-
Peter W. Draper authored
Add package description function and simple documentation Former-commit-id: c363b8223a62e9c5752a2e0ade55e3b96e341985
Peter W. Draper authoredAdd package description function and simple documentation Former-commit-id: c363b8223a62e9c5752a2e0ade55e3b96e341985
test.c 30.68 KiB
/*******************************************************************************
* This file is part of SWIFT.
* Coypright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk),
* Matthieu Schaller (matthieu.schaller@durham.ac.uk)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
/* Config parameters. */
#include "../config.h"
/* Some standard headers. */
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <pthread.h>
#include <math.h>
#include <float.h>
#include <limits.h>
#include <fenv.h>
#include <omp.h>
/* Conditional headers. */
#ifdef HAVE_LIBZ
#include <zlib.h>
#endif
/* MPI headers. */
#ifdef WITH_MPI
#include <mpi.h>
#endif
/* Local headers. */
#include "swift.h"
/* Ticks per second on this machine. */
#ifndef CPU_TPS
#define CPU_TPS 2.40e9
#endif
/* Engine policy flags. */
#ifndef ENGINE_POLICY
#define ENGINE_POLICY engine_policy_none
#endif
/**
* @brief Mapping function to draw a specific cell (gnuplot).
*/
void map_cells_plot ( struct cell *c , void *data ) {
int depth = *(int *)data;
double *l = c->loc, *h = c->h;
if ( c->depth <= depth ) {
printf( "%.16e %.16e %.16e\n" , l[0] , l[1] , l[2] );
printf( "%.16e %.16e %.16e\n" , l[0]+h[0] , l[1] , l[2] );
printf( "%.16e %.16e %.16e\n" , l[0]+h[0] , l[1]+h[1] , l[2] );
printf( "%.16e %.16e %.16e\n\n\n" , l[0] , l[1]+h[1] , l[2] );
printf( "%.16e %.16e %.16e\n" , l[0] , l[1] , l[2]+h[2] );
printf( "%.16e %.16e %.16e\n" , l[0]+h[0] , l[1] , l[2]+h[2] );
printf( "%.16e %.16e %.16e\n" , l[0]+h[0] , l[1]+h[1] , l[2]+h[2] );
printf( "%.16e %.16e %.16e\n\n\n" , l[0] , l[1]+h[1] , l[2]+h[2] );
printf( "%.16e %.16e %.16e\n" , l[0] , l[1] , l[2] );
printf( "%.16e %.16e %.16e\n" , l[0] , l[1]+h[1] , l[2] );
printf( "%.16e %.16e %.16e\n" , l[0] , l[1]+h[1] , l[2]+h[2] );
printf( "%.16e %.16e %.16e\n\n\n" , l[0] , l[1] , l[2]+h[2] );
printf( "%.16e %.16e %.16e\n" , l[0]+h[0] , l[1] , l[2] );
printf( "%.16e %.16e %.16e\n" , l[0]+h[0] , l[1]+h[1] , l[2] );
printf( "%.16e %.16e %.16e\n" , l[0]+h[0] , l[1]+h[1] , l[2]+h[2] );
printf( "%.16e %.16e %.16e\n\n\n" , l[0]+h[0] , l[1] , l[2] +h[2]);
printf( "%.16e %.16e %.16e\n" , l[0] , l[1] , l[2] );
printf( "%.16e %.16e %.16e\n" , l[0] , l[1] , l[2]+h[2] );
printf( "%.16e %.16e %.16e\n" , l[0]+h[0] , l[1] , l[2]+h[2] );
printf( "%.16e %.16e %.16e\n\n\n" , l[0]+h[0] , l[1] , l[2] );
printf( "%.16e %.16e %.16e\n" , l[0] , l[1]+h[1] , l[2] );
printf( "%.16e %.16e %.16e\n" , l[0] , l[1]+h[1] , l[2]+h[2] );
printf( "%.16e %.16e %.16e\n" , l[0]+h[0] , l[1]+h[1] , l[2]+h[2] );
printf( "%.16e %.16e %.16e\n\n\n" , l[0]+h[0] , l[1]+h[1] , l[2] );
if ( !c->split ) {
for ( int k = 0 ; k < c->count ; k++ )
printf( "0 0 0 %.16e %.16e %.16e\n" ,
c->parts[k].x[0] , c->parts[k].x[1] , c->parts[k].x[2] );
printf( "\n\n" );
}
/* else
for ( int k = 0 ; k < 8 ; k++ )
if ( c->progeny[k] != NULL )
map_cells_plot( c->progeny[k] , data ); */
}
}
/**
* @brief Mapping function for checking if each part is in its box.
