-
James Willis authoredJames Willis authored
runner.c 58.22 KiB
/*******************************************************************************
* This file is part of SWIFT.
* Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
* Matthieu Schaller (matthieu.schaller@durham.ac.uk)
* 2015 Peter W. Draper (p.w.draper@durham.ac.uk)
* 2016 John A. Regan (john.a.regan@durham.ac.uk)
* Tom Theuns (tom.theuns@durham.ac.uk)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
/* Config parameters. */
#include "../config.h"
/* Some standard headers. */
#include <float.h>
#include <limits.h>
#include <stdlib.h>
/* MPI headers. */
#ifdef WITH_MPI
#include <mpi.h>
#endif
/* This object's header. */
#include "runner.h"
/* Local headers. */
#include "active.h"
#include "approx_math.h"
#include "atomic.h"
#include "cell.h"
#include "const.h"
#include "cooling.h"
#include "debug.h"
#include "drift.h"
#include "engine.h"
#include "error.h"
#include "gravity.h"
#include "hydro.h"
#include "hydro_properties.h"
#include "kick.h"
#include "minmax.h"
#include "runner_doiact_fft.h"
#include "runner_doiact_vec.h"
#include "scheduler.h"
#include "sort_part.h"
#include "sourceterms.h"
#include "space.h"
#include "stars.h"
#include "task.h"
#include "timers.h"
#include "timestep.h"
/* Import the density loop functions. */
#define FUNCTION density
#include "runner_doiact.h"
/* Import the gradient loop functions (if required). */
#ifdef EXTRA_HYDRO_LOOP
#undef FUNCTION
#define FUNCTION gradient
#include "runner_doiact.h"
#endif
/* Import the force loop functions. */
#undef FUNCTION
#define FUNCTION force
#include "runner_doiact.h"
/* Import the gravity loop functions. */
#include "runner_doiact_fft.h"
#include "runner_doiact_grav.h"
/**
* @brief Perform source terms
*
* @param r runner task
* @param c cell
* @param timer 1 if the time is to be recorded.
*/
void runner_do_sourceterms(struct runner *r, struct cell *c, int timer) {
const int count = c->count;
const double cell_min[3] = {c->loc[0], c->loc[1], c->loc[2]};
const double cell_width[3] = {c->width[0], c->width[1], c->width[2]};
struct sourceterms *sourceterms = r->e->sourceterms;
const int dimen = 3;
TIMER_TIC;
/* Recurse? */
if (c->split) {
for (int k = 0; k < 8; k++)
if (c->progeny[k] != NULL) runner_do_sourceterms(r, c->progeny[k], 0);
} else {
if (count > 0) {
/* do sourceterms in this cell? */
const int incell =
sourceterms_test_cell(cell_min, cell_width, sourceterms, dimen);
if (incell == 1) {
sourceterms_apply(r, sourceterms, c);
}
}
}
if (timer) TIMER_TOC(timer_dosource);
}
/**
* @brief Calculate gravity acceleration from external potential
*
* @param r runner task
* @param c cell
* @param timer 1 if the time is to be recorded.
*/
void runner_do_grav_external(struct runner *r, struct cell *c, int timer) {
struct gpart *restrict gparts = c->gparts;
const int gcount = c->gcount;
const struct engine *e = r->e;
const struct external_potential *potential = e->external_potential;
const struct phys_const *constants = e->physical_constants;
const double time = r->e->time;
TIMER_TIC;
/* Anything to do here? */
if (!cell_is_active(c, e)) return;
/* Recurse? */
if (c->split) {
for (int k = 0; k < 8; k++)
if (c->progeny[k] != NULL) runner_do_grav_external(r, c->progeny[k], 0);
} else {
/* Loop over the gparts in this cell. */
for (int i = 0; i < gcount; i++) {
/* Get a direct pointer on the part. */
struct gpart *restrict gp = &gparts[i];
/* Is this part within the time step? */
if (gpart_is_active(gp, e)) {
external_gravity_acceleration(time, potential, constants, gp);
}
}
}
if (timer) TIMER_TOC(timer_dograv_external);
}
/**
* @brief Calculate change in thermal state of particles induced
* by radiative cooling and heating.
*
* @param r runner task
* @param c cell
* @param timer 1 if the time is to be recorded.
*/
void runner_do_cooling(struct runner *r, struct cell *c, int timer) {
struct part *restrict parts = c->parts;
struct xpart *restrict xparts = c->xparts;
const int count = c->count;
const struct engine *e = r->e;
const struct cooling_function_data *cooling_func = e->cooling_func;
const struct phys_const *constants = e->physical_constants;
const struct unit_system *us = e->internal_units;
const double timeBase = e->timeBase;
TIMER_TIC;
/* Anything to do here? */
if (!cell_is_active(c, e)) return;
/* Recurse? */
if (c->split) {
for (int k = 0; k < 8; k++)
if (c->progeny[k] != NULL) runner_do_cooling(r, c->progeny[k], 0);
} else {
/* Loop over the parts in this cell. */
for (int i = 0; i < count; i++) {
/* Get a direct pointer on the part. */
struct part *restrict p = &parts[i];
struct xpart *restrict xp = &xparts[i];
if (part_is_active(p, e)) {
/* Let's cool ! */
const double dt = get_timestep(p->time_bin, timeBase);
cooling_cool_part(constants, us, cooling_func, p, xp, dt);
}
}
}
if (timer) TIMER_TOC(timer_do_cooling);
}
/**
* @brief Sort the entries in ascending order using QuickSort.
*
* @param sort The entries
* @param N The number of entries.
*/
void runner_do_sort_ascending(struct entry *sort, int N) {
struct {
short int lo, hi;
} qstack[10];
int qpos, i, j, lo, hi, imin;
struct entry temp;
float pivot;
/* Sort parts in cell_i in decreasing order with quicksort */
qstack[0].lo = 0;
qstack[0].hi = N - 1;
qpos = 0;
while (qpos >= 0) {
lo = qstack[qpos].lo;
hi = qstack[qpos].hi;
qpos -= 1;
if (hi - lo < 15) {
for (i = lo; i < hi; i++) {
imin = i;
for (j = i + 1; j <= hi; j++)
if (sort[j].d < sort[imin].d) imin = j;
if (imin != i) {
temp = sort[imin];
sort[imin] = sort[i];
sort[i] = temp;
}
}
} else {
pivot = sort[(lo + hi) / 2].d;
i = lo;
j = hi;
while (i <= j) {
while (sort[i].d < pivot) i++;
while (sort[j].d > pivot) j--;
if (i <= j) {
if (i < j) {
temp = sort[i];
sort[i] = sort[j];
sort[j] = temp;
}
i += 1;
j -= 1;
}
}
if (j > (lo + hi) / 2) {
if (lo < j) {
qpos += 1;
qstack[qpos].lo = lo;
qstack[qpos].hi = j;
}
if (i < hi) {
qpos += 1;
qstack[qpos].lo = i;
qstack[qpos].hi = hi;
}
} else {
if (i < hi) {
qpos += 1;
qstack[qpos].lo = i;
qstack[qpos].hi = hi;
}
if (lo < j) {
qpos += 1;
qstack[qpos].lo = lo;
qstack[qpos].hi = j;
}
}
}
}
}
/**
* @brief Recursively checks that the flags are consistent in a cell hierarchy.
*
* Debugging function.
*
* @param c The #cell to check.
* @param flags The sorting flags to check.
