Skip to content
Snippets Groups Projects
engine_maketasks.c 72.29 KiB
/*******************************************************************************
 * This file is part of SWIFT.
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
 *               2015 Peter W. Draper (p.w.draper@durham.ac.uk)
 *                    Angus Lepper (angus.lepper@ed.ac.uk)
 *               2016 John A. Regan (john.a.regan@durham.ac.uk)
 *                    Tom Theuns (tom.theuns@durham.ac.uk)
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <stdlib.h>
#include <unistd.h>

/* MPI headers. */
#ifdef WITH_MPI
#include <mpi.h>
#endif

/* Load the profiler header, if needed. */
#ifdef WITH_PROFILER
#include <gperftools/profiler.h>
#endif

/* This object's header. */
#include "engine.h"

/* Local headers. */
#include "atomic.h"
#include "cell.h"
#include "clocks.h"
#include "cycle.h"
#include "debug.h"
#include "error.h"
#include "proxy.h"
#include "timers.h"

/**
 * @brief Add send tasks for the gravity pairs to a hierarchy of cells.
 *
 * @param e The #engine.
 * @param ci The sending #cell.
 * @param cj Dummy cell containing the nodeID of the receiving node.
 * @param t_grav The send_grav #task, if it has already been created.
 */
void engine_addtasks_send_gravity(struct engine *e, struct cell *ci,
                                  struct cell *cj, struct task *t_grav) {

#ifdef WITH_MPI
  struct link *l = NULL;
  struct scheduler *s = &e->sched;
  const int nodeID = cj->nodeID;
  /* Check if any of the gravity tasks are for the target node. */
  for (l = ci->grav.grav; l != NULL; l = l->next)
    if (l->t->ci->nodeID == nodeID ||
        (l->t->cj != NULL && l->t->cj->nodeID == nodeID))
      break;

  /* If so, attach send tasks. */
  if (l != NULL) {

    /* Create the tasks and their dependencies? */
    if (t_grav == NULL) {

      /* Create a tag for this cell. */
      if (ci->mpi.tag < 0) cell_tag(ci);

      t_grav = scheduler_addtask(s, task_type_send, task_subtype_gpart,
                                 ci->mpi.tag, 0, ci, cj);

      /* The sends should unlock the down pass. */
      scheduler_addunlock(s, t_grav, ci->grav.super->grav.down);

      /* Drift before you send */
      scheduler_addunlock(s, ci->grav.super->grav.drift, t_grav);
    }

    /* Add them to the local cell. */
    engine_addlink(e, &ci->mpi.grav.send, t_grav);
  }

  /* Recurse? */
  if (ci->split)
    for (int k = 0; k < 8; k++)
      if (ci->progeny[k] != NULL)
        engine_addtasks_send_gravity(e, ci->progeny[k], cj, t_grav);

#else
  error("SWIFT was not compiled with MPI support.");
#endif
}

/**
 * @brief Add send tasks for the hydro pairs to a hierarchy of cells.
 *
 * @param e The #engine.
 * @param ci The sending #cell.
 * @param cj Dummy cell containing the nodeID of the receiving node.
 * @param t_xv The send_xv #task, if it has already been created.
 * @param t_rho The send_rho #task, if it has already been created.
 * @param t_gradient The send_gradient #task, if already created.
 */
void engine_addtasks_send_hydro(struct engine *e, struct cell *ci,
                                struct cell *cj, struct task *t_xv,
                                struct task *t_rho, struct task *t_gradient) {

#ifdef WITH_MPI
  struct link *l = NULL;
  struct scheduler *s = &e->sched;
  const int nodeID = cj->nodeID;

  /* Check if any of the density tasks are for the target node. */
  for (l = ci->hydro.density; l != NULL; l = l->next)
    if (l->t->ci->nodeID == nodeID ||
        (l->t->cj != NULL && l->t->cj->nodeID == nodeID))
      break;

  /* If so, attach send tasks. */
  if (l != NULL) {

    /* Create the tasks and their dependencies? */
    if (t_xv == NULL) {

      /* Create a tag for this cell. */
      if (ci->mpi.tag < 0) cell_tag(ci);

      t_xv = scheduler_addtask(s, task_type_send, task_subtype_xv, ci->mpi.tag,
                               0, ci, cj);
      t_rho = scheduler_addtask(s, task_type_send, task_subtype_rho,
                                ci->mpi.tag, 0, ci, cj);
#ifdef EXTRA_HYDRO_LOOP
      t_gradient = scheduler_addtask(s, task_type_send, task_subtype_gradient,
                                     ci->mpi.tag, 0, ci, cj);
#endif