*/
/* void map_check ( struct part *p , struct cell *c , void *data ) {
if ( p->x[0] < c->loc[0] || p->x[0] > c->loc[0]+c->h[0] ||
p->x[0] < c->loc[0] || p->x[0] > c->loc[0]+c->h[0] ||
p->x[0] < c->loc[0] || p->x[0] > c->loc[0]+c->h[0] )
printf( "map_check: particle %i is outside of its box.\n" , p->id );
} */
/**
* @brief Mapping function for neighbour count.
*/
void map_cellcheck ( struct cell *c , void *data ) {
int k, *count = (int *)data;
struct part *p;
__sync_fetch_and_add( count , c->count );
/* Loop over all parts and check if they are in the cell. */
for ( k = 0 ; k < c->count ; k++ ) {
p = &c->parts[k];
if ( p->x[0] < c->loc[0] || p->x[1] < c->loc[1] || p->x[2] < c->loc[2] ||
p->x[0] > c->loc[0] + c->h[0] || p->x[1] > c->loc[1] + c->h[1] || p->x[2] > c->loc[2] + c->h[2] ) {
printf( "map_cellcheck: particle at [ %.16e %.16e %.16e ] outside of cell [ %.16e %.16e %.16e ] - [ %.16e %.16e %.16e ].\n" ,
p->x[0] , p->x[1] , p->x[2] ,
c->loc[0] , c->loc[1] , c->loc[2] ,
c->loc[0] + c->h[0] , c->loc[1] + c->h[1] , c->loc[2] + c->h[2] );
error( "particle out of bounds!" );
}
}
}
/**
* @brief Mapping function for maxdepth cell count.
*/
void map_maxdepth ( struct cell *c , void *data ) {
int maxdepth = ((int *)data)[0];
int *count = &((int *)data)[1];
// printf( "%e\n" , p->count );
if ( c->depth == maxdepth )
*count += 1;
}
/**
* @brief Mapping function for neighbour count.
*/
void map_count ( struct part *p , struct cell *c , void *data ) {
double *wcount = (double *)data;
// printf( "%i %e %e\n" , p->id , p->count , p->count_dh );
*wcount += p->density.wcount;
}
void map_wcount_min ( struct part *p , struct cell *c , void *data ) {
struct part **p2 = (struct part **)data;
if ( p->density.wcount < (*p2)->density.wcount )
*p2 = p;
}
void map_wcount_max ( struct part *p , struct cell *c , void *data ) {
struct part **p2 = (struct part **)data;
if ( p->density.wcount > (*p2)->density.wcount )
*p2 = p;
}
void map_h_min ( struct part *p , struct cell *c , void *data ) {
struct part **p2 = (struct part **)data;
if ( p->h < (*p2)->h )
*p2 = p;
}
void map_h_max ( struct part *p , struct cell *c , void *data ) {
struct part **p2 = (struct part **)data;
if ( p->h > (*p2)->h )
*p2 = p;
}
/**
* @brief Mapping function for neighbour count.
*/
void map_icount ( struct part *p , struct cell *c , void *data ) {
// int *count = (int *)data;
// printf( "%i\n" , p->icount );
// *count += p->icount;
}
/**
* @brief Mapping function to print the particle position.
*/
void map_dump ( struct part *p , struct cell *c , void *data ) {
double *shift = (double *)data;
printf( "%g\t%g\t%g\n" , p->x[0]-shift[0] , p->x[1]-shift[1] , p->x[2]-shift[2] );
}
/**
* @brief Compute the average number of pairs per particle using
* a brute-force O(N^2) computation.
*
* @param dim The space dimensions.
* @param parts The #part array.
* @param N The number of parts.
* @param periodic Periodic boundary conditions flag.