*/
void runner_check_sorts(struct cell *c, int flags) {
#ifdef SWIFT_DEBUG_CHECKS
if (flags & ~c->sorted) error("Inconsistent sort flags (downward)!");
if (c->split)
for (int k = 0; k < 8; k++)
if (c->progeny[k] != NULL) runner_check_sorts(c->progeny[k], c->sorted);
#else
error("Calling debugging code without debugging flag activated.");
#endif
}
/**
* @brief Sort the particles in the given cell along all cardinal directions.
*
* @param r The #runner.
* @param c The #cell.
* @param flags Cell flag.
* @param cleanup If true, re-build the sorts for the selected flags instead
* of just adding them.
* @param clock Flag indicating whether to record the timing or not, needed
* for recursive calls.
*/
void runner_do_sort(struct runner *r, struct cell *c, int flags, int cleanup,
int clock) {
struct entry *fingers[8];
const int count = c->count;
const struct part *parts = c->parts;
struct xpart *xparts = c->xparts;
float buff[8];
TIMER_TIC;
/* We need to do the local sorts plus whatever was requested further up. */
flags |= c->do_sort;
if (cleanup) {
c->sorted = 0;
} else {
flags &= ~c->sorted;
}
if (flags == 0 && !c->do_sub_sort) return;
/* Check that the particles have been moved to the current time */
if (flags && !cell_are_part_drifted(c, r->e))
error("Sorting un-drifted cell");
#ifdef SWIFT_DEBUG_CHECKS
/* Make sure the sort flags are consistent (downward). */
runner_check_sorts(c, c->sorted);
/* Make sure the sort flags are consistent (upard). */
for (struct cell *finger = c->parent; finger != NULL;
finger = finger->parent) {
if (finger->sorted & ~c->sorted) error("Inconsistent sort flags (upward).");
}
/* Update the sort timer which represents the last time the sorts
were re-set. */
if (c->sorted == 0) c->ti_sort = r->e->ti_current;
#endif
/* start by allocating the entry arrays in the requested dimensions. */
for (int j = 0; j < 13; j++) {
if ((flags & (1 << j)) && c->sort[j] == NULL) {
if ((c->sort[j] = (struct entry *)malloc(sizeof(struct entry) *
(count + 1))) == NULL)
error("Failed to allocate sort memory.");
}
}
/* Does this cell have any progeny? */
if (c->split) {
/* Fill in the gaps within the progeny. */
float dx_max_sort = 0.0f;
float dx_max_sort_old = 0.0f;
for (int k = 0; k < 8; k++) {
if (c->progeny[k] != NULL) {
/* Only propagate cleanup if the progeny is stale. */
runner_do_sort(r, c->progeny[k], flags,
cleanup && (c->progeny[k]->dx_max_sort >
space_maxreldx * c->progeny[k]->dmin),
0);
dx_max_sort = max(dx_max_sort, c->progeny[k]->dx_max_sort);
dx_max_sort_old = max(dx_max_sort_old, c->progeny[k]->dx_max_sort_old);
}
}
c->dx_max_sort = dx_max_sort;
c->dx_max_sort_old = dx_max_sort_old;
/* Loop over the 13 different sort arrays. */
for (int j = 0; j < 13; j++) {
/* Has this sort array been flagged? */
if (!(flags & (1 << j))) continue;
/* Init the particle index offsets. */
int off[8];
off[0] = 0;
for (int k = 1; k < 8; k++)
if (c->progeny[k - 1] != NULL)
off[k] = off[k - 1] + c->progeny[k - 1]->count;
else
off[k] = off[k - 1];
/* Init the entries and indices. */
int inds[8];
for (int k = 0; k < 8; k++) {
inds[k] = k;
if (c->progeny[k] != NULL && c->progeny[k]->count > 0) {
fingers[k] = c->progeny[k]->sort[j];
buff[k] = fingers[k]->d;
off[k] = off[k];
} else
buff[k] = FLT_MAX;
}
/* Sort the buffer. */
for (int i = 0; i < 7; i++)
for (int k = i + 1; k < 8; k++)
if (buff[inds[k]] < buff[inds[i]]) {
int temp_i = inds[i];
inds[i] = inds[k];
inds[k] = temp_i;
}
/* For each entry in the new sort list. */
struct entry *finger = c->sort[j];
for (int ind = 0; ind < count; ind++) {
/* Copy the minimum into the new sort array. */
finger[ind].d = buff[inds[0]];
finger[ind].i = fingers[inds[0]]->i + off[inds[0]];
/* Update the buffer. */
fingers[inds[0]] += 1;
buff[inds[0]] = fingers[inds[0]]->d;
/* Find the smallest entry. */
for (int k = 1; k < 8 && buff[inds[k]] < buff[inds[k - 1]]; k++) {
int temp_i = inds[k - 1];
inds[k - 1] = inds[k];
inds[k] = temp_i;
}
} /* Merge. */
/* Add a sentinel. */
c->sort[j][count].d = FLT_MAX;
c->sort[j][count].i = 0;
/* Mark as sorted. */
atomic_or(&c->sorted, 1 << j);
} /* loop over sort arrays. */
} /* progeny? */
/* Otherwise, just sort. */
else {
/* Reset the sort distance */
if (c->sorted == 0) {
#ifdef SWIFT_DEBUG_CHECKS
if (xparts != NULL && c->nodeID != engine_rank)
error("Have non-NULL xparts in foreign cell");
#endif
/* And the individual sort distances if we are a local cell */
if (xparts != NULL) {
for (int k = 0; k < count; k++) {
xparts[k].x_diff_sort[0] = 0.0f;
xparts[k].x_diff_sort[1] = 0.0f;
xparts[k].x_diff_sort[2] = 0.0f;
}
}
c->dx_max_sort_old = 0.f;
c->dx_max_sort = 0.f;
}
/* Fill the sort array. */
for (int k = 0; k < count; k++) {
const double px[3] = {parts[k].x[0], parts[k].x[1], parts[k].x[2]};
for (int j = 0; j < 13; j++)
if (flags & (1 << j)) {
c->sort[j][k].i = k;
c->sort[j][k].d = px[0] * runner_shift[j][0] +
px[1] * runner_shift[j][1] +
px[2] * runner_shift[j][2];
}
}
/* Add the sentinel and sort. */
for (int j = 0; j < 13; j++)
if (flags & (1 << j)) {
c->sort[j][count].d = FLT_MAX;
c->sort[j][count].i = 0;
runner_do_sort_ascending(c->sort[j], count);
atomic_or(&c->sorted, 1 << j);
}
}
#ifdef SWIFT_DEBUG_CHECKS
/* Verify the sorting. */
for (int j = 0; j < 13; j++) {
if (!(flags & (1 << j))) continue;
struct entry *finger = c->sort[j];
for (int k = 1; k < count; k++) {
if (finger[k].d < finger[k - 1].d)
error("Sorting failed, ascending array.");
if (finger[k].i >= count) error("Sorting failed, indices borked.");
}
}
/* Make sure the sort flags are consistent (downward). */
runner_check_sorts(c, flags);
/* Make sure the sort flags are consistent (upward). */
for (struct cell *finger = c->parent; finger != NULL;
finger = finger->parent) {
if (finger->sorted & ~c->sorted) error("Inconsistent sort flags.");
}
#endif
/* Clear the cell's sort flags. */
c->do_sort = 0;
c->do_sub_sort = 0;
c->requires_sorts = 0;
if (clock) TIMER_TOC(timer_dosort);
}
/**
* @brief Initialize the multipoles before the gravity calculation.
*
* @param r The runner thread.
* @param c The cell.