#ifdef EXTRA_HYDRO_LOOP

      scheduler_addunlock(s, t_gradient, ci->super->kick2);

      scheduler_addunlock(s, ci->hydro.super->hydro.extra_ghost, t_gradient);

      /* The send_rho task should unlock the super_hydro-cell's extra_ghost
       * task. */
      scheduler_addunlock(s, t_rho, ci->hydro.super->hydro.extra_ghost);

      /* The send_rho task depends on the cell's ghost task. */
      scheduler_addunlock(s, ci->hydro.super->hydro.ghost_out, t_rho);

      /* The send_xv task should unlock the super_hydro-cell's ghost task. */
      scheduler_addunlock(s, t_xv, ci->hydro.super->hydro.ghost_in);

#else
      /* The send_rho task should unlock the super_hydro-cell's kick task. */
      scheduler_addunlock(s, t_rho, ci->super->end_force);

      /* The send_rho task depends on the cell's ghost task. */
      scheduler_addunlock(s, ci->hydro.super->hydro.ghost_out, t_rho);

      /* The send_xv task should unlock the super_hydro-cell's ghost task. */
      scheduler_addunlock(s, t_xv, ci->hydro.super->hydro.ghost_in);

#endif

      /* Drift before you send */
      scheduler_addunlock(s, ci->hydro.super->hydro.drift, t_xv);
    }

    /* Add them to the local cell. */
    engine_addlink(e, &ci->mpi.hydro.send_xv, t_xv);
    engine_addlink(e, &ci->mpi.hydro.send_rho, t_rho);
#ifdef EXTRA_HYDRO_LOOP
    engine_addlink(e, &ci->mpi.hydro.send_gradient, t_gradient);
#endif
  }

  /* Recurse? */
  if (ci->split)
    for (int k = 0; k < 8; k++)
      if (ci->progeny[k] != NULL)
        engine_addtasks_send_hydro(e, ci->progeny[k], cj, t_xv, t_rho,
                                   t_gradient);

#else
  error("SWIFT was not compiled with MPI support.");
#endif
}

/**
 * @brief Add send tasks for the time-step to a hierarchy of cells.
 *
 * @param e The #engine.
 * @param ci The sending #cell.
 * @param cj Dummy cell containing the nodeID of the receiving node.
 * @param t_ti The send_ti #task, if it has already been created.
 */
void engine_addtasks_send_timestep(struct engine *e, struct cell *ci,
                                   struct cell *cj, struct task *t_ti) {

#ifdef WITH_MPI
  struct link *l = NULL;
  struct scheduler *s = &e->sched;
  const int nodeID = cj->nodeID;

  /* Check if any of the gravity tasks are for the target node. */
  for (l = ci->grav.grav; l != NULL; l = l->next)
    if (l->t->ci->nodeID == nodeID ||
        (l->t->cj != NULL && l->t->cj->nodeID == nodeID))
      break;

  /* Check whether instead any of the hydro tasks are for the target node. */
  if (l == NULL)
    for (l = ci->hydro.density; l != NULL; l = l->next)
      if (l->t->ci->nodeID == nodeID ||
          (l->t->cj != NULL && l->t->cj->nodeID == nodeID))
        break;

  /* If found anything, attach send tasks. */
  if (l != NULL) {

    /* Create the tasks and their dependencies? */
    if (t_ti == NULL) {

      /* Create a tag for this cell. */
      if (ci->mpi.tag < 0) cell_tag(ci);

      t_ti = scheduler_addtask(s, task_type_send, task_subtype_tend,
                               ci->mpi.tag, 0, ci, cj);

      /* The super-cell's timestep task should unlock the send_ti task. */
      scheduler_addunlock(s, ci->super->timestep, t_ti);
    }

    /* Add them to the local cell. */
    engine_addlink(e, &ci->mpi.send_ti, t_ti);
  }

  /* Recurse? */
  if (ci->split)
    for (int k = 0; k < 8; k++)
      if (ci->progeny[k] != NULL)
        engine_addtasks_send_timestep(e, ci->progeny[k], cj, t_ti);

#else
  error("SWIFT was not compiled with MPI support.");
#endif
}

/**
 * @brief Add recv tasks for hydro pairs to a hierarchy of cells.
 *
 * @param e The #engine.
 * @param c The foreign #cell.
 * @param t_xv The recv_xv #task, if it has already been created.
 * @param t_rho The recv_rho #task, if it has already been created.
 * @param t_gradient The recv_gradient #task, if it has already been created.
 */
void engine_addtasks_recv_hydro(struct engