-
Matthieu Schaller authoredMatthieu Schaller authored
test125cells.c 24.22 KiB
/*******************************************************************************
* This file is part of SWIFT.
* Copyright (C) 2016 Matthieu Schaller (matthieu.schaller@durham.ac.uk).
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
/* Config parameters. */
#include "../config.h"
/* Some standard headers. */
#include <fenv.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
/* Local headers. */
#include "swift.h"
enum velocity_field {
velocity_zero,
velocity_const,
velocity_divergent,
velocity_rotating
};
enum pressure_field { pressure_const, pressure_gradient, pressure_divergent };
void set_velocity(struct part *part, enum velocity_field vel, float size) {
switch (vel) {
case velocity_zero:
part->v[0] = 0.f;
part->v[1] = 0.f;
part->v[2] = 0.f;
break;
case velocity_const:
part->v[0] = 1.f;
part->v[1] = 0.f;
part->v[2] = 0.f;
break;
case velocity_divergent:
part->v[0] = part->x[0] - 2.5 * size;
part->v[1] = part->x[1] - 2.5 * size;
part->v[2] = part->x[2] - 2.5 * size;
break;
case velocity_rotating:
part->v[0] = part->x[1];
part->v[1] = -part->x[0];
part->v[2] = 0.f;
break;
}
}
float get_pressure(double x[3], enum pressure_field press, float size) {
float r2 = 0.;
float dx[3] = {0.f};
switch (press) {
case pressure_const:
return 1.5f;
break;
case pressure_gradient:
return 1.5f * x[0]; /* gradient along x */
break;
case pressure_divergent:
dx[0] = x[0] - 2.5 * size;
dx[1] = x[1] - 2.5 * size;
dx[2] = x[2] - 2.5 * size;
r2 = dx[0] * dx[0] + dx[1] * dx[1] + dx[2] * dx[2];
return sqrt(r2) + 1.5f;
break;
}
return 0.f;
}
void set_energy_state(struct part *part, enum pressure_field press, float size,
float density) {
const float pressure = get_pressure(part->x, press, size);
#if defined(GADGET2_SPH)
part->entropy = pressure / pow_gamma(density);
#elif defined(HOPKINS_PE_SPH)
part->entropy = pressure / pow_gamma(density);
#elif defined(DEFAULT_SPH)
part->u = pressure / (hydro_gamma_minus_one * density);
#elif defined(MINIMAL_SPH)
part->u = pressure / (hydro_gamma_minus_one * density);
#elif defined(GIZMO_SPH) || defined(SHADOWFAX_SPH)
part->primitives.P = pressure;
#else
error("Need to define pressure here !");
#endif
}
struct solution_part {
long long id;
double x[3];
float v[3];
float a_hydro[3];
float h;
float rho;
float div_v;
float S;
float u;
float P;
float c;
float h_dt;
float v_sig;
float S_dt;
float u_dt;
};
void get_solution(const struct cell *main_cell, struct solution_part *solution,
float density, enum velocity_field vel,
enum pressure_field press, float size) {
for (int i = 0; i < main_cell->count; ++i) {
solution[i].id = main_cell->parts[i].id;
solution[i].x[0] = main_cell->parts[i].x[0];
solution[i].x[1] = main_cell->parts[i].x[1];
solution[i].x[2] = main_cell->parts[i].x[2];
solution[i].v[0] = main_cell->parts[i].v[0];
solution[i].v[1] = main_cell->parts[i].v[1];
solution[i].v[2] = main_cell->parts[i].v[2];
solution[i].h = main_cell->parts[i].h;
solution[i].rho = density;
solution[i].P = get_pressure(solution[i].x, press, size);
solution[i].u = solution[i].P / (solution[i].rho * hydro_gamma_minus_one);
solution[i].S = solution[i].P / pow_gamma(solution[i].rho);
solution[i].c = sqrt(hydro_gamma * solution[i].P / solution[i].rho);
