eps_inv5 * D_soft_5(u, u_inv);
#endif
#if SELF_GRAVITY_MULTIPOLE_ORDER > 2
const float eps_inv7 = eps_inv5 * eps_inv2;
Dt_7 = -eps_inv7 * D_soft_7(u, u_inv);
#endif
#if SELF_GRAVITY_MULTIPOLE_ORDER > 3
const float eps_inv9 = eps_inv7 * eps_inv2;
Dt_9 = eps_inv9 * D_soft_9(u, u_inv);
#endif
#if SELF_GRAVITY_MULTIPOLE_ORDER > 4
const float eps_inv11 = eps_inv9 * eps_inv2;
Dt_11 = -eps_inv11 * D_soft_11(u, u_inv);
#endif
#if SELF_GRAVITY_MULTIPOLE_ORDER > 5
#error "Missing implementation for order >5"
#endif
}
/* Alright, let's get the full terms */
/* Compute some powers of r_x, r_y and r_z */
#if SELF_GRAVITY_MULTIPOLE_ORDER > 1
const float r_x2 = r_x * r_x;
const float r_y2 = r_y * r_y;
const float r_z2 = r_z * r_z;
#endif
#if SELF_GRAVITY_MULTIPOLE_ORDER > 2
const float r_x3 = r_x2 * r_x;
const float r_y3 = r_y2 * r_y;
const float r_z3 = r_z2 * r_z;
#endif
#if SELF_GRAVITY_MULTIPOLE_ORDER > 3
const float r_x4 = r_x3 * r_x;
const float r_y4 = r_y3 * r_y;
const float r_z4 = r_z3 * r_z;
#endif
#if SELF_GRAVITY_MULTIPOLE_ORDER > 4
const float r_x5 = r_x4 * r_x;
const float r_y5 = r_y4 * r_y;
const float r_z5 = r_z4 * r_z;
#endif
#if SELF_GRAVITY_MULTIPOLE_ORDER > 5
#error "Missing implementation for order >5"
#endif
/* Get the 0th order term */
pot->D_000 = Dt_1;
#if SELF_GRAVITY_MULTIPOLE_ORDER > 0
/* 1st order derivatives */
pot->D_100 = r_x * Dt_3;
pot->D_010 = r_y * Dt_3;
pot->D_001 = r_z * Dt_3;
#endif
#if SELF_GRAVITY_MULTIPOLE_ORDER > 1
/* 2nd order derivatives */
pot->D_200 = r_x2 * Dt_5 + Dt_3;
pot->D_020 = r_y2 * Dt_5 + Dt_3;
pot->D_002 = r_z2 * Dt_5 + Dt_3;
pot->D_110 = r_x * r_y * Dt_5;
pot->D_101 = r_x * r_z * Dt_5;
pot->D_011 = r_y * r_z * Dt_5;
#endif
#if SELF_GRAVITY_MULTIPOLE_ORDER > 2
/* 3rd order derivatives */
pot->D_300 = r_x3 * Dt_7 + 3.f * r_x * Dt_5;
pot->D_030 = r_y3 * Dt_7 + 3.f * r_y * Dt_5;
pot->D_003 = r_z3 * Dt_7 + 3.f * r_z * Dt_5;
pot->D_210 = r_x2 * r_y * Dt_7 + r_y * Dt_5;
pot->D_201 = r_x2 * r_z * Dt_7 + r_z * Dt_5;
pot->D_120 = r_y2 * r_x * Dt_7 + r_x * Dt_5;
pot->D_021 = r_y2 * r_z * Dt_7 + r_z * Dt_5;
pot->D_102 = r_z2 * r_x * Dt_7 + r_x * Dt_5;
pot->D_012 = r_z2 * r_y * Dt_7 + r_y * Dt_5;
pot->D_111 = r_x * r_y * r_z * Dt_7;
#endif
#if SELF_GRAVITY_MULTIPOLE_ORDER > 3
/* 4th order derivatives */
pot->D_400 = r_x4 * Dt_9 + 6.f * r_x2 * Dt_7 + 3.f * Dt_5;
pot->D_040 = r_y4 * Dt_9 + 6.f * r_y2 * Dt_7 + 3.f * Dt_5;
pot->D_004 = r_z4 * Dt_9 + 6.f * r_z2 * Dt_7 + 3.f * Dt_5;
pot->D_310 = r_x3 * r_y * Dt_9 + 3.f * r_x * r_y * Dt_7;
pot->D_301 = r_x3 * r_z * Dt_9 + 3.f * r_x * r_z * Dt_7;
