-
Matthieu Schaller authoredMatthieu Schaller authored
plotSolution.py 6.70 KiB
################################################################################
# This file is part of SWIFT.
# Copyright (c) 2018 Bert Vandenbroucke (bert.vandenbroucke@gmail.com)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
################################################################################
# Computes the analytical solution of the Zeldovich pancake and compares with
# the simulation result
# Parameters
T_i = 100. # Initial temperature of the gas (in K)
z_c = 1. # Redshift of caustic formation (non-linear collapse)
z_i = 100. # Initial redshift
# Physical constants needed for internal energy to temperature conversion
k_in_J_K = 1.38064852e-23
mH_in_kg = 1.6737236e-27
import matplotlib
matplotlib.use("Agg")
from pylab import *
import h5py
import os.path
# Plot parameters
params = {'axes.labelsize': 10,
'axes.titlesize': 10,
'font.size': 12,
'legend.fontsize': 12,
'xtick.labelsize': 10,
'ytick.labelsize': 10,
'text.usetex': True,
'figure.figsize' : (9.90,6.45),
'figure.subplot.left' : 0.045,
'figure.subplot.right' : 0.99,
'figure.subplot.bottom' : 0.05,
'figure.subplot.top' : 0.99,
'figure.subplot.wspace' : 0.15,
'figure.subplot.hspace' : 0.12,
'lines.markersize' : 6,
'lines.linewidth' : 3.,
'text.latex.unicode': True
}
rcParams.update(params)
rc('font',**{'family':'sans-serif','sans-serif':['Times']})
snap = int(sys.argv[1])
# Read the simulation data
sim = h5py.File("zeldovichPancake_%04d.hdf5"%snap, "r")
boxSize = sim["/Header"].attrs["BoxSize"][0]
time = sim["/Header"].attrs["Time"][0]
redshift = sim["/Header"].attrs["Redshift"][0]
a = sim["/Header"].attrs["Scale-factor"][0]
scheme = sim["/HydroScheme"].attrs["Scheme"]
kernel = sim["/HydroScheme"].attrs["Kernel function"]
neighbours = sim["/HydroScheme"].attrs["Kernel target N_ngb"]
eta = sim["/HydroScheme"].attrs["Kernel eta"]
alpha = sim["/HydroScheme"].attrs["Alpha viscosity"]
git = sim["Code"].attrs["Git Revision"]
# Cosmological parameters
H_0 = sim["/Cosmology"].attrs["H0 [internal units]"][0]
gas_gamma = sim["/HydroScheme"].attrs["Adiabatic index"][0]
x = sim["/PartType0/Coordinates"][:,0]
v = sim["/PartType0/Velocities"][:,0]
u = sim["/PartType0/InternalEnergy"][:]
S = sim["/PartType0/Entropy"][:]
P = sim["/PartType0/Pressure"][:]
rho = sim["/PartType0/Density"][:]
m = sim["/PartType0/Masses"][:]
phi = sim["/PartType0/Potential"][:]
x -= 0.5 * boxSize
# Check for Gadget solution
filename_g = "snapshot_%03d.hdf5"%(snap)
if os.path.exists(filename_g):
sim_g = h5py.File(filename_g, "r")
x_g = sim_g["/PartType0/Coordinates"][:,0]
v_g = sim_g["/PartType0/Velocities"][:,0]
u_g = sim_g["/PartType0/InternalEnergy"][:]
rho_g = sim_g["/PartType0/Density"][:]
phi_g = sim_g["/PartType0/Potential"][:]
a_g = sim_g["/Header"].attrs["Time"]
print "Gadget Scale-factor:", a_g, "redshift:", 1/a_g - 1.
x_g -= 0.5 * boxSize
else:
x_g = np.zeros(1)
v_g = np.zeros(1)
u_g = np.zeros(1)
rho_g = np.zeros(1)
phi_g = np.zeros(1)
# Derived parameters
rho_0 = m.sum() / (boxSize**3) # critical density of the box
lambda_i = boxSize # wavelength of the perturbation
# Solution taken from Springel 2010. Eqs. 127 - 130
q = linspace(-0.5 * lambda_i, 0.5 * lambda_i, 256)
k_i = 2. * pi / lambda_i
zfac = (1. + z_c) / (1. + redshift)
x_s = q - zfac * sin(k_i * q) / k_i
rho_s = rho_0 / (1. - zfac * cos(k_i * q))
v_s = -H_0 * (1. + z_c) / sqrt(1. + redshift) * sin(k_i * q) / k_i
T_s = T_i * (((1. + redshift) / ( 1. + z_i))**3. * rho_s / rho_0)**(2. / 3.)