if (vel == velocity_divergent)
solution[i].div_v = 3.f;
else
solution[i].div_v = 0.f;
solution[i].h_dt = solution[i].h * solution[i].div_v / 3.;
float gradP[3] = {0.f};
if (press == pressure_gradient) {
gradP[0] = 1.5f;
gradP[1] = 0.f;
gradP[2] = 0.f;
} else if (press == pressure_divergent) {
float dx[3];
dx[0] = solution[i].x[0] - 2.5 * size;
dx[1] = solution[i].x[1] - 2.5 * size;
dx[2] = solution[i].x[2] - 2.5 * size;
float r = sqrt(dx[0] * dx[0] + dx[1] * dx[1] + dx[2] * dx[2]);
if (r > 0.) {
gradP[0] = dx[0] / r;
gradP[1] = dx[1] / r;
gradP[2] = dx[2] / r;
}
}
solution[i].a_hydro[0] = -gradP[0] / solution[i].rho;
solution[i].a_hydro[1] = -gradP[1] / solution[i].rho;
solution[i].a_hydro[2] = -gradP[2] / solution[i].rho;
solution[i].v_sig = 2.f * solution[i].c;
solution[i].S_dt = 0.f;
solution[i].u_dt = -(solution[i].P / solution[i].rho) * solution[i].div_v;
}
}
void reset_particles(struct cell *c, struct hydro_space *hs,
enum velocity_field vel, enum pressure_field press,
float size, float density) {
for (int i = 0; i < c->count; ++i) {
struct part *p = &c->parts[i];
set_velocity(p, vel, size);
set_energy_state(p, press, size, density);
hydro_init_part(p, hs);
#if defined(GIZMO_SPH) || defined(SHADOWFAX_SPH)
float volume = p->conserved.mass / density;
#if defined(GIZMO_SPH)
p->geometry.volume = volume;
#else
p->cell.volume = volume;
#endif
p->primitives.rho = density;
p->primitives.v[0] = p->v[0];
p->primitives.v[1] = p->v[1];
p->primitives.v[2] = p->v[2];
p->conserved.momentum[0] = p->conserved.mass * p->v[0];
p->conserved.momentum[1] = p->conserved.mass * p->v[1];
p->conserved.momentum[2] = p->conserved.mass * p->v[2];
p->conserved.energy =
p->primitives.P / hydro_gamma_minus_one * volume +
0.5f * (p->conserved.momentum[0] * p->conserved.momentum[0] +
p->conserved.momentum[1] * p->conserved.momentum[1] +
p->conserved.momentum[2] * p->conserved.momentum[2]) /
p->conserved.mass;
#endif
}
}
/**
* @brief Constructs a cell and all of its particle in a valid state prior to
* a SPH time-step.
*
* @param n The cube root of the number of particles.
* @param offset The position of the cell offset from (0,0,0).
* @param size The cell size.
* @param h The smoothing length of the particles in units of the inter-particle
* separation.
* @param density The density of the fluid.
* @param partId The running counter of IDs.
* @param pert The perturbation to apply to the particles in the cell in units
*of the inter-particle separation.
* @param vel The type of velocity field.
* @param press The type of pressure field.
*/
struct cell *make_cell(size_t n, const double offset[3], double size, double h,
double density, long long *partId, double pert,
enum velocity_field vel, enum pressure_field press) {
const size_t count = n * n * n;
const double volume = size * size * size;
struct cell *cell = malloc(sizeof(struct cell));
bzero(cell, sizeof(struct cell));
if (posix_memalign((void **)&cell->parts, part_align,
count * sizeof(struct part)) != 0)
error("couldn't allocate particles, no. of particles: %d", (int)count);
if (posix_memalign((void **)&cell->xparts, xpart_align,
count * sizeof(struct xpart)) != 0)
error("couldn't allocate particles, no. of x-particles: %d", (int)count);
bzero(cell->parts, count * sizeof(struct part));