*/
void pairs_n2 ( double *dim , struct part *__restrict__ parts , int N , int periodic ) {
int i, j, k, count = 0;
// int mj, mk;
// double maxratio = 1.0;
double r2, dx[3], rho = 0.0;
double rho_max = 0.0, rho_min = 100;
/* Loop over all particle pairs. */
#pragma omp parallel for schedule(dynamic), default(none), private(k,i,dx,r2), shared(periodic,parts,dim,N,stdout)
for ( j = 0 ; j < N ; j++ ) {
if ( j % 1000 == 0 ) {
printf( "pairs_n2: j=%i.\n" , j );
fflush(stdout);
}
for ( k = j+1 ; k < N ; k++ ) {
for ( i = 0 ; i < 3 ; i++ ) {
dx[i] = parts[j].x[i] - parts[k].x[i];
if ( periodic ) {
if ( dx[i] < -dim[i]/2 )
dx[i] += dim[i];
else if ( dx[i] > dim[i]/2 )
dx[i] -= dim[i];
}
}
r2 = dx[0]*dx[0] + dx[1]*dx[1] + dx[2]*dx[2];
if ( r2 < parts[j].h*parts[j].h || r2 < parts[k].h*parts[k].h ) {
runner_iact_density( r2 , NULL , parts[j].h , parts[k].h , &parts[j] , &parts[k] );
/* if ( parts[j].h / parts[k].h > maxratio )
#pragma omp critical
{
maxratio = parts[j].h / parts[k].h;
mj = j; mk = k;
}
else if ( parts[k].h / parts[j].h > maxratio )
#pragma omp critical
{
maxratio = parts[k].h / parts[j].h;
mj = j; mk = k;
} */
}
}
}
/* Aggregate the results. */
for ( k = 0 ; k < N ; k++ ) {
// count += parts[k].icount;
rho += parts[k].density.wcount;
rho_min = fmin( parts[k].density.wcount , rho_min );
rho_min = fmax( parts[k].density.wcount , rho_max );
}
/* Dump the result. */
printf( "pairs_n2: avg. density per part is %.3f (nr. pairs %.3f).\n" , rho/N + 32.0/3 , ((double)count)/N );
printf( "pairs_n2: densities are in [ %e , %e ].\n" , rho_min/N + 32.0/3 , rho_max/N + 32.0/3 );
/* printf( "pairs_n2: maximum ratio between parts %i [%e,%e,%e] and %i [%e,%e,%e] is %.3f/%.3f\n" ,
mj , parts[mj].x[0] , parts[mj].x[1] , parts[mj].x[2] ,
mk , parts[mk].x[0] , parts[mk].x[1] , parts[mk].x[2] ,
parts[mj].h , parts[mk].h ); fflush(stdout); */
fflush(stdout);
}
void pairs_single_density ( double *dim , long long int pid , struct part *__restrict__ parts , int N , int periodic ) {
int i, k;
// int mj, mk;
// double maxratio = 1.0;
double r2, dx[3];
float fdx[3];
struct part p;
// double ih = 12.0/6.25;
/* Find "our" part. */
for ( k = 0 ; k < N && parts[k].id != pid ; k++ );
if ( k == N )
error( "Part not found." );
p = parts[k];
printf( "pairs_single: part[%i].id == %lli.\n" , k , pid );
p.rho = 0.0;
p.density.wcount = 0.0;
// p.icount = 0;
p.rho_dh = 0.0;
/* Loop over all particle pairs. */
for ( k = 0 ; k < N ; k++ ) {
if ( parts[k].id == p.id )
continue;
for ( i = 0 ; i < 3 ; i++ ) {
dx[i] = p.x[i] - parts[k].x[i];
if ( periodic ) {
if ( dx[i] < -dim[i]/2 )
dx[i] += dim[i];
else if ( dx[i] > dim[i]/2 )
dx[i] -= dim[i];
}
fdx[i] = dx[i];
}
r2 = fdx[0]*fdx[0] + fdx[1]*fdx[1] + fdx[2]*fdx[2];
if ( r2 < p.h*p.h ) {
runner_iact_nonsym_density( r2 , fdx , p.h , parts[k].h , &p , &parts[k] );
/* printf( "pairs_simple: interacting particles %lli [%i,%i,%i] and %lli [%i,%i,%i], r=%e.\n" ,
pid , (int)(p.x[0]*ih) , (int)(p.x[1]*ih) , (int)(p.x[2]*ih) ,
parts[k].id , (int)(parts[k].x[0]*ih) , (int)(parts[k].x[1]*ih) , (int)(parts[k].x[2]*ih) ,
sqrtf(r2) ); */
}
}