unit_length_in_cgs = sim["/Units"].attrs["Unit length in cgs (U_L)"]
unit_mass_in_cgs = sim["/Units"].attrs["Unit mass in cgs (U_M)"]
unit_time_in_cgs = sim["/Units"].attrs["Unit time in cgs (U_t)"]
unit_length_in_si = 0.01 * unit_length_in_cgs
unit_mass_in_si = 0.001 * unit_mass_in_cgs
unit_time_in_si = unit_time_in_cgs
# Plot the interesting quantities
figure()
# Velocity profile --------------------------------
subplot(231)
if np.size(x_g) > 1:
plot(x_g, v_g, 's', color='g', alpha=0.8, lw=1.2, ms=4)
plot(x, v, '.', color='r', ms=4.0)
plot(x_s, v_s, '--', color='k', alpha=0.8, lw=1.2)
xlabel("${\\rm{Comoving~position}}~x$", labelpad=0)
ylabel("${\\rm{Peculiar~velocity}}~v_x$", labelpad=0)
# Density profile --------------------------------
subplot(232)#, yscale="log")
if np.size(x_g) > 1:
plot(x_g, rho_g/rho_0, 's', color='g', alpha=0.8, lw=1.2, ms=4)
plot(x, rho/rho_0, '.', color='r', ms=4.0)
plot(x_s, rho_s/rho_0, '--', color='k', alpha=0.8, lw=1.2)
xlabel("${\\rm{Comoving~position}}~x$", labelpad=0)
ylabel("${\\rm{Density}}~\\rho / \\rho_0$", labelpad=0)
# Potential profile --------------------------------
subplot(233)
if np.size(x_g) > 1:
plot(x_g, phi_g, 's', color='g', alpha=0.8, lw=1.2, ms=4)
plot(x, phi, '.', color='r', ms=4.0)
xlabel("${\\rm{Comoving~position}}~x$", labelpad=0)
ylabel("${\\rm{Potential}}~\\phi$", labelpad=0)
# Temperature profile -------------------------
subplot(234)#, yscale="log")
u *= (unit_length_in_si**2 / unit_time_in_si**2)
u_g *= (unit_length_in_si**2 / unit_time_in_si**2)
u /= a**(3 * (gas_gamma - 1.))
u_g /= a**(3 * (gas_gamma - 1.))
T = (gas_gamma - 1.) * u * mH_in_kg / k_in_J_K
T_g = (gas_gamma - 1.) * u_g * mH_in_kg / k_in_J_K
print "z = {0:.2f}, T_avg = {1:.2f}".format(redshift, T.mean())
if np.size(x_g) > 1:
plot(x_g, T_g, 's', color='g', alpha=0.8, lw=1.2, ms=4)
plot(x, T, '.', color='r', ms=4.0)
plot(x_s, T_s, '--', color='k', alpha=0.8, lw=1.2)
xlabel("${\\rm{Comoving~position}}~x$", labelpad=0)
ylabel("${\\rm{Temperature}}~T$", labelpad=0)
# Information -------------------------------------
subplot(236, frameon=False)
text(-0.49, 0.9, "Zeldovich pancake at z=%.2f "%(redshift), fontsize=10)
text(-0.49, 0.8, "adiabatic index $\\gamma=%.2f$, viscosity $\\alpha=%.2f$"%(gas_gamma, alpha), fontsize=10)
plot([-0.49, 0.1], [0.62, 0.62], 'k-', lw=1)
text(-0.49, 0.5, "$\\textsc{Swift}$ %s"%git, fontsize=10)
text(-0.49, 0.4, scheme, fontsize=10)
text(-0.49, 0.3, kernel, fontsize=10)
text(-0.49, 0.2, "$%.2f$ neighbours ($\\eta=%.3f$)"%(neighbours, eta), fontsize=10)
xlim(-0.5, 0.5)
ylim(0, 1)
xticks([])
yticks([])
savefig("ZeldovichPancake_%.4d.png"%snap, dpi=200)