bzero(cell->xparts, count * sizeof(struct xpart));
/* Construct the parts */
struct part *part = cell->parts;
struct xpart *xpart = cell->xparts;
for (size_t x = 0; x < n; ++x) {
for (size_t y = 0; y < n; ++y) {
for (size_t z = 0; z < n; ++z) {
part->x[0] =
offset[0] +
size * (x + 0.5 + random_uniform(-0.5, 0.5) * pert) / (float)n;
part->x[1] =
offset[1] +
size * (y + 0.5 + random_uniform(-0.5, 0.5) * pert) / (float)n;
part->x[2] =
offset[2] +
size * (z + 0.5 + random_uniform(-0.5, 0.5) * pert) / (float)n;
part->h = size * h / (float)n;
#if defined(GIZMO_SPH) || defined(SHADOWFAX_SPH)
part->conserved.mass = density * volume / count;
#else
part->mass = density * volume / count;
#endif
set_velocity(part, vel, size);
set_energy_state(part, press, size, density);
hydro_first_init_part(part, xpart);
part->id = ++(*partId);
part->time_bin = 1;
#if defined(GIZMO_SPH)
part->geometry.volume = part->conserved.mass / density;
part->primitives.rho = density;
part->primitives.v[0] = part->v[0];
part->primitives.v[1] = part->v[1];
part->primitives.v[2] = part->v[2];
part->conserved.momentum[0] = part->conserved.mass * part->v[0];
part->conserved.momentum[1] = part->conserved.mass * part->v[1];
part->conserved.momentum[2] = part->conserved.mass * part->v[2];
part->conserved.energy =
part->primitives.P / hydro_gamma_minus_one * volume +
0.5f * (part->conserved.momentum[0] * part->conserved.momentum[0] +
part->conserved.momentum[1] * part->conserved.momentum[1] +
part->conserved.momentum[2] * part->conserved.momentum[2]) /
part->conserved.mass;
#endif
#ifdef SWIFT_DEBUG_CHECKS
part->ti_drift = 8;
part->ti_kick = 8;
#endif
++part;
++xpart;
}
}
}
/* Cell properties */
cell->split = 0;
cell->h_max = h;
cell->count = count;
cell->gcount = 0;
cell->dx_max_part = 0.;
cell->dx_max_sort = 0.;
cell->width[0] = size;
cell->width[1] = size;
cell->width[2] = size;
cell->loc[0] = offset[0];
cell->loc[1] = offset[1];
cell->loc[2] = offset[2];
cell->ti_old_part = 8;
cell->ti_end_min = 8;
cell->ti_end_max = 8;
cell->ti_sort = 0;
// shuffle_particles(cell->parts, cell->count);
cell->sorted = 0;
cell->sort = NULL;
cell->sortsize = 0;
return cell;
}
void clean_up(struct cell *ci) {
free(ci->parts);
free(ci->xparts);
free(ci->sort);
free(ci);
}
/**
* @brief Dump all the particles to a file
*/
void dump_particle_fields(char *fileName, struct cell *main_cell,
struct solution_part *solution, int with_solution) {
FILE *file = fopen(fileName, "w");
/* Write header */
fprintf(file,
"# %4s %8s %8s %8s %8s %8s %8s %8s %8s %8s %8s %8s %8s %8s %13s %13s "
"%13s %13s %13s %8s %8s\n",
"ID", "pos_x", "pos_y", "pos_z", "v_x", "v_y", "v_z", "h", "rho",
"div_v", "S", "u", "P", "c", "a_x", "a_y", "a_z", "h_dt", "v_sig",
"dS/dt", "du/dt");
fprintf(file, "# Main cell --------------------------------------------\n");
/* Write main cell */
for (int pid = 0; pid < main_cell->count; pid++) {
fprintf(file,
"%6llu %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f "
"%8.5f "
"%8.5f %8.5f %13e %13e %13e %13e %13e %8.5f %8.5f\n",
main_cell->parts[pid].id, main_cell->parts[pid].x[0],
main_cell->parts[pid].x[1], main_cell->parts[pid].x[2],
main_cell->parts[pid].v[0], main_cell->parts[pid].v[1],
main_cell->parts[pid].v[2], main_cell->parts[pid].h,