* @param timer 1 if the time is to be recorded.
*/
void runner_do_init_grav(struct runner *r, struct cell *c, int timer) {
const struct engine *e = r->e;
TIMER_TIC;
#ifdef SWIFT_DEBUG_CHECKS
if (!(e->policy & engine_policy_self_gravity))
error("Grav-init task called outside of self-gravity calculation");
#endif
/* Anything to do here? */
if (!cell_is_active(c, e)) return;
/* Drift the multipole */
cell_drift_multipole(c, e);
/* Reset the gravity acceleration tensors */
gravity_field_tensors_init(&c->multipole->pot, e->ti_current);
/* Recurse? */
if (c->split) {
for (int k = 0; k < 8; k++) {
if (c->progeny[k] != NULL) runner_do_init_grav(r, c->progeny[k], 0);
}
}
if (timer) TIMER_TOC(timer_init_grav);
}
/**
* @brief Intermediate task after the gradient loop that does final operations
* on the gradient quantities and optionally slope limits the gradients
*
* @param r The runner thread.
* @param c The cell.
* @param timer Are we timing this ?
*/
void runner_do_extra_ghost(struct runner *r, struct cell *c, int timer) {
#ifdef EXTRA_HYDRO_LOOP
struct part *restrict parts = c->parts;
const int count = c->count;
const struct engine *e = r->e;
TIMER_TIC;
/* Anything to do here? */
if (!cell_is_active(c, e)) return;
/* Recurse? */
if (c->split) {
for (int k = 0; k < 8; k++)
if (c->progeny[k] != NULL) runner_do_extra_ghost(r, c->progeny[k], 0);
} else {
/* Loop over the parts in this cell. */
for (int i = 0; i < count; i++) {
/* Get a direct pointer on the part. */
struct part *restrict p = &parts[i];
if (part_is_active(p, e)) {
/* Get ready for a force calculation */
hydro_end_gradient(p);
}
}
}
if (timer) TIMER_TOC(timer_do_extra_ghost);
#else
error("SWIFT was not compiled with the extra hydro loop activated.");
#endif
}
/**
* @brief Intermediate task after the density to check that the smoothing
* lengths are correct.
*
* @param r The runner thread.
* @param c The cell.
* @param timer Are we timing this ?
*/
void runner_do_ghost(struct runner *r, struct cell *c, int timer) {
struct part *restrict parts = c->parts;
struct xpart *restrict xparts = c->xparts;
const struct engine *e = r->e;
const struct space *s = e->s;
const float hydro_h_max = e->hydro_properties->h_max;
const float eps = e->hydro_properties->h_tolerance;
const float hydro_eta_dim =
pow_dimension(e->hydro_properties->eta_neighbours);
const int max_smoothing_iter = e->hydro_properties->max_smoothing_iterations;
int redo = 0, count = 0;
TIMER_TIC;
/* Anything to do here? */
if (!cell_is_active(c, e)) return;
/* Recurse? */
if (c->split) {
for (int k = 0; k < 8; k++)
if (c->progeny[k] != NULL) runner_do_ghost(r, c->progeny[k], 0);
} else {
/* Init the list of active particles that have to be updated. */
int *pid = NULL;
if ((pid = malloc(sizeof(int) * c->count)) == NULL)
error("Can't allocate memory for pid.");
for (int k = 0; k < c->count; k++)
if (part_is_active(&parts[k], e)) {
pid[count] = k;
++count;
}
/* While there are particles that need to be updated... */
for (int num_reruns = 0; count > 0 && num_reruns < max_smoothing_iter;
num_reruns++) {
/* Reset the redo-count. */
redo = 0;
/* Loop over the remaining active parts in this cell. */
for (int i = 0; i < count; i++) {
/* Get a direct pointer on the part. */
struct part *p = &parts[pid[i]];
struct xpart *xp = &xparts[pid[i]];
#ifdef SWIFT_DEBUG_CHECKS
/* Is this part within the timestep? */
if (!part_is_active(p, e)) error("Ghost applied to inactive particle");
#endif
/* Get some useful values */
const float h_old = p->h;
const float h_old_dim = pow_dimension(h_old);
const float h_old_dim_minus_one = pow_dimension_minus_one(h_old);
float h_new;
if (p->density.wcount == 0.f) { /* No neighbours case */
/* Double h and try again */
h_new = 2.f * h_old;
} else {
/* Finish the density calculation */
hydro_end_density(p);
/* Compute one step of the Newton-Raphson scheme */
const float n_sum = p->density.wcount * h_old_dim;
const float n_target = hydro_eta_dim;
const float f = n_sum - n_target;
const float f_prime =
p->density.wcount_dh * h_old_dim +
hydro_dimension * p->density.wcount * h_old_dim_minus_one;
h_new = h_old - f / f_prime;
#ifdef SWIFT_DEBUG_CHECKS
if ((f > 0.f && h_new > h_old) || (f < 0.f && h_new < h_old))
error(
"Smoothing length correction not going in the right direction");
#endif
/* Safety check: truncate to the range [ h_old/2 , 2h_old ]. */
h_new = min(h_new, 2.f * h_old);
h_new = max(h_new, 0.5f * h_old);
}
/* Check whether the particle has an inappropriate smoothing length */
if (fabsf(h_new - h_old) > eps * h_old) {
/* Ok, correct then */
p->h = h_new;
/* If below the absolute maximum, try again */
if (p->h < hydro_h_max) {
/* Flag for another round of fun */
pid[redo] = pid[i];
redo += 1;
/* Re-initialise everything */
hydro_init_part(p, &s->hs);
/* Off we go ! */
continue;
} else {
/* Ok, this particle is a lost cause... */
p->h = hydro_h_max;
/* Do some damage control if no neighbours at all were found */
if (p->density.wcount == kernel_root * kernel_norm)
hydro_part_has_no_neighbours(p, xp);
}
}
/* We now have a particle whose smoothing length has converged */
/* As of here, particle force variables will be set. */
/* Compute variables required for the force loop */
hydro_prepare_force(p, xp);
/* The particle force values are now set. Do _NOT_
try to read any particle density variables! */
/* Prepare the particle for the force loop over neighbours */
hydro_reset_acceleration(p);
}
/* We now need to treat the particles whose smoothing length had not
* converged again */
/* Re-set the counter for the next loop (potentially). */
count = redo;
if (count > 0) {
/* Climb up the cell hierarchy. */
for (struct cell *finger = c; finger != NULL; finger = finger->parent) {
/* Run through this cell's density interactions. */
for (struct link *l = finger->density; l != NULL; l = l->next) {
#ifdef SWIFT_DEBUG_CHECKS
if (l->t->ti_run < r->e->ti_current)
error("Density task should have been run.");
#endif
/* Self-interaction? */
if (l->t->type == task_type_self)
#if defined(WITH_VECTORIZATION) && defined(GADGET2_SPH)
runner_doself_subset_density_vec(r, finger, parts, pid, count);
#else
runner_doself_subset_density(r, finger, parts, pid, count);
#endif
/* Otherwise, pair interaction? */
else if (l->t->type == task_type_pair) {
/* Left or right? */
if (l->t->ci == finger)
runner_dopair_subset_density(r, finger, parts, pid, count,
l->t->cj);
else
runner_dopair_subset_density(r, finger, parts, pid, count,
l->t->ci);
}
/* Otherwise, sub-self interaction? */
else if (l->t->type == task_type_sub_self)
runner_dosub_subset_density(r, finger, parts, pid, count, NULL,
-1, 1);
/* Otherwise, sub-pair interaction? */
else if (l->t->type == task_type_sub_pair) {
/* Left or right? */
if (l->t->ci == finger)
runner_dosub_subset_density(r, finger, parts, pid, count,
l->t->cj, -1, 1);
else
runner_dosub_subset_density(r, finger, parts, pid, count,
l->t->ci, -1, 1);
}
}
}
}
}
#ifdef SWIFT_DEBUG_CHECKS
if (count) {
error("Smoothing length failed to converge on %i particles.", count);
}
#else
if (count)
error("Smoothing length failed to converge on %i particles.", count);
#endif
/* Be clean */
free(pid);
}
if (timer) TIMER_TOC(timer_do_ghost);
}
/**
* @brief Unskip any tasks associated with active cells.
*
* @param c The cell.
* @param e The engine.
*/
static void runner_do_unskip(struct cell *c, struct engine *e) {
/* Ignore empty cells. */
if (c->count == 0 && c->gcount == 0) return;
/* Skip inactive cells. */
if (!cell_is_active(c, e)) return;
/* Recurse */
if (c->split) {
for (int k = 0; k < 8; k++) {
if (c->progeny[k] != NULL) {
struct cell *cp = c->progeny[k];
runner_do_unskip(cp, e);
}
}
}
/* Unskip any active tasks. */
const int forcerebuild = cell_unskip_tasks(c, &e->sched);
if (forcerebuild) atomic_inc(&e->forcerebuild);
}
/**
* @brief Mapper function to unskip active tasks.
*
* @param map_data An array of #cell%s.
* @param num_elements Chunk size.
* @param extra_data Pointer to an #engine.
*/
void runner_do_unskip_mapper(void *map_data, int num_elements,
void *extra_data) {
struct engine *e = (struct engine *)extra_data;
struct cell *cells = (struct cell *)map_data;
for (int ind = 0; ind < num_elements; ind++) {
struct cell *c = &cells[ind];
if (c != NULL) runner_do_unskip(c, e);
}
}
/**
* @brief Drift all part in a cell.
*
* @param r The runner thread.
* @param c The cell.
* @param timer Are we timing this ?
*/
void runner_do_drift_part(struct runner *r, struct cell *c, int timer) {
TIMER_TIC;
cell_drift_part(c, r->e, 0);
if (timer) TIMER_TOC(timer_drift_part);
}
/**
* @brief Drift all gpart in a cell.
*
* @param r The runner thread.
* @param c The cell.
* @param timer Are we timing this ?
*/
void runner_do_drift_gpart(struct runner *r, struct cell *c, int timer) {
TIMER_TIC;
cell_drift_gpart(c, r->e, 0);
if (timer) TIMER_TOC(timer_drift_gpart);
}
/**
* @brief Perform the first half-kick on all the active particles in a cell.
*
* @param r The runner thread.
* @param c The cell.
* @param timer Are we timing this ?
*/
void runner_do_kick1(struct runner *r, struct cell *c, int timer) {
const struct engine *e = r->e;
struct part *restrict parts = c->parts;
struct xpart *restrict xparts = c->xparts;
struct gpart *restrict gparts = c->gparts;
struct spart *restrict sparts = c->sparts;
const int count = c->count;
const int gcount = c->gcount;
const int scount = c->scount;
const integertime_t ti_current = e->ti_current;
const double timeBase = e->timeBase;
TIMER_TIC;
/* Anything to do here? */
if (!cell_is_starting(c, e)) return;
/* Recurse? */
if (c->split) {
for (int k = 0; k < 8; k++)
if (c->progeny[k] != NULL) runner_do_kick1(r, c->progeny[k], 0);
} else {
/* Loop over the parts in this cell. */
for (int k = 0; k < count; k++) {
/* Get a handle on the part. */
struct part *restrict p = &parts[k];
struct xpart *restrict xp = &xparts[k];
/* If particle needs to be kicked */
if (part_is_starting(p, e)) {
const integertime_t ti_step = get_integer_timestep(p->time_bin);
const integertime_t ti_begin =
get_integer_time_begin(ti_current + 1, p->time_bin);
#ifdef SWIFT_DEBUG_CHECKS
const integertime_t ti_end =
get_integer_time_end(ti_current + 1, p->time_bin);
if (ti_begin != ti_current)
error(
"Particle in wrong time-bin, ti_end=%lld, ti_begin=%lld, "
"ti_step=%lld time_bin=%d ti_current=%lld",
ti_end, ti_begin, ti_step, p->time_bin, ti_current);
#endif
/* do the kick */
kick_part(p, xp, ti_begin, ti_begin + ti_step / 2, timeBase);
}
}
/* Loop over the gparts in this cell. */
for (int k = 0; k < gcount; k++) {
/* Get a handle on the part. */
struct gpart *restrict gp = &gparts[k];
/* If the g-particle has no counterpart and needs to be kicked */
if (gp->type == swift_type_dark_matter && gpart_is_starting(gp, e)) {
const integertime_t ti_step = get_integer_timestep(gp->time_bin);
const integertime_t ti_begin =
get_integer_time_begin(ti_current + 1, gp->time_bin);
#ifdef SWIFT_DEBUG_CHECKS
const integertime_t ti_end =
get_integer_time_end(ti_current + 1, gp->time_bin);
if (ti_begin != ti_current)
error(
"Particle in wrong time-bin, ti_end=%lld, ti_begin=%lld, "
"ti_step=%lld time_bin=%d ti_current=%lld",
ti_end, ti_begin, ti_step, gp->time_bin, ti_current);
#endif
/* do the kick */
kick_gpart(gp, ti_begin, ti_begin + ti_step / 2, timeBase);
}
}
/* Loop over the star particles in this cell. */
for (int k = 0; k < scount; k++) {
/* Get a handle on the s-part. */
struct spart *restrict sp = &sparts[k];
/* If particle needs to be kicked */
if (spart_is_starting(sp, e)) {
const integertime_t ti_step = get_integer_timestep(sp->time_bin);
const integertime_t ti_begin =
get_integer_time_begin(ti_current + 1, sp->time_bin);
#ifdef SWIFT_DEBUG_CHECKS
const integertime_t ti_end =
get_integer_time_end(ti_current + 1, sp->time_bin);
if (ti_begin != ti_current)
error(
"Particle in wrong time-bin, ti_end=%lld, ti_begin=%lld, "
"ti_step=%lld time_bin=%d ti_current=%lld",
ti_end, ti_begin, ti_step, sp->time_bin, ti_current);
#endif
/* do the kick */
kick_spart(sp, ti_begin, ti_begin + ti_step / 2, timeBase);
}
}
}
if (timer) TIMER_TOC(timer_kick1);
}
/**
* @brief Perform the second half-kick on all the active particles in a cell.
*
* Also prepares particles to be drifted.
*
* @param r The runner thread.
* @param c The cell.
* @param timer Are we timing this ?