/* Dump the result. */
printf( "pairs_single: wcount of part %lli (h=%e) is %f.\n" , p.id , p.h , p.density.wcount + 32.0/3 );
fflush(stdout);
}
void pairs_single_grav ( double *dim , long long int pid , struct gpart *__restrict__ parts , int N , int periodic ) {
int i, k;
// int mj, mk;
// double maxratio = 1.0;
double r2, dx[3];
float fdx[3], a[3] = { 0.0 , 0.0 , 0.0 }, aabs[3] = { 0.0 , 0.0 , 0.0 };
struct gpart pi, pj;
// double ih = 12.0/6.25;
/* Find "our" part. */
for ( k = 0 ; k < N ; k++ )
if ( ( parts[k].id > 0 && parts[k].part->id == pid ) || parts[k].id == -pid )
break;
if ( k == N )
error( "Part not found." );
pi = parts[k];
pi.a[0] = 0.0f; pi.a[1] = 0.0f; pi.a[2] = 0.0f;
/* Loop over all particle pairs. */
for ( k = 0 ; k < N ; k++ ) {
if ( parts[k].id == pi.id )
continue;
pj = parts[k];
for ( i = 0 ; i < 3 ; i++ ) {
dx[i] = pi.x[i] - pj.x[i];
if ( periodic ) {
if ( dx[i] < -dim[i]/2 )
dx[i] += dim[i];
else if ( dx[i] > dim[i]/2 )
dx[i] -= dim[i];
}
fdx[i] = dx[i];
}
r2 = fdx[0]*fdx[0] + fdx[1]*fdx[1] + fdx[2]*fdx[2];
runner_iact_grav( r2 , fdx , &pi , &pj );
a[0] += pi.a[0]; a[1] += pi.a[1]; a[2] += pi.a[2];
aabs[0] += fabsf( pi.a[0] ); aabs[1] += fabsf( pi.a[1] ); aabs[2] += fabsf( pi.a[2] );
pi.a[0] = 0.0f; pi.a[1] = 0.0f; pi.a[2] = 0.0f;
}
/* Dump the result. */
message( "acceleration on gpart %lli is a=[ %e %e %e ], |a|=[ %.2e %.2e %.2e ].\n" , pi.part->id , a[0] , a[1] , a[2] , aabs[0] , aabs[1] , aabs[2] );
}
/**
* @brief Test the kernel function by dumping it in the interval [0,1].
*
* @param N number of intervals in [0,1].
*/
void kernel_dump ( int N ) {
int k;
float x, w, dw_dx;
float x4[4] = {0.0f,0.0f,0.0f,0.0f};
float w4[4] = {0.0f,0.0f,0.0f,0.0f};
// float dw_dx4[4] __attribute__ ((aligned (16)));
for ( k = 0 ; k <= N ; k++ ) {
x = ((float)k) / N;
x4[3] = x4[2]; x4[2] = x4[1]; x4[1] = x4[0]; x4[0] = x;
kernel_deval( x , &w , &dw_dx );
// kernel_deval_vec( (vector *)x4 , (vector *)w4 , (vector *)dw_dx4 );
printf( " %e %e %e %e %e %e %e\n" , x , w , dw_dx , w4[0] , w4[1] , w4[2] , w4[3] );
}
}
void gravity_dump ( float r_max , int N ) {
int k;
float x, w;
float x4[4] = {0.0f,0.0f,0.0f,0.0f};
float w4[4] = {0.0f,0.0f,0.0f,0.0f};
// float dw_dx4[4] __attribute__ ((aligned (16)));
float gadget ( float r ) {
float fac, h_inv, u, r2 = r*r;
if ( r >= const_epsilon )
fac = 1.0f / (r2 * r);
else {
h_inv = 1. / const_epsilon;
u = r * h_inv;
if ( u < 0.5 )
fac = const_iepsilon3 * (10.666666666667 + u * u * (32.0 * u - 38.4));
else
fac = const_iepsilon3 * (21.333333333333 - 48.0 * u +
38.4 * u * u - 10.666666666667 * u * u * u - 0.066666666667 / (u * u * u));
}
return const_G * fac;
}
for ( k = 1 ; k <= N ; k++ ) {
x = (r_max * k) / N;
x4[3] = x4[2]; x4[2] = x4[1]; x4[1] = x4[0]; x4[0] = x;
kernel_grav_eval( x , &w );
w *= const_G / ( x*x*x );
// blender_deval_vec( (vector *)x4 , (vector *)w4 , (vector *)dw_dx4 );
printf( " %.16e %.16e %.16e %.16e %.16e %.16e %.16e\n" , x , w*x , w4[0] , w4[1] , w4[2] , w4[3] , gadget(x)*x );
}
}
/**
* @brief Test the density function by dumping it for two random parts.
*
* @param N number of intervals in [0,1].
*/
void density_dump ( int N ) {
int k;
float r2[4] = {0.0f,0.0f,0.0f,0.0f}, hi[4], hj[4];
struct part *pi[4], *pj[4], Pi[4], Pj[4];
/* Init the interaction parameters. */
for ( k = 0 ; k < 4 ; k++ ) {
Pi[k].mass = 1.0f; Pi[k].rho = 0.0f; Pi[k].density.wcount = 0.0f;
Pj[k].mass = 1.0f; Pj[k].rho = 0.0f; Pj[k].density.wcount = 0.0f;
hi[k] = 1.0;
hj[k] = 1.0;
pi[k] = &Pi[k];
pj[k] = &Pj[k];
}
for ( k = 0 ; k <= N ; k++ ) {
r2[3] = r2[2]; r2[2] = r2[1]; r2[1] = r2[0];
r2[0] = ((float)k) / N;
Pi[0].density.wcount = 0; Pj[0].density.wcount = 0;
runner_iact_density( r2[0] , NULL , hi[0] , hj[0] , &Pi[0] , &Pj[0] );
printf( " %e %e %e" , r2[0] , Pi[0].density.wcount , Pj[0].density.wcount );
Pi[0].density.wcount = 0; Pj[0].density.wcount = 0;
Pi[1].density.wcount = 0; Pj[1].density.wcount = 0;
Pi[2].density.wcount = 0; Pj[2].density.wcount = 0;
Pi[3].density.wcount = 0; Pj[3].density.wcount = 0;
runner_iact_vec_density( r2 , NULL , hi , hj , pi , pj );
printf( " %e %e %e %e\n" , Pi[0].density.wcount , Pi[1].density.wcount , Pi[2].density.wcount , Pi[3].density.wcount );
}
}
/**
* @brief Main routine that loads a few particles and generates some output.
*
*/
int main ( int argc , char *argv[] ) {
int c, icount, j, k, N = -1, periodic = 1;
int nr_threads = 1, nr_queues = -1, runs = INT_MAX;
int data[2];
double dim[3] = { 1.0 , 1.0 , 1.0 }, shift[3] = { 0.0 , 0.0 , 0.0 };
double h_max = -1.0 , scaling = 1.0;
double clock = DBL_MAX;
struct part *parts = NULL;
struct space s;
struct engine e;
struct UnitSystem us;
char ICfileName[200];
float dt_max = 0.0f;
ticks tic;
int nr_nodes = 1, myrank = 0, grid[3] = { 1 , 1 , 1 };
/* Choke on FP-exceptions. */
// feenableexcept( FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW );
/* Just dump the gravity potential and leave. */
/* gravity_dump( 0.005 , 1000 );
return 0; */
#ifdef WITH_MPI
/* Start by initializing MPI. */
int res, prov;
if ( ( res = MPI_Init_thread( &argc , &argv , MPI_THREAD_MULTIPLE , &prov ) ) != MPI_SUCCESS )
error( "Call to MPI_Init failed with error %i." , res );
if ( prov != MPI_THREAD_MULTIPLE )
error( "MPI does not provide the level of threading required (MPI_THREAD_MULTIPLE)." );
if ( ( res = MPI_Comm_size( MPI_COMM_WORLD , &nr_nodes ) != MPI_SUCCESS ) )
error( "MPI_Comm_size failed with error %i." , res );
if ( ( res = MPI_Comm_rank( MPI_COMM_WORLD , &myrank ) ) != MPI_SUCCESS )
error( "Call to MPI_Comm_rank failed with error %i." , res );
if ( ( res = MPI_Comm_set_errhandler( MPI_COMM_WORLD , MPI_ERRORS_RETURN ) ) != MPI_SUCCESS )
error( "Call to MPI_Comm_set_errhandler failed with error %i." , res );
if ( myrank == 0 )
message( "MPI is up and running with %i nodes." , nr_nodes );
fflush(stdout);
#endif
/* Greeting message */
message( "This is %s\n", package_description() );
/* Init the space. */
bzero( &s , sizeof(struct space) );
/* Parse the options */
while ( ( c = getopt( argc , argv , "a:c:d:f:g:m:q:r:s:t:w:z:" ) ) != -1 )
switch( c )
{
case 'a':
if ( sscanf( optarg , "%lf" , &scaling ) != 1 )
error( "Error parsing cutoff scaling." );
if ( myrank == 0 )
message( "scaling cutoff by %.3f." , scaling ); fflush(stdout);
break;
case 'c':
if ( sscanf( optarg , "%lf" , &clock ) != 1 )
error( "Error parsing clock." );
if ( myrank == 0 )
message( "clock set to %.3e." , clock ); fflush(stdout);
break;
case 'd':
if ( sscanf( optarg , "%f" , &dt_max ) != 1 )
error( "Error parsing timestep." );
if ( myrank == 0 )
message( "dt set to %e." , dt_max ); fflush(stdout);
break;
case 'f':
if( !strcpy(ICfileName, optarg))
error("Error parsing IC file name.");
// if ( myrank == 0 )
// message("IC to be read from file '%s'.", ICfileName);
break;
case 'g':
if ( sscanf( optarg , "%i %i %i" , &grid[0] , &grid[1] , &grid[2] ) != 3 )
error( "Error parsing grid." );
if ( myrank == 0 )
message( "grid set to [ %i %i %i ]." , grid[0] , grid[1] , grid[2] ); fflush(stdout);
break;
case 'm':
if ( sscanf( optarg , "%lf" , &h_max ) != 1 )
error( "Error parsing h_max." );
if ( myrank == 0 )
message( "maximum h set to %e." , h_max ); fflush(stdout);
break;
case 'q':
if ( sscanf( optarg , "%d" , &nr_queues ) != 1 )
error( "Error parsing number of queues." );
break;
case 'r':
if ( sscanf( optarg , "%d" , &runs ) != 1 )
error( "Error parsing number of runs." );
break;
case 's':
if ( sscanf( optarg , "%lf %lf %lf" , &shift[0] , &shift[1] , &shift[2] ) != 3 )
error( "Error parsing shift." );
if ( myrank == 0 )
message( "will shift parts by [ %.3f %.3f %.3f ]." , shift[0] , shift[1] , shift[2] );
break;
case 't':
if ( sscanf( optarg , "%d" , &nr_threads ) != 1 )
error( "Error parsing number of threads." );
omp_set_num_threads( nr_threads );
break;
case 'w':
if ( sscanf( optarg , "%d" , &space_subsize ) != 1 )
error( "Error parsing sub size." );
if ( myrank == 0 )
message( "sub size set to %i." , space_subsize );
break;
case 'z':
if ( sscanf( optarg , "%d" , &space_splitsize ) != 1 )
error( "Error parsing split size." );
if ( myrank == 0 )
message( "split size set to %i." , space_splitsize );
break;
case '?':
error( "Unknown option." );
break;
}
/* How large are the parts? */
if ( myrank == 0 ) {
message( "sizeof(struct part) is %li bytes." , (long int)sizeof( struct part ));
message( "sizeof(struct gpart) is %li bytes." , (long int)sizeof( struct gpart ));
}
/* Initilaize unit system */
initUnitSystem(&us);
if ( myrank == 0 )
{
message( "Unit system: U_M = %e g.", us.UnitMass_in_cgs );
message( "Unit system: U_L = %e cm.", us.UnitLength_in_cgs );
message( "Unit system: U_t = %e s.", us.UnitTime_in_cgs );
message( "Unit system: U_I = %e A.", us.UnitCurrent_in_cgs );
message( "Unit system: U_T = %e K.", us.UnitTemperature_in_cgs );
message( "Density units: %e a^%f h^%f.", conversionFactor(&us, UNIT_CONV_DENSITY), aFactor(&us, UNIT_CONV_DENSITY), hFactor(&us, UNIT_CONV_DENSITY) );
message( "Entropy units: %e a^%f h^%f.", conversionFactor(&us, UNIT_CONV_ENTROPY), aFactor(&us, UNIT_CONV_ENTROPY), hFactor(&us, UNIT_CONV_ENTROPY) );
}
/* Read particles and space information from (GADGET) IC */
tic = getticks();
#ifdef WITH_MPI
read_ic_parallel( ICfileName , dim , &parts , &N , &periodic, myrank, nr_nodes, MPI_COMM_WORLD, MPI_INFO_NULL );
#else
read_ic( ICfileName , dim , &parts , &N , &periodic );
#endif
if ( myrank == 0 )
message( "reading particle properties took %.3f ms." , ((double)(getticks() - tic)) / CPU_TPS * 1000 ); fflush(stdout);
/* Apply h scaling */
if( scaling != 1.0 )
for ( k = 0 ; k < N ; k++ )
parts[k].h *= scaling;
/* Apply shift */
if(shift[0] !=0 || shift[1] !=0 || shift[2] !=0 )
for ( k = 0 ; k < N ; k++ ) {
parts[k].x[0] += shift[0];
parts[k].x[1] += shift[1];
parts[k].x[2] += shift[2];
}
/* printParticle( parts , 10312237508790 , N );
printParticle( parts , 10312286091950 , N ); */
/* for ( k = 0 ; k < N ; k++ )