hydro_get_density(&main_cell->parts[pid]),
#if defined(MINIMAL_SPH) || defined(SHADOWFAX_SPH)
0.f,
#else
main_cell->parts[pid].density.div_v,
#endif
hydro_get_entropy(&main_cell->parts[pid]),
hydro_get_internal_energy(&main_cell->parts[pid]),
hydro_get_pressure(&main_cell->parts[pid]),
hydro_get_soundspeed(&main_cell->parts[pid]),
main_cell->parts[pid].a_hydro[0], main_cell->parts[pid].a_hydro[1],
main_cell->parts[pid].a_hydro[2], main_cell->parts[pid].force.h_dt,
#if defined(GADGET2_SPH)
main_cell->parts[pid].force.v_sig, main_cell->parts[pid].entropy_dt,
0.f
#elif defined(DEFAULT_SPH)
main_cell->parts[pid].force.v_sig, 0.f,
main_cell->parts[pid].force.u_dt
#elif defined(MINIMAL_SPH)
main_cell->parts[pid].force.v_sig, 0.f, main_cell->parts[pid].u_dt
#else
0.f, 0.f, 0.f
#endif
);
}
if (with_solution) {
fprintf(file, "# Solution ---------------------------------------------\n");
for (int pid = 0; pid < main_cell->count; pid++) {
fprintf(file,
"%6llu %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f "
"%8.5f %8.5f "
"%8.5f %8.5f %13f %13f %13f %13f %13f %8.5f %8.5f\n",
solution[pid].id, solution[pid].x[0], solution[pid].x[1],
solution[pid].x[2], solution[pid].v[0], solution[pid].v[1],
solution[pid].v[2], solution[pid].h, solution[pid].rho,
solution[pid].div_v, solution[pid].S, solution[pid].u,
solution[pid].P, solution[pid].c, solution[pid].a_hydro[0],
solution[pid].a_hydro[1], solution[pid].a_hydro[2],
solution[pid].h_dt, solution[pid].v_sig, solution[pid].S_dt,
solution[pid].u_dt);
}
}
fclose(file);
}
/* Just a forward declaration... */
void runner_dopair1_density(struct runner *r, struct cell *ci, struct cell *cj);
void runner_dopair1_branch_density(struct runner *r, struct cell *ci,
struct cell *cj);
void runner_doself1_density(struct runner *r, struct cell *ci);
void runner_dopair2_force(struct runner *r, struct cell *ci, struct cell *cj);
void runner_doself2_force(struct runner *r, struct cell *ci);
/* And go... */
int main(int argc, char *argv[]) {
size_t runs = 0, particles = 0;
double h = 1.23485, size = 1., rho = 2.5;
double perturbation = 0.;
char outputFileNameExtension[200] = "";
char outputFileName[200] = "";
enum velocity_field vel = velocity_zero;
enum pressure_field press = pressure_const;
/* Initialize CPU frequency, this also starts time. */
unsigned long long cpufreq = 0;
clocks_set_cpufreq(cpufreq);
/* Choke on FP-exceptions */
feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
/* Get some randomness going */
srand(0);
char c;
while ((c = getopt(argc, argv, "m:s:h:n:r:t:d:f:v:p:")) != -1) {
switch (c) {
case 'h':
sscanf(optarg, "%lf", &h);
break;
case 's':
sscanf(optarg, "%lf", &size);
break;
case 'n':
sscanf(optarg, "%zu", &particles);
break;
case 'r':
sscanf(optarg, "%zu", &runs);
break;
case 'd':
sscanf(optarg, "%lf", &perturbation);
break;
case 'm':
sscanf(optarg, "%lf", &rho);
break;
case 'f':
strcpy(outputFileNameExtension, optarg);
break;
case 'v':
sscanf(optarg, "%d", (int *)&vel);
break;
case 'p':
sscanf(optarg, "%d", (int *)&press);
break;
case '?':
error("Unknown option.");
break;
}
}
if (h < 0 || particles == 0 || runs == 0) {
printf(
"\nUsage: %s -n PARTICLES_PER_AXIS -r NUMBER_OF_RUNS [OPTIONS...]\n"
"\nGenerates 125 cells, filled with particles on a Cartesian grid."
