Skip to content
Snippets Groups Projects
Select Git revision
  • 2dd5600e918728e8788ed85461d7beaf331567fe
  • master default protected
  • optimise-space-split-tpool
  • split-space-split
  • better-space-split-tpool
  • melion/BalsaraKim
  • darwin/gear_preSN_fbk_merge
  • reyz/gear_preSN_feedback
  • mark_bug
  • FS_VP_m2_allGrad
  • nickishch/MHD_canvas/OWAR_fully_symmetric_ShearAndRotation
  • fstasys/VEP_Fm2
  • beyond-mesh-pair-removal
  • darwin/gear_chemistry_fluxes
  • MHD_canvas protected
  • sidm_merge protected
  • fewer_gpart_comms
  • zoom_merge protected
  • MAGMA2_matthieu
  • darwin/sink_mpi_physics
  • darwin/gear_mechanical_feedback
  • v2025.10 protected
  • v2025.04 protected
  • v2025.01 protected
  • v1.0.0 protected
  • v0.9.0 protected
  • v0.8.5 protected
  • v0.8.4 protected
  • v0.8.3 protected
  • v0.8.2 protected
  • v0.8.1 protected
  • v0.8.0 protected
  • v0.7.0 protected
  • v0.6.0 protected
  • v0.5.0 protected
  • v0.4.0 protected
  • v0.3.0 protected
  • v0.2.0 protected
  • v0.1.0-pre protected
  • v0.1 protected
  • v0.0 protected
41 results

plot_task_level.py

Blame
  • plotSolution.py 6.63 KiB
    ###############################################################################
     # This file is part of SWIFT.
     # Copyright (c) 2016  Matthieu Schaller (matthieu.schaller@durham.ac.uk)
     # 
     # This program is free software: you can redistribute it and/or modify
     # it under the terms of the GNU Lesser General Public License as published
     # by the Free Software Foundation, either version 3 of the License, or
     # (at your option) any later version.
     # 
     # This program is distributed in the hope that it will be useful,
     # but WITHOUT ANY WARRANTY; without even the implied warranty of
     # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     # GNU General Public License for more details.
     # 
     # You should have received a copy of the GNU Lesser General Public License
     # along with this program.  If not, see <http://www.gnu.org/licenses/>.
     # 
     ##############################################################################
    
    # Computes the analytical solution of the Gresho-Chan vortex and plots the SPH answer
    
    # Parameters
    gas_gamma = 5./3.     # Gas adiabatic index
    rho0 = 1          # Gas density
    P0 = 0.           # Constant additional pressure (should have no impact on the dynamics)
    
    # ---------------------------------------------------------------
    # Don't touch anything after this.
    # ---------------------------------------------------------------
    
    import matplotlib
    matplotlib.use("Agg")
    from pylab import *
    import h5py
    
    # Plot parameters
    params = {'axes.labelsize': 10,
    'axes.titlesize': 10,
    'font.size': 12,
    'legend.fontsize': 12,
    'xtick.labelsize': 10,
    'ytick.labelsize': 10,
    'text.usetex': True,
     'figure.figsize' : (9.90,6.45),
    'figure.subplot.left'    : 0.045,
    'figure.subplot.right'   : 0.99,
    'figure.subplot.bottom'  : 0.05,
    'figure.subplot.top'     : 0.99,
    'figure.subplot.wspace'  : 0.15,
    'figure.subplot.hspace'  : 0.12,
    'lines.markersize' : 6,
    'lines.linewidth' : 3.,
    'text.latex.unicode': True
    }
    rcParams.update(params)
    rc('font',**{'family':'sans-serif','sans-serif':['Times']})
    
    
    snap = int(sys.argv[1])
    
    # Generate the analytic solution at this time
    N = 200
    R_max = 0.8
    solution_r = arange(0, R_max, R_max / N)
    solution_P = zeros(N)
    solution_v_phi = zeros(N)
    solution_v_r = zeros(N)
    
    for i in range(N):
        if solution_r[i] < 0.2:
            solution_P[i] = P0 + 5. + 12.5*solution_r[i]**2
            solution_v_phi[i] = 5.*solution_r[i]
        elif solution_r[i] < 0.4:
            solution_P[i] = P0 + 9. + 12.5*solution_r[i]**2 - 20.*solution_r[i] + 4.*log(solution_r[i]/0.2)
            solution_v_phi[i] = 2. -5.*solution_r[i]
        else:
            solution_P[i] = P0 + 3. + 4.*log(2.)
            solution_v_phi[i] = 0.
    
    solution_rho = ones(N) * rho0
    solution_s = solution_P / solution_rho**gas_gamma
    solution_u = solution_P /((gas_gamma - 1.)*solution_rho)
    
    # Read the simulation data
    sim = h5py.File("gresho_%03d.hdf5"%snap, "r")
    boxSize = sim["/Header"].attrs["BoxSize"][0]
    time = sim["/Header"].attrs["Time"][0]
    scheme = sim["/HydroScheme"].attrs["Scheme"]
    kernel = sim["/HydroScheme"].attrs["Kernel function"]
    neighbours = sim["/HydroScheme"].attrs["Kernel target N_ngb"]
    eta = sim["/HydroScheme"].attrs["Kernel eta"]
    git = sim["Code"].attrs["Git Revision"]
    
    pos = sim["/PartType0/Coordinates"][:,:]
    x = pos[:,0] - boxSize / 2
    y = pos[:,1] - boxSize / 2
    vel = sim["/PartType0/Velocities"][:,:]
    r = sqrt(x**2 + y**2)
    v_r = (x * vel[:,0] + y * vel[:,1]) / r
    v_phi = (-y * vel[:,0] + x * vel[:,1]) / r
    v_norm = sqrt(vel[:,0]**2 + vel[:,1]**2)
    rho = sim["/PartType0/Density"][:]
    u = sim["/PartType0/InternalEnergy"][:]
    S = sim["/PartType0/Entropy"][:]
    P = sim["/PartType0/Pressure"][:]
    