if ( parts[k].id == 10312286091950 ||
parts[k].id == 10286889371446 ||
parts[k].id == 9536045071298 ||
parts[k].id == 12726778692106 ||
parts[k].id == 9479892852626 ||
parts[k].id == 9535843125514 ||
parts[k].id == 14151507889834 ||
parts[k].id == 14144038209438 ||
parts[k].id == 14121890205050 ||
parts[k].id == 5868762382714 ||
parts[k].id == 12840527117206 ||
parts[k].id == 10292087642778 ||
parts[k].id == 9465178320650 ||
parts[k].id == 2834846537770 ||
parts[k].id == 9483000048314 ||
parts[k].id == 10247332828902 ||
parts[k].id == 10223834653674 ||
parts[k].id == 16719632108962 ||
parts[k].id == 16759192850622 ||
parts[k].id == 9483599082554 ||
parts[k].id == 10247340329226 )
parts[k] = parts[--N]; */
/* Set default number of queues. */
if ( nr_queues < 0 )
nr_queues = nr_threads;
/* Initialize the space with this data. */
tic = getticks();
space_init( &s , dim , parts , N , periodic , h_max );
if ( myrank == 0 )
message( "space_init took %.3f ms." , ((double)(getticks() - tic)) / CPU_TPS * 1000 ); fflush(stdout);
/* Set the default time step to 1.0f. */
if ( myrank == 0 )
message( "dt_max is %e." , dt_max );
/* Say a few nice things about the space we just created. */
if ( myrank == 0 ) {
message( "space dimensions are [ %.3f %.3f %.3f ]." , s.dim[0] , s.dim[1] , s.dim[2] );
message( "space %s periodic." , s.periodic ? "is" : "isn't" );
message( "highest-level cell dimensions are [ %i %i %i ]." , s.cdim[0] , s.cdim[1] , s.cdim[2] );
message( "%i parts in %i cells." , s.nr_parts , s.tot_cells );
message( "maximum depth is %d." , s.maxdepth );
// message( "cutoffs in [ %g %g ]." , s.h_min , s.h_max ); fflush(stdout);
}
/* Verify that each particle is in it's propper cell. */
if ( myrank == 0 ) {
icount = 0;
space_map_cells_pre( &s , 0 , &map_cellcheck , &icount );
message( "map_cellcheck picked up %i parts." , icount );
}
if ( myrank == 0 ) {
data[0] = s.maxdepth; data[1] = 0;
space_map_cells_pre( &s , 0 , &map_maxdepth , data );
message( "nr of cells at depth %i is %i." , data[0] , data[1] );
}
/* Dump the particle positions. */
// space_map_parts( &s , &map_dump , shift );
/* Initialize the engine with this space. */
tic = getticks();
message( "nr_nodes is %i." , nr_nodes );
engine_init( &e , &s , dt_max , nr_threads , nr_queues , nr_nodes , myrank , ENGINE_POLICY | engine_policy_steal );
if ( myrank == 0 )
message( "engine_init took %.3f ms." , ((double)(getticks() - tic)) / CPU_TPS * 1000 ); fflush(stdout);
#ifdef WITH_MPI
/* Split the space. */
engine_split( &e , grid );
engine_redistribute ( &e );
#endif
/* Write the state of the system as it is before starting time integration. */
tic = getticks();
#ifdef WITH_MPI
write_output_parallel(&e, &us, myrank, nr_nodes, MPI_COMM_WORLD, MPI_INFO_NULL);
#else
write_output(&e, &us);
#endif
message( "writing particle properties took %.3f ms." , ((double)(getticks() - tic)) / CPU_TPS * 1000 ); fflush(stdout);
/* Init the runner history. */
#ifdef HIST
for ( k = 0 ; k < runner_hist_N ; k++ )
runner_hist_bins[k] = 0;
#endif
/* Inauguration speech. */
if ( runs < INT_MAX )
message( "starting for %i steps with %i threads and %i queues..." , runs , e.nr_threads , e.sched.nr_queues );
else
message( "starting for t=%.3e with %i threads and %i queues..." , clock , e.nr_threads , e.sched.nr_queues );
fflush(stdout);
/* Set a target particle. */
/* long long int pid[5];
unsigned int seed = 6178;
for ( k = 0 ; k < 5 ; k++ )