"\nThese are then interacted using runner_dopair1_density() and "
"runner_doself1_density() followed by runner_dopair2_force() and "
"runner_doself2_force()"
"\n\nOptions:"
"\n-h DISTANCE=1.2348 - Smoothing length in units of <x>"
"\n-m rho - Physical density in the cell"
"\n-s size - Physical size of the cell"
"\n-d pert - Perturbation to apply to the particles [0,1["
"\n-v type (0,1,2,3) - Velocity field: (zero, constant, divergent, "
"rotating)"
"\n-p type (0,1,2) - Pressure field: (constant, gradient divergent)"
"\n-f fileName - Part of the file name used to save the dumps\n",
argv[0]);
exit(1);
}
/* Help users... */
message("Adiabatic index: ga = %f", hydro_gamma);
message("Hydro implementation: %s", SPH_IMPLEMENTATION);
message("Smoothing length: h = %f", h * size);
message("Kernel: %s", kernel_name);
message("Neighbour target: N = %f", pow_dimension(h) * kernel_norm);
message("Density target: rho = %f", rho);
message("div_v target: div = %f", vel == 2 ? 3.f : 0.f);
message("curl_v target: curl = [0., 0., %f]", vel == 3 ? -2.f : 0.f);
if (press == pressure_const)
message("P field constant");
else if (press == pressure_gradient)
message("P field gradient");
else
message("P field divergent");
printf("\n");
#if !defined(HYDRO_DIMENSION_3D)
message("test125cells only useful in 3D. Change parameters in const.h !");
return 1;
#endif
/* Build the infrastructure */
struct space space;
space.periodic = 1;
space.dim[0] = 5.;
space.dim[1] = 5.;
space.dim[2] = 5.;
hydro_space_init(&space.hs, &space);
struct phys_const prog_const;
prog_const.const_newton_G = 1.f;
struct hydro_props hp;
hp.target_neighbours = pow_dimension(h) * kernel_norm;
hp.delta_neighbours = 4.;
hp.h_max = FLT_MAX;
hp.max_smoothing_iterations = 1;
hp.CFL_condition = 0.1;
struct engine engine;
bzero(&engine, sizeof(struct engine));
engine.hydro_properties = &hp;
engine.physical_constants = &prog_const;
engine.s = &space;
engine.time = 0.1f;
engine.ti_current = 8;
engine.max_active_bin = num_time_bins;
struct runner runner;
runner.e = &engine;
/* Construct some cells */
struct cell *cells[125];
struct cell *inner_cells[27];
struct cell *main_cell;
int count = 0;
static long long partId = 0;
for (int i = 0; i < 5; ++i) {
for (int j = 0; j < 5; ++j) {
for (int k = 0; k < 5; ++k) {
/* Position of the cell */
const double offset[3] = {i * size, j * size, k * size};
/* Construct it */
cells[i * 25 + j * 5 + k] = make_cell(
particles, offset, size, h, rho, &partId, perturbation, vel, press);
/* Store the inner cells */
if (i > 0 && i < 4 && j > 0 && j < 4 && k > 0 && k < 4) {
inner_cells[count] = cells[i * 25 + j * 5 + k];
count++;
}
}
}
}
/* Store the main cell for future use */
main_cell = cells[62];
/* Construct the real solution */
struct solution_part *solution =
malloc(main_cell->count * sizeof(struct solution_part));
get_solution(main_cell, solution, rho, vel, press, size);
/* Start the test */
ticks time = 0;
for (size_t n = 0; n < runs; ++n) {
const ticks tic = getticks();
/* Initialise the particles */
for (int j = 0; j < 125; ++j) runner_do_drift_part(&runner, cells[j], 0);
/* Reset particles. */
for (int i = 0; i < 125; ++i) {
for (int n = 0; n < cells[i]->count; ++n)
hydro_init_part(&cells[i]->parts[n], &space.hs);
}
/* First, sort stuff */
for (int j = 0; j < 125; ++j) runner_do_sort(&runner, cells[j], 0x1FFF, 0);
/* Do the density calculation */
#if !(defined(MINIMAL_SPH) && defined(WITH_VECTORIZATION))
/* Run all the pairs (only once !)*/
for (int i = 0; i < 5; i++) {
for (int j = 0; j < 5; j++) {
for (int k = 0; k < 5; k++) {
struct cell *ci = cells[i * 25 + j * 5 + k];
for (int ii = -1; ii < 2; ii++) {
int iii = i + ii;
if (iii < 0 || iii >= 5) continue;
iii = (iii + 5) % 5;
for (int jj = -1; jj < 2; jj++) {
int jjj = j + jj;
if (jjj < 0 || jjj >= 5) continue;