*/
void runner_do_kick2(struct runner *r, struct cell *c, int timer) {
const struct engine *e = r->e;
const integertime_t ti_current = e->ti_current;
const double timeBase = e->timeBase;
const int count = c->count;
const int gcount = c->gcount;
const int scount = c->scount;
struct part *restrict parts = c->parts;
struct xpart *restrict xparts = c->xparts;
struct gpart *restrict gparts = c->gparts;
struct spart *restrict sparts = c->sparts;
TIMER_TIC;
/* Anything to do here? */
if (!cell_is_active(c, e)) return;
/* Recurse? */
if (c->split) {
for (int k = 0; k < 8; k++)
if (c->progeny[k] != NULL) runner_do_kick2(r, c->progeny[k], 0);
} else {
/* Loop over the particles in this cell. */
for (int k = 0; k < count; k++) {
/* Get a handle on the part. */
struct part *restrict p = &parts[k];
struct xpart *restrict xp = &xparts[k];
/* If particle needs to be kicked */
if (part_is_active(p, e)) {
const integertime_t ti_step = get_integer_timestep(p->time_bin);
const integertime_t ti_begin =
get_integer_time_begin(ti_current, p->time_bin);
#ifdef SWIFT_DEBUG_CHECKS
if (ti_begin + ti_step != ti_current)
error(
"Particle in wrong time-bin, ti_begin=%lld, ti_step=%lld "
"time_bin=%d ti_current=%lld",
ti_begin, ti_step, p->time_bin, ti_current);
#endif
/* Finish the time-step with a second half-kick */
kick_part(p, xp, ti_begin + ti_step / 2, ti_begin + ti_step, timeBase);
#ifdef SWIFT_DEBUG_CHECKS
/* Check that kick and the drift are synchronized */
if (p->ti_drift != p->ti_kick) error("Error integrating part in time.");
#endif
/* Prepare the values to be drifted */
hydro_reset_predicted_values(p, xp);
}
}
/* Loop over the g-particles in this cell. */
for (int k = 0; k < gcount; k++) {
/* Get a handle on the part. */
struct gpart *restrict gp = &gparts[k];
/* If the g-particle has no counterpart and needs to be kicked */
if (gp->type == swift_type_dark_matter && gpart_is_active(gp, e)) {
const integertime_t ti_step = get_integer_timestep(gp->time_bin);
const integertime_t ti_begin =
get_integer_time_begin(ti_current, gp->time_bin);
#ifdef SWIFT_DEBUG_CHECKS
if (ti_begin + ti_step != ti_current)
error("Particle in wrong time-bin");
#endif
/* Finish the time-step with a second half-kick */
kick_gpart(gp, ti_begin + ti_step / 2, ti_begin + ti_step, timeBase);
#ifdef SWIFT_DEBUG_CHECKS
/* Check that kick and the drift are synchronized */
if (gp->ti_drift != gp->ti_kick)
error("Error integrating g-part in time.");
#endif
/* Prepare the values to be drifted */
gravity_reset_predicted_values(gp);
}
}
/* Loop over the particles in this cell. */
for (int k = 0; k < scount; k++) {
/* Get a handle on the part. */
struct spart *restrict sp = &sparts[k];
/* If particle needs to be kicked */
if (spart_is_active(sp, e)) {
const integertime_t ti_step = get_integer_timestep(sp->time_bin);
const integertime_t ti_begin =
get_integer_time_begin(ti_current, sp->time_bin);
#ifdef SWIFT_DEBUG_CHECKS
if (ti_begin + ti_step != ti_current)
error("Particle in wrong time-bin");
#endif
/* Finish the time-step with a second half-kick */
kick_spart(sp, ti_begin + ti_step / 2, ti_begin + ti_step, timeBase);
#ifdef SWIFT_DEBUG_CHECKS
/* Check that kick and the drift are synchronized */
if (sp->ti_drift != sp->ti_kick)
error("Error integrating s-part in time.");
#endif
/* Prepare the values to be drifted */
star_reset_predicted_values(sp);
}
}
}
if (timer) TIMER_TOC(timer_kick2);
}
/**
* @brief Computes the next time-step of all active particles in this cell
* and update the cell's statistics.
*
* @param r The runner thread.
* @param c The cell.
* @param timer Are we timing this ?
*/
void runner_do_timestep(struct runner *r, struct cell *c, int timer) {
const struct engine *e = r->e;
const integertime_t ti_current = e->ti_current;
const int count = c->count;
const int gcount = c->gcount;
const int scount = c->scount;
struct part *restrict parts = c->parts;
struct xpart *restrict xparts = c->xparts;
struct gpart *restrict gparts = c->gparts;
struct spart *restrict sparts = c->sparts;
const double timeBase = e->timeBase;
TIMER_TIC;
/* Anything to do here? */
if (!cell_is_active(c, e)) {
c->updated = 0;
c->g_updated = 0;
c->s_updated = 0;
return;
}
int updated = 0, g_updated = 0, s_updated = 0;
integertime_t ti_end_min = max_nr_timesteps, ti_end_max = 0, ti_beg_max = 0;
/* No children? */
if (!c->split) {
/* Loop over the particles in this cell. */
for (int k = 0; k < count; k++) {
/* Get a handle on the part. */
struct part *restrict p = &parts[k];
struct xpart *restrict xp = &xparts[k];
/* If particle needs updating */
if (part_is_active(p, e)) {
#ifdef SWIFT_DEBUG_CHECKS
/* Current end of time-step */
const integertime_t ti_end =
get_integer_time_end(ti_current, p->time_bin);
if (ti_end != ti_current)
error("Computing time-step of rogue particle.");
#endif
/* Get new time-step */
const integertime_t ti_new_step = get_part_timestep(p, xp, e);
/* Update particle */
p->time_bin = get_time_bin(ti_new_step);
if (p->gpart != NULL) p->gpart->time_bin = get_time_bin(ti_new_step);
/* Tell the particle what the new physical time step is */
float dt = get_timestep(p->time_bin, timeBase);
hydro_timestep_extra(p, dt);
/* Number of updated particles */
updated++;
if (p->gpart != NULL) g_updated++;
/* What is the next sync-point ? */
ti_end_min = min(ti_current + ti_new_step, ti_end_min);
ti_end_max = max(ti_current + ti_new_step, ti_end_max);
/* What is the next starting point for this cell ? */
ti_beg_max = max(ti_current, ti_beg_max);
}
else { /* part is inactive */
const integertime_t ti_end =
get_integer_time_end(ti_current, p->time_bin);
/* What is the next sync-point ? */
ti_end_min = min(ti_end, ti_end_min);
ti_end_max = max(ti_end, ti_end_max);
const integertime_t ti_beg =
get_integer_time_begin(ti_current + 1, p->time_bin);
/* What is the next starting point for this cell ? */
ti_beg_max = max(ti_beg, ti_beg_max);
}
}
/* Loop over the g-particles in this cell. */
for (int k = 0; k < gcount; k++) {
/* Get a handle on the part. */
struct gpart *restrict gp = &gparts[k];
/* If the g-particle has no counterpart */
if (gp->type == swift_type_dark_matter) {
/* need to be updated ? */
if (gpart_is_active(gp, e)) {
#ifdef SWIFT_DEBUG_CHECKS
/* Current end of time-step */
const integertime_t ti_end =
get_integer_time_end(ti_current, gp->time_bin);
if (ti_end != ti_current)
error("Computing time-step of rogue particle.");
#endif
/* Get new time-step */
const integertime_t ti_new_step = get_gpart_timestep(gp, e);
/* Update particle */
gp->time_bin = get_time_bin(ti_new_step);
/* Number of updated g-particles */
g_updated++;
/* What is the next sync-point ? */
ti_end_min = min(ti_current + ti_new_step, ti_end_min);
ti_end_max = max(ti_current + ti_new_step, ti_end_max);
/* What is the next starting point for this cell ? */
ti_beg_max = max(ti_current, ti_beg_max);
} else { /* gpart is inactive */
const integertime_t ti_end =
get_integer_time_end(ti_current, gp->time_bin);
/* What is the next sync-point ? */