pot->D_130 = r_y3 * r_x * Dt_9 + 3.f * r_y * r_x * Dt_7;
pot->D_031 = r_y3 * r_z * Dt_9 + 3.f * r_y * r_z * Dt_7;
pot->D_103 = r_z3 * r_x * Dt_9 + 3.f * r_z * r_x * Dt_7;
pot->D_013 = r_z3 * r_y * Dt_9 + 3.f * r_z * r_y * Dt_7;
pot->D_220 = r_x2 * r_y2 * Dt_9 + r_x2 * Dt_7 + r_y2 * Dt_7 + Dt_5;
pot->D_202 = r_x2 * r_z2 * Dt_9 + r_x2 * Dt_7 + r_z2 * Dt_7 + Dt_5;
pot->D_022 = r_y2 * r_z2 * Dt_9 + r_y2 * Dt_7 + r_z2 * Dt_7 + Dt_5;
pot->D_211 = r_x2 * r_y * r_z * Dt_9 + r_y * r_z * Dt_7;
pot->D_121 = r_y2 * r_x * r_z * Dt_9 + r_x * r_z * Dt_7;
pot->D_112 = r_z2 * r_x * r_y * Dt_9 + r_x * r_y * Dt_7;
#endif
#if SELF_GRAVITY_MULTIPOLE_ORDER > 4
/* 5th order derivatives */
pot->D_500 = r_x5 * Dt_11 + 10.f * r_x3 * Dt_9 + 15.f * r_x * Dt_7;
pot->D_050 = r_y5 * Dt_11 + 10.f * r_y3 * Dt_9 + 15.f * r_y * Dt_7;
pot->D_005 = r_z5 * Dt_11 + 10.f * r_z3 * Dt_9 + 15.f * r_z * Dt_7;
pot->D_410 = r_x4 * r_y * Dt_11 + 6.f * r_x2 * r_y * Dt_9 + 3.f * r_y * Dt_7;
pot->D_401 = r_x4 * r_z * Dt_11 + 6.f * r_x2 * r_z * Dt_9 + 3.f * r_z * Dt_7;
pot->D_140 = r_y4 * r_x * Dt_11 + 6.f * r_y2 * r_x * Dt_9 + 3.f * r_x * Dt_7;
pot->D_041 = r_y4 * r_z * Dt_11 + 6.f * r_y2 * r_z * Dt_9 + 3.f * r_z * Dt_7;
pot->D_104 = r_z4 * r_x * Dt_11 + 6.f * r_z2 * r_x * Dt_9 + 3.f * r_x * Dt_7;
pot->D_014 = r_z4 * r_y * Dt_11 + 6.f * r_z2 * r_y * Dt_9 + 3.f * r_y * Dt_7;
pot->D_320 = r_x3 * r_y2 * Dt_11 + r_x3 * Dt_9 + 3.f * r_x * r_y2 * Dt_9 +
3.f * r_x * Dt_7;
pot->D_302 = r_x3 * r_z2 * Dt_11 + r_x3 * Dt_9 + 3.f * r_x * r_z2 * Dt_9 +
3.f * r_x * Dt_7;
pot->D_230 = r_y3 * r_x2 * Dt_11 + r_y3 * Dt_9 + 3.f * r_y * r_x2 * Dt_9 +
3.f * r_y * Dt_7;
pot->D_032 = r_y3 * r_z2 * Dt_11 + r_y3 * Dt_9 + 3.f * r_y * r_z2 * Dt_9 +
3.f * r_y * Dt_7;
pot->D_203 = r_z3 * r_x2 * Dt_11 + r_z3 * Dt_9 + 3.f * r_z * r_x2 * Dt_9 +
3.f * r_z * Dt_7;
pot->D_023 = r_z3 * r_y2 * Dt_11 + r_z3 * Dt_9 + 3.f * r_z * r_y2 * Dt_9 +
3.f * r_z * Dt_7;
pot->D_311 = r_x3 * r_y * r_z * Dt_11 + 3.f * r_x * r_y * r_z * Dt_9;
pot->D_131 = r_y3 * r_x * r_z * Dt_11 + 3.f * r_x * r_y * r_z * Dt_9;
pot->D_113 = r_z3 * r_x * r_y * Dt_11 + 3.f * r_x * r_y * r_z * Dt_9;
pot->D_122 = r_x * r_y2 * r_z2 * Dt_11 + r_x * r_y2 * Dt_9 +
r_x * r_z2 * Dt_9 + r_x * Dt_7;
pot->D_212 = r_y * r_x2 * r_z2 * Dt_11 + r_y * r_x2 * Dt_9 +
r_y * r_z2 * Dt_9 + r_y * Dt_7;
pot->D_221 = r_z * r_x2 * r_y2 * Dt_11 + r_z * r_x2 * Dt_9 +
r_z * r_y2 * Dt_9 + r_z * Dt_7;
#endif
#if SELF_GRAVITY_MULTIPOLE_ORDER > 5
#error "Missing implementation for orders >5"
#endif
}
/**
* @brief Compute all the relevent derivatives of the softened and truncated
* gravitational potential for the M2P kernel.