jjj = (jjj + 5) % 5;
for (int kk = -1; kk < 2; kk++) {
int kkk = k + kk;
if (kkk < 0 || kkk >= 5) continue;
kkk = (kkk + 5) % 5;
struct cell *cj = cells[iii * 25 + jjj * 5 + kkk];
if (cj > ci) runner_dopair1_branch_density(&runner, ci, cj);
}
}
}
}
}
}
/* And now the self-interaction for the central cells*/
for (int j = 0; j < 27; ++j)
runner_doself1_density(&runner, inner_cells[j]);
#endif
/* Ghost to finish everything on the central cells */
for (int j = 0; j < 27; ++j) runner_do_ghost(&runner, inner_cells[j], 0);
/* Do the force calculation */
#if !(defined(MINIMAL_SPH) && defined(WITH_VECTORIZATION))
/* Do the pairs (for the central 27 cells) */
for (int i = 1; i < 4; i++) {
for (int j = 1; j < 4; j++) {
for (int k = 1; k < 4; k++) {
struct cell *cj = cells[i * 25 + j * 5 + k];
if (main_cell != cj) runner_dopair2_force(&runner, main_cell, cj);
}
}
}
/* And now the self-interaction for the main cell */
runner_doself2_force(&runner, main_cell);
#endif
/* Finally, give a gentle kick */
runner_do_end_force(&runner, main_cell, 0);
const ticks toc = getticks();
time += toc - tic;
/* Dump if necessary */
if (n == 0) {
sprintf(outputFileName, "swift_dopair_125_%s.dat",
outputFileNameExtension);
dump_particle_fields(outputFileName, main_cell, solution, 0);
}
/* Reset stuff */
for (int i = 0; i < 125; ++i) {
for (int n = 0; n < cells[i]->count; ++n)
hydro_init_part(&cells[i]->parts[n], &space.hs);
}
}
/* Output timing */
message("SWIFT calculation took : %15lli ticks.", time / runs);
for (int j = 0; j < 125; ++j)
reset_particles(cells[j], &space.hs, vel, press, size, rho);
/* NOW BRUTE-FORCE CALCULATION */
const ticks tic = getticks();
/* Kick the central cell */
// runner_do_kick1(&runner, main_cell, 0);
/* And drift it */
// runner_do_drift_particles(&runner, main_cell, 0);
/* Initialise the particles */
// for (int j = 0; j < 125; ++j) runner_do_drift_particles(&runner, cells[j],
// 0);
/* Do the density calculation */
#if !(defined(MINIMAL_SPH) && defined(WITH_VECTORIZATION))
/* Run all the pairs (only once !)*/
for (int i = 0; i < 5; i++) {
for (int j = 0; j < 5; j++) {
for (int k = 0; k < 5; k++) {
struct cell *ci = cells[i * 25 + j * 5 + k];
for (int ii = -1; ii < 2; ii++) {
int iii = i + ii;
if (iii < 0 || iii >= 5) continue;
iii = (iii + 5) % 5;
for (int jj = -1; jj < 2; jj++) {
int jjj = j + jj;
if (jjj < 0 || jjj >= 5) continue;
jjj = (jjj + 5) % 5;
for (int kk = -1; kk < 2; kk++) {
int kkk = k + kk;
if (kkk < 0 || kkk >= 5) continue;
kkk = (kkk + 5) % 5;
struct cell *cj = cells[iii * 25 + jjj * 5 + kkk];
if (cj > ci) pairs_all_density(&runner, ci, cj);
}
}
}
}
}
}
/* And now the self-interaction for the central cells*/
for (int j = 0; j < 27; ++j) self_all_density(&runner, inner_cells[j]);
#endif
/* Ghost to finish everything on the central cells */
for (int j = 0; j < 27; ++j) runner_do_ghost(&runner, inner_cells[j], 0);
/* Do the force calculation */
#if !(defined(MINIMAL_SPH) && defined(WITH_VECTORIZATION))
/* Do the pairs (for the central 27 cells) */
for (int i = 1; i < 4; i++) {
for (int j = 1; j < 4; j++) {
for (int k = 1; k < 4; k++) {
struct cell *cj = cells[i * 25 + j * 5 + k];
if (main_cell != cj) pairs_all_force(&runner, main_cell, cj);
}
}
}
/* And now the self-interaction for the main cell */
self_all_force(&runner, main_cell);
#endif
/* Finally, give a gentle kick */
runner_do_end_force(&runner, main_cell, 0);
// runner_do_kick2(&runner, main_cell, 0);
const ticks toc = getticks();
/* Output timing */
message("Brute force calculation took : %15lli ticks.", toc - tic);
sprintf(outputFileName, "brute_force_125_%s.dat", outputFileNameExtension);
dump_particle_fields(outputFileName, main_cell, solution, 0);
/* Clean things to make the sanitizer happy ... */
for (int i = 0; i < 125; ++i) clean_up(cells[i]);
free(solution);
return 0;
}