ti_end_min = min(ti_end, ti_end_min);
ti_end_max = max(ti_end, ti_end_max);
const integertime_t ti_beg =
get_integer_time_begin(ti_current + 1, gp->time_bin);
/* What is the next starting point for this cell ? */
ti_beg_max = max(ti_beg, ti_beg_max);
}
}
}
/* Loop over the star particles in this cell. */
for (int k = 0; k < scount; k++) {
/* Get a handle on the part. */
struct spart *restrict sp = &sparts[k];
/* need to be updated ? */
if (spart_is_active(sp, e)) {
#ifdef SWIFT_DEBUG_CHECKS
/* Current end of time-step */
const integertime_t ti_end =
get_integer_time_end(ti_current, sp->time_bin);
if (ti_end != ti_current)
error("Computing time-step of rogue particle.");
#endif
/* Get new time-step */
const integertime_t ti_new_step = get_spart_timestep(sp, e);
/* Update particle */
sp->time_bin = get_time_bin(ti_new_step);
sp->gpart->time_bin = get_time_bin(ti_new_step);
/* Number of updated s-particles */
s_updated++;
g_updated++;
/* What is the next sync-point ? */
ti_end_min = min(ti_current + ti_new_step, ti_end_min);
ti_end_max = max(ti_current + ti_new_step, ti_end_max);
/* What is the next starting point for this cell ? */
ti_beg_max = max(ti_current, ti_beg_max);
} else { /* star particle is inactive */
const integertime_t ti_end =
get_integer_time_end(ti_current, sp->time_bin);
/* What is the next sync-point ? */
ti_end_min = min(ti_end, ti_end_min);
ti_end_max = max(ti_end, ti_end_max);
const integertime_t ti_beg =
get_integer_time_begin(ti_current + 1, sp->time_bin);
/* What is the next starting point for this cell ? */
ti_beg_max = max(ti_beg, ti_beg_max);
}
}
} else {
/* Loop over the progeny. */
for (int k = 0; k < 8; k++)
if (c->progeny[k] != NULL) {
struct cell *restrict cp = c->progeny[k];
/* Recurse */
runner_do_timestep(r, cp, 0);
/* And aggregate */
updated += cp->updated;
g_updated += cp->g_updated;
s_updated += cp->s_updated;
ti_end_min = min(cp->ti_end_min, ti_end_min);
ti_end_max = max(cp->ti_end_max, ti_end_max);
ti_beg_max = max(cp->ti_beg_max, ti_beg_max);
}
}
/* Store the values. */
c->updated = updated;
c->g_updated = g_updated;
c->s_updated = s_updated;
c->ti_end_min = ti_end_min;
c->ti_end_max = ti_end_max;
c->ti_beg_max = ti_beg_max;
if (timer) TIMER_TOC(timer_timestep);
}
/**
* @brief End the force calculation of all active particles in a cell
* by multiplying the acccelerations by the relevant constants
*
* @param r The #runner thread.
* @param c The #cell.
* @param timer Are we timing this ?
*/
void runner_do_end_force(struct runner *r, struct cell *c, int timer) {
const struct engine *e = r->e;
const int count = c->count;
const int gcount = c->gcount;
const int scount = c->scount;
struct part *restrict parts = c->parts;
struct gpart *restrict gparts = c->gparts;
struct spart *restrict sparts = c->sparts;
const double const_G = e->physical_constants->const_newton_G;
TIMER_TIC;
/* Anything to do here? */
if (!cell_is_active(c, e)) return;
/* Recurse? */
if (c->split) {
for (int k = 0; k < 8; k++)
if (c->progeny[k] != NULL) runner_do_end_force(r, c->progeny[k], 0);
} else {
/* Loop over the gas particles in this cell. */
for (int k = 0; k < count; k++) {
/* Get a handle on the part. */
struct part *restrict p = &parts[k];
if (part_is_active(p, e)) {
/* Finish the force loop */
hydro_end_force(p);
}
}
/* Loop over the g-particles in this cell. */
for (int k = 0; k < gcount; k++) {
/* Get a handle on the gpart. */
struct gpart *restrict gp = &gparts[k];
if (gpart_is_active(gp, e)) {
/* Finish the force calculation */
gravity_end_force(gp, const_G);
#ifdef SWIFT_NO_GRAVITY_BELOW_ID
/* Cancel gravity forces of these particles */
if ((gp->type == swift_type_dark_matter &&
gp->id_or_neg_offset < SWIFT_NO_GRAVITY_BELOW_ID) ||
(gp->type == swift_type_gas &&
parts[-gp->id_or_neg_offset].id < SWIFT_NO_GRAVITY_BELOW_ID) ||
(gp->type == swift_type_star &&
sparts[-gp->id_or_neg_offset].id < SWIFT_NO_GRAVITY_BELOW_ID)) {
/* Don't move ! */
gp->a_grav[0] = 0.f;
gp->a_grav[1] = 0.f;
gp->a_grav[2] = 0.f;
}
#endif
#ifdef SWIFT_DEBUG_CHECKS
if (e->policy & engine_policy_self_gravity) {
/* Let's add a self interaction to simplify the count */
gp->num_interacted++;
/* Check that this gpart has interacted with all the other
* particles (via direct or multipoles) in the box */
if (gp->num_interacted != (long long)e->s->nr_gparts)
error(
"g-particle (id=%lld, type=%s) did not interact "
"gravitationally "
"with all other gparts gp->num_interacted=%lld, "
"total_gparts=%zd",
gp->id_or_neg_offset, part_type_names[gp->type],
gp->num_interacted, e->s->nr_gparts);
}
#endif
}
}
/* Loop over the star particles in this cell. */
for (int k = 0; k < scount; k++) {
/* Get a handle on the spart. */
struct spart *restrict sp = &sparts[k];
if (spart_is_active(sp, e)) {
/* Finish the force loop */
star_end_force(sp);
}
}
}
if (timer) TIMER_TOC(timer_endforce);
}
/**
* @brief Construct the cell properties from the received #part.
*
* @param r The runner thread.
* @param c The cell.
* @param clear_sorts Should we clear the sort flag and hence trigger a sort ?
* @param timer Are we timing this ?
*/
void runner_do_recv_part(struct runner *r, struct cell *c, int clear_sorts,
int timer) {
#ifdef WITH_MPI
const struct part *restrict parts = c->parts;
const size_t nr_parts = c->count;
const integertime_t ti_current = r->e->ti_current;
TIMER_TIC;
integertime_t ti_end_min = max_nr_timesteps;
integertime_t ti_end_max = 0;
timebin_t time_bin_min = num_time_bins;
timebin_t time_bin_max = 0;
float h_max = 0.f;
#ifdef SWIFT_DEBUG_CHECKS
if (c->nodeID == engine_rank) error("Updating a local cell!");
#endif
/* Clear this cell's sorted mask. */
if (clear_sorts) c->sorted = 0;
/* If this cell is a leaf, collect the particle data. */
if (!c->split) {
/* Collect everything... */
for (size_t k = 0; k < nr_parts; k++) {
if (parts[k].time_bin == time_bin_inhibited) continue;
time_bin_min = min(time_bin_min, parts[k].time_bin);
time_bin_max = max(time_bin_max, parts[k].time_bin);
h_max = max(h_max, parts[k].h);
}
/* Convert into a time */
ti_end_min = get_integer_time_end(ti_current, time_bin_min);
ti_end_max = get_integer_time_end(ti_current, time_bin_max);
}
/* Otherwise, recurse and collect. */
else {
for (int k = 0; k < 8; k++) {
if (c->progeny[k] != NULL) {
runner_do_recv_part(r, c->progeny[k], clear_sorts, 0);
ti_end_min = min(ti_end_min, c->progeny[k]->ti_end_min);
ti_end_max = max(ti_end_max, c->progeny[k]->ti_end_max);
h_max = max(h_max, c->progeny[k]->h_max);
}
}
}
#ifdef SWIFT_DEBUG_CHECKS
if (ti_end_min < ti_current)
error(
"Received a cell at an incorrect time c->ti_end_min=%lld, "
"e->ti_current=%lld.",
ti_end_min, ti_current);
#endif
/* ... and store. */
c->ti_end_min = ti_end_min;
c->ti_end_max = ti_end_max;
c->ti_old_part = ti_current;
c->h_max = h_max;
if (timer) TIMER_TOC(timer_dorecv_part);
#else
error("SWIFT was not compiled with MPI support.");
#endif
}
/**
* @brief Construct the cell properties from the received #gpart.