    # Plot the interesting quantities
    figure()
    
    
    # Azimuthal velocity profile -----------------------------
    subplot(231)
    
    plot(r, v_phi, '.', color='r', ms=0.5)
    plot(solution_r, solution_v_phi, '--', color='k', alpha=0.8, lw=1.2)
    plot([0.2, 0.2], [-100, 100], ':', color='k', alpha=0.4, lw=1.2)
    plot([0.4, 0.4], [-100, 100], ':', color='k', alpha=0.4, lw=1.2)
    xlabel("${\\rm{Radius}}~r$", labelpad=0)
    ylabel("${\\rm{Azimuthal~velocity}}~v_\\phi$", labelpad=0)
    xlim(0,R_max)
    ylim(-0.1, 1.2)
    
    # Radial density profile --------------------------------
    subplot(232)
    
    plot(r, rho, '.', color='r', ms=0.5)
    plot(solution_r, solution_rho, '--', color='k', alpha=0.8, lw=1.2)
    plot([0.2, 0.2], [-100, 100], ':', color='k', alpha=0.4, lw=1.2)
    plot([0.4, 0.4], [-100, 100], ':', color='k', alpha=0.4, lw=1.2)
    xlabel("${\\rm{Radius}}~r$", labelpad=0)
    ylabel("${\\rm{Density}}~\\rho$", labelpad=0)
    xlim(0,R_max)
    ylim(rho0-0.3, rho0 + 0.3)
    #yticks([-0.2, -0.1, 0., 0.1, 0.2])
    
    # Radial pressure profile --------------------------------
    subplot(233)
    
    plot(r, P, '.', color='r', ms=0.5)
    plot(solution_r, solution_P, '--', color='k', alpha=0.8, lw=1.2)
    plot([0.2, 0.2], [-100, 100], ':', color='k', alpha=0.4, lw=1.2)
    plot([0.4, 0.4], [-100, 100], ':', color='k', alpha=0.4, lw=1.2)
    xlabel("${\\rm{Radius}}~r$", labelpad=0)
    ylabel("${\\rm{Pressure}}~P$", labelpad=0)
    xlim(0, R_max)
    ylim(4.9 + P0, P0 + 6.1)
    
    # Internal energy profile --------------------------------
    subplot(234)
    
    plot(r, u, '.', color='r', ms=0.5)
    plot(solution_r, solution_u, '--', color='k', alpha=0.8, lw=1.2)
    plot([0.2, 0.2], [-100, 100], ':', color='k', alpha=0.4, lw=1.2)
    plot([0.4, 0.4], [-100, 100], ':', color='k', alpha=0.4, lw=1.2)
    xlabel("${\\rm{Radius}}~r$", labelpad=0)
    ylabel("${\\rm{Internal~Energy}}~u$", labelpad=0)
    xlim(0,R_max)
    ylim(7.3, 9.1)
    
    
    # Radial entropy profile --------------------------------
    subplot(235)
    
    plot(r, S, '.', color='r', ms=0.5)
    plot(solution_r, solution_s, '--', color='k', alpha=0.8, lw=1.2)
    plot([0.2, 0.2], [-100, 100], ':', color='k', alpha=0.4, lw=1.2)
    plot([0.4, 0.4], [-100, 100], ':', color='k', alpha=0.4, lw=1.2)
    xlabel("${\\rm{Radius}}~r$", labelpad=0)
    ylabel("${\\rm{Entropy}}~S$", labelpad=0)
    xlim(0, R_max)
    ylim(4.9 + P0, P0 + 6.1)
    
    # Image --------------------------------------------------
    #subplot(234)
    #scatter(pos[:,0], pos[:,1], c=v_norm, cmap="PuBu", edgecolors='face', s=4, vmin=0, vmax=1)
    #text(0.95, 0.95, "$|v|$", ha="right", va="top")
    #xlim(0,1)
    #ylim(0,1)
    #xlabel("$x$", labelpad=0)
    #ylabel("$y$", labelpad=0)
    
    # Information -------------------------------------
    subplot(236, frameon=False)
    
    text(-0.49, 0.9, "Gresho-Chan vortex with  $\\gamma=%.3f$ at $t=%.2f$"%(gas_gamma,time), fontsize=10)
    text(-0.49, 0.8, "Background $\\rho_0=%.3f$"%rho0, fontsize=10)
    text(-0.49, 0.7, "Background $P_0=%.3f$"%P0, fontsize=10)
    plot([-0.49, 0.1], [0.62, 0.62], 'k-', lw=1)
    text(-0.49, 0.5, "$\\textsc{Swift}$ %s"%git, fontsize=10)
    text(-0.49, 0.4, scheme, fontsize=10)
    text(-0.49, 0.3, kernel, fontsize=10)
    text(-0.49, 0.2, "$%.2f$ neighbours ($\\eta=%.3f$)"%(neighbours, eta), fontsize=10)
    xlim(-0.5, 0.5)
    ylim(0, 1)
    xticks([])
    yticks([])
    
    savefig("GreshoVortex.png", dpi=200)