*
* @param r_x x-component of distance vector
* @param r_y y-component of distance vector
* @param r_z z-component of distance vector
* @param r2 Square norm of distance vector
* @param r_inv Inverse norm of distance vector
* @param eps Softening length.
* @param eps_inv Inverse of softening length.
* @param pot (return) The structure containing all the derivatives.
*/
__attribute__((always_inline)) INLINE static void
compute_potential_derivatives_M2P(float r_x, float r_y, float r_z, float r2,
float r_inv, float eps, float eps_inv,
struct potential_derivatives_M2P *pot) {
float Dt_1;
float Dt_3;
float Dt_5;
float Dt_7;
/* Un-softened case */
if (r2 > eps * eps) {
const float r_inv2 = r_inv * r_inv;
Dt_1 = r_inv;
Dt_3 = -1.f * Dt_1 * r_inv2; /* -1 / r^3 */
Dt_5 = -3.f * Dt_3 * r_inv2; /* 3 / r^5 */
Dt_7 = -5.f * Dt_5 * r_inv2; /* -15 / r^7 */
} else {
const float r = r2 * r_inv;
const float u = r * eps_inv;
const float u_inv = r_inv * eps;
const float eps_inv2 = eps_inv * eps_inv;
const float eps_inv3 = eps_inv * eps_inv2;
const float eps_inv5 = eps_inv3 * eps_inv2;
const float eps_inv7 = eps_inv5 * eps_inv2;
Dt_1 = eps_inv * D_soft_1(u, u_inv);
Dt_3 = -eps_inv3 * D_soft_3(u, u_inv);
Dt_5 = eps_inv5 * D_soft_5(u, u_inv);
Dt_7 = -eps_inv7 * D_soft_7(u, u_inv);
}
/* Compute some powers of r_x, r_y and r_z */
const float r_x2 = r_x * r_x;
const float r_y2 = r_y * r_y;
const float r_z2 = r_z * r_z;
const float r_x3 = r_x2 * r_x;
const float r_y3 = r_y2 * r_y;
const float r_z3 = r_z2 * r_z;
/* 1st order derivatives */
pot->D_100 = r_x * Dt_3;
pot->D_010 = r_y * Dt_3;
pot->D_001 = r_z * Dt_3;
/* 3rd order derivatives */
pot->D_300 = r_x3 * Dt_7 + 3.f * r_x * Dt_5;
pot->D_030 = r_y3 * Dt_7 + 3.f * r_y * Dt_5;
pot->D_003 = r_z3 * Dt_7 + 3.f * r_z * Dt_5;
pot->D_210 = r_x2 * r_y * Dt_7 + r_y * Dt_5;
pot->D_201 = r_x2 * r_z * Dt_7 + r_z * Dt_5;
pot->D_120 = r_y2 * r_x * Dt_7 + r_x * Dt_5;
pot->D_021 = r_y2 * r_z * Dt_7 + r_z * Dt_5;
pot->D_102 = r_z2 * r_x * Dt_7 + r_x * Dt_5;
pot->D_012 = r_z2 * r_y * Dt_7 + r_y * Dt_5;
pot->D_111 = r_x * r_y * r_z * Dt_7;
}
#endif /* SWIFT_GRAVITY_DERIVATIVE_H */