*
* @param r The runner thread.
* @param c The cell.
* @param timer Are we timing this ?
*/
void runner_do_recv_gpart(struct runner *r, struct cell *c, int timer) {
#ifdef WITH_MPI
const struct gpart *restrict gparts = c->gparts;
const size_t nr_gparts = c->gcount;
const integertime_t ti_current = r->e->ti_current;
TIMER_TIC;
integertime_t ti_end_min = max_nr_timesteps;
integertime_t ti_end_max = 0;
timebin_t time_bin_min = num_time_bins;
timebin_t time_bin_max = 0;
#ifdef SWIFT_DEBUG_CHECKS
if (c->nodeID == engine_rank) error("Updating a local cell!");
#endif
/* If this cell is a leaf, collect the particle data. */
if (!c->split) {
/* Collect everything... */
for (size_t k = 0; k < nr_gparts; k++) {
if (gparts[k].time_bin == time_bin_inhibited) continue;
time_bin_min = min(time_bin_min, gparts[k].time_bin);
time_bin_max = max(time_bin_max, gparts[k].time_bin);
#ifdef SWIFT_DEBUG_CHECKS
if (gparts[k].ti_drift != ti_current)
error("Received un-drifted g-particle !");
#endif
}
/* Convert into a time */
ti_end_min = get_integer_time_end(ti_current, time_bin_min);
ti_end_max = get_integer_time_end(ti_current, time_bin_max);
}
/* Otherwise, recurse and collect. */
else {
for (int k = 0; k < 8; k++) {
if (c->progeny[k] != NULL) {
runner_do_recv_gpart(r, c->progeny[k], 0);
ti_end_min = min(ti_end_min, c->progeny[k]->ti_end_min);
ti_end_max = max(ti_end_max, c->progeny[k]->ti_end_max);
}
}
}
#ifdef SWIFT_DEBUG_CHECKS
if (ti_end_min < ti_current)
error(
"Received a cell at an incorrect time c->ti_end_min=%lld, "
"e->ti_current=%lld.",
ti_end_min, ti_current);
#endif
/* ... and store. */
c->ti_end_min = ti_end_min;
c->ti_end_max = ti_end_max;
c->ti_old_gpart = ti_current;
if (timer) TIMER_TOC(timer_dorecv_gpart);
#else
error("SWIFT was not compiled with MPI support.");
#endif
}
/**
* @brief Construct the cell properties from the received #spart.
*
* @param r The runner thread.
* @param c The cell.
* @param timer Are we timing this ?
*/
void runner_do_recv_spart(struct runner *r, struct cell *c, int timer) {
#ifdef WITH_MPI
const struct spart *restrict sparts = c->sparts;
const size_t nr_sparts = c->scount;
const integertime_t ti_current = r->e->ti_current;
TIMER_TIC;
integertime_t ti_end_min = max_nr_timesteps;
integertime_t ti_end_max = 0;
timebin_t time_bin_min = num_time_bins;
timebin_t time_bin_max = 0;
#ifdef SWIFT_DEBUG_CHECKS
if (c->nodeID == engine_rank) error("Updating a local cell!");
#endif
/* If this cell is a leaf, collect the particle data. */
if (!c->split) {
/* Collect everything... */
for (size_t k = 0; k < nr_sparts; k++) {
if (sparts[k].time_bin == time_bin_inhibited) continue;
time_bin_min = min(time_bin_min, sparts[k].time_bin);
time_bin_max = max(time_bin_max, sparts[k].time_bin);
#ifdef SWIFT_DEBUG_CHECKS
if (sparts[k].ti_drift != ti_current)
error("Received un-drifted s-particle !");
#endif
}
/* Convert into a time */
ti_end_min = get_integer_time_end(ti_current, time_bin_min);
ti_end_max = get_integer_time_end(ti_current, time_bin_max);
}
/* Otherwise, recurse and collect. */
else {
for (int k = 0; k < 8; k++) {
if (c->progeny[k] != NULL) {
runner_do_recv_spart(r, c->progeny[k], 0);
ti_end_min = min(ti_end_min, c->progeny[k]->ti_end_min);
ti_end_max = max(ti_end_max, c->progeny[k]->ti_end_max);
}
}
}
#ifdef SWIFT_DEBUG_CHECKS
if (ti_end_min < ti_current)
error(
"Received a cell at an incorrect time c->ti_end_min=%lld, "
"e->ti_current=%lld.",
ti_end_min, ti_current);
#endif
/* ... and store. */
c->ti_end_min = ti_end_min;
c->ti_end_max = ti_end_max;
c->ti_old_gpart = ti_current;
if (timer) TIMER_TOC(timer_dorecv_spart);
#else
error("SWIFT was not compiled with MPI support.");
#endif
}
/**
* @brief The #runner main thread routine.
*
* @param data A pointer to this thread's data.
*/
void *runner_main(void *data) {
struct runner *r = (struct runner *)data;
struct engine *e = r->e;
struct scheduler *sched = &e->sched;
unsigned int seed = r->id;
pthread_setspecific(sched->local_seed_pointer, &seed);
/* Main loop. */
while (1) {
/* Wait at the barrier. */
engine_barrier(e);
/* Re-set the pointer to the previous task, as there is none. */
struct task *t = NULL;
struct task *prev = NULL;
/* Loop while there are tasks... */
while (1) {
/* If there's no old task, try to get a new one. */
if (t == NULL) {
/* Get the task. */
TIMER_TIC
t = scheduler_gettask(sched, r->qid, prev);
TIMER_TOC(timer_gettask);
/* Did I get anything? */
if (t == NULL) break;
}
/* Get the cells. */
struct cell *ci = t->ci;
struct cell *cj = t->cj;
#ifdef SWIFT_DEBUG_TASKS
/* Mark the thread we run on */
t->rid = r->cpuid;
/* And recover the pair direction */
if (t->type == task_type_pair || t->type == task_type_sub_pair) {
struct cell *ci_temp = ci;
struct cell *cj_temp = cj;
double shift[3];
t->sid = space_getsid(e->s, &ci_temp, &cj_temp, shift);
} else {
t->sid = -1;
}
#endif
/* Check that we haven't scheduled an inactive task */
#ifdef SWIFT_DEBUG_CHECKS
t->ti_run = e->ti_current;
#ifndef WITH_MPI
if (t->type == task_type_grav_top_level) {
if (ci != NULL || cj != NULL)
error("Top-level gravity task associated with a cell");
} else if (ci == NULL && cj == NULL) {
error("Task not associated with cells!");
} else if (cj == NULL) { /* self */
if (!cell_is_active(ci, e) && t->type != task_type_sort &&
t->type != task_type_send && t->type != task_type_recv &&
t->type != task_type_kick1 && t->type != task_type_drift_part &&
t->type != task_type_drift_gpart)
error(
"Task (type='%s/%s') should have been skipped ti_current=%lld "
"c->ti_end_min=%lld",
taskID_names[t->type], subtaskID_names[t->subtype], e->ti_current,
ci->ti_end_min);
/* Special case for sorts */
if (!cell_is_active(ci, e) && t->type == task_type_sort &&
!(ci->do_sort || ci->do_sub_sort))
error(
"Task (type='%s/%s') should have been skipped ti_current=%lld "
"c->ti_end_min=%lld t->flags=%d",
taskID_names[t->type], subtaskID_names[t->subtype], e->ti_current,
ci->ti_end_min, t->flags);
/* Special case for kick1 */
if (!cell_is_starting(ci, e) && t->type == task_type_kick1 &&
t->flags == 0)
error(
"Task (type='%s/%s') should have been skipped ti_current=%lld "
"c->ti_end_min=%lld t->flags=%d",
taskID_names[t->type], subtaskID_names[t->subtype], e->ti_current,
ci->ti_end_min, t->flags);
} else { /* pair */
if (!cell_is_active(ci, e) && !cell_is_active(cj, e))
if (t->type != task_type_send && t->type != task_type_recv)
error(
"Task (type='%s/%s') should have been skipped ti_current=%lld "
"ci->ti_end_min=%lld cj->ti_end_min=%lld",
taskID_names[t->type], subtaskID_names[t->subtype],
e->ti_current, ci->ti_end_min, cj->ti_end_min);
}
#endif
#endif
/* Different types of tasks... */
switch (t->type) {
case task_type_self:
if (t->subtype == task_subtype_density) {
#if defined(WITH_VECTORIZATION) && defined(GADGET2_SPH)
runner_doself1_density_vec(r, ci);
#else
runner_doself1_density(r, ci);
#endif
}
#ifdef EXTRA_HYDRO_LOOP
else if (t->subtype == task_subtype_gradient)
runner_doself1_gradient(r, ci);
#endif
else if (t->subtype == task_subtype_force) {
#if defined(WITH_VECTORIZATION) && defined(GADGET2_SPH)
runner_doself2_force_vec(r, ci);
#else
runner_doself2_force(r, ci);
#endif
} else if (t->subtype == task_subtype_grav)
runner_doself_grav(r, ci, 1);
else if (t->subtype == task_subtype_external_grav)
runner_do_grav_external(r, ci, 1);
else
error("Unknown/invalid task subtype (%d).", t->subtype);
break;
case task_type_pair:
if (t->subtype == task_subtype_density)
runner_dopair1_branch_density(r, ci, cj);
#ifdef EXTRA_HYDRO_LOOP
else if (t->subtype == task_subtype_gradient)
runner_dopair1_branch_gradient(r, ci, cj);
#endif
else if (t->subtype == task_subtype_force)
runner_dopair2_branch_force(r, ci, cj);
else if (t->subtype == task_subtype_grav)
runner_dopair_grav(r, ci, cj, 1);
else
error("Unknown/invalid task subtype (%d).", t->subtype);
break;
case task_type_sub_self:
if (t->subtype == task_subtype_density)
runner_dosub_self1_density(r, ci, 1);
#ifdef EXTRA_HYDRO_LOOP
else if (t->subtype == task_subtype_gradient)
runner_dosub_self1_gradient(r, ci, 1);
#endif
else if (t->subtype == task_subtype_force)
runner_dosub_self2_force(r, ci, 1);
else
error("Unknown/invalid task subtype (%d).", t->subtype);
break;
case task_type_sub_pair:
if (t->subtype == task_subtype_density)
runner_dosub_pair1_density(r, ci, cj, t->flags, 1);
#ifdef EXTRA_HYDRO_LOOP
else if (t->subtype == task_subtype_gradient)
runner_dosub_pair1_gradient(r, ci, cj, t->flags, 1);
#endif
else if (t->subtype == task_subtype_force)
runner_dosub_pair2_force(r, ci, cj, t->flags, 1);
else
error("Unknown/invalid task subtype (%d).", t->subtype);
break;
case task_type_sort:
/* Cleanup only if any of the indices went stale. */
runner_do_sort(r, ci, t->flags,
ci->dx_max_sort_old > space_maxreldx * ci->dmin, 1);
/* Reset the sort flags as our work here is done. */
t->flags = 0;
break;
case task_type_init_grav:
runner_do_init_grav(r, ci, 1);
break;
case task_type_ghost:
runner_do_ghost(r, ci, 1);
break;
#ifdef EXTRA_HYDRO_LOOP
case task_type_extra_ghost:
runner_do_extra_ghost(r, ci, 1);
break;
#endif
case task_type_drift_part:
runner_do_drift_part(r, ci, 1);
break;
case task_type_drift_gpart:
runner_do_drift_gpart(r, ci, 1);
break;
case task_type_kick1:
runner_do_kick1(r, ci, 1);
break;
case task_type_kick2:
if (!(e->policy & engine_policy_cooling))
runner_do_end_force(r, ci, 1);
runner_do_kick2(r, ci, 1);
break;
case task_type_timestep:
runner_do_timestep(r, ci, 1);
break;
#ifdef WITH_MPI
case task_type_send:
if (t->subtype == task_subtype_tend) {
free(t->buff);
}
break;
case task_type_recv:
if (t->subtype == task_subtype_tend) {
cell_unpack_end_step(ci, t->buff);
free(t->buff);
} else if (t->subtype == task_subtype_xv) {
runner_do_recv_part(r, ci, 1, 1);
} else if (t->subtype == task_subtype_rho) {
runner_do_recv_part(r, ci, 0, 1);
} else if (t->subtype == task_subtype_gradient) {
runner_do_recv_part(r, ci, 0, 1);
} else if (t->subtype == task_subtype_gpart) {
runner_do_recv_gpart(r, ci, 1);
} else if (t->subtype == task_subtype_spart) {
runner_do_recv_spart(r, ci, 1);
} else if (t->subtype == task_subtype_multipole) {
ci->ti_old_multipole = e->ti_current;
} else {
error("Unknown/invalid task subtype (%d).", t->subtype);
}
break;
#endif
case task_type_grav_down:
runner_do_grav_down(r, t->ci, 1);
break;
case task_type_grav_top_level:
runner_do_grav_fft(r, 1);
break;
case task_type_grav_long_range:
runner_do_grav_long_range(r, t->ci, 1);
break;
case task_type_cooling:
if (e->policy & engine_policy_cooling) runner_do_end_force(r, ci, 1);
runner_do_cooling(r, t->ci, 1);
break;
case task_type_sourceterms:
runner_do_sourceterms(r, t->ci, 1);
break;
default:
error("Unknown/invalid task type (%d).", t->type);
}
/* Mark that we have run this task on these cells */
#ifdef SWIFT_DEBUG_CHECKS
if (ci != NULL) {
ci->tasks_executed[t->type]++;
ci->subtasks_executed[t->subtype]++;
}
if (cj != NULL) {
cj->tasks_executed[t->type]++;
cj->subtasks_executed[t->subtype]++;
}
#endif
/* We're done with this task, see if we get a next one. */
prev = t;
t = scheduler_done(sched, t);
} /* main loop. */
}
/* Be kind, rewind. */
return NULL;
}