pid[k] = s.gparts[ rand_r( &seed ) % N ].part->id;
for ( k = 0 ; k < 5 ; k++ )
pairs_single_grav( dim , pid[k] , s.gparts , N , 0 ); */
/* Legend. */
if ( myrank == 0 )
printf( "# step time e_tot e_kin e_temp dt dt_step count dt_min dt_max\n" );
/* Let loose a runner on the space. */
for ( j = 0 ; j < runs && e.time < clock ; j++ ) {
/* Repartition the space amongst the nodes? */
#if defined(WITH_MPI) && defined(HAVE_METIS)
if ( j == 2 )
e.forcerepart = 1;
#endif
/* Force a rebuild for testing. */
/* if ( j % 4 == 1 )
e.forcerebuild = 1; */
// message( "starting run %i/%i (t=%.3e) with %i threads and %i queues..." , j+1 , runs , e.time , e.nr_threads , e.nr_queues ); fflush(stdout);
timers_reset( timers_mask_all );
#ifdef COUNTER
for ( k = 0 ; k < runner_counter_count ; k++ )
runner_counter[k] = 0;
#endif
/* Take a step. */
engine_step( &e );
if ( j % 100 == 0 )
{
#ifdef WITH_MPI
write_output_parallel(&e, &us, myrank, nr_nodes, MPI_COMM_WORLD, MPI_INFO_NULL);
#else
write_output(&e, &us);
#endif
}
/* Dump a line of agregate output. */
if ( myrank == 0 ) {
printf( "%i %e %.16e %.16e %.16e %.3e %.3e %i %.3e %.3e" ,
j , e.time ,
e.ekin+e.epot , e.ekin , e.epot ,
e.dt , e.dt_step , e.count_step ,
e.dt_min , e.dt_max );
for ( k = 0 ; k < timer_count ; k++ )
printf( " %.3f" , ((double)timers[k])/CPU_TPS*1000 );
printf( "\n" ); fflush(stdout);
}
/* for ( k = 0 ; k < 5 ; k++ )
printgParticle( s.gparts , pid[k] , N ); */
}
/* Print the values of the runner histogram. */
#ifdef HIST
printf( "main: runner histogram data:\n" );
for ( k = 0 ; k < runner_hist_N ; k++ )
printf( " %e %e %e\n" ,
runner_hist_a + k * (runner_hist_b - runner_hist_a) / runner_hist_N ,
runner_hist_a + (k + 1) * (runner_hist_b - runner_hist_a) / runner_hist_N ,
(double)runner_hist_bins[k] );
#endif
// write_output( &e );
/* Loop over the parts directly. */
// for ( k = 0 ; k < N ; k++ )
// printf( " %i %e %e\n" , s.parts[k].id , s.parts[k].count , s.parts[k].count_dh );
/* Dump the task data. */
/* #ifdef WITH_MPI
for ( j = 0 ; j < nr_nodes ; j++ ) {
MPI_Barrier( MPI_COMM_WORLD );
if ( j == myrank ) {
printf( " %03i 0 0 0 0 %lli 0 0 0 0\n" , myrank , e.tic_step );
for ( k = 0 ; k < e.sched.nr_tasks ; k++ )
if ( !e.sched.tasks[k].skip && !e.sched.tasks[k].implicit )
printf( " %03i %i %i %i %i %lli %lli %i %i %i\n" ,
myrank ,
e.sched.tasks[k].rid , e.sched.tasks[k].type , e.sched.tasks[k].subtype ,
(e.sched.tasks[k].cj == NULL) , e.sched.tasks[k].tic , e.sched.tasks[k].toc ,
e.sched.tasks[k].ci->count , (e.sched.tasks[k].cj!=NULL)?e.sched.tasks[k].cj->count:0 , e.sched.tasks[k].flags);
fflush(stdout);
sleep(1);
}
}
#else
for ( k = 0 ; k < e.sched.nr_tasks ; k++ )
if ( !e.sched.tasks[k].skip && !e.sched.tasks[k].implicit )
printf( " %i %i %i %i %lli %lli %i %i\n" ,
e.sched.tasks[k].rid , e.sched.tasks[k].type , e.sched.tasks[k].subtype ,
(e.sched.tasks[k].cj == NULL) , e.sched.tasks[k].tic , e.sched.tasks[k].toc ,
e.sched.tasks[k].ci->count ,
(e.sched.tasks[k].cj==NULL)?0:e.sched.tasks[k].cj->count );
#endif */
/* Write final output. */
#ifdef WITH_MPI
write_output_parallel( &e, &us, myrank, nr_nodes, MPI_COMM_WORLD, MPI_INFO_NULL );
#else
write_output( &e , &us );
#endif
#ifdef WITH_MPI
if ( MPI_Finalize() != MPI_SUCCESS )
error( "call to MPI_Finalize failed with error %i." , res );
#endif
/* Say goodbye. */
message( "done." );
/* All is calm, all is bright. */
return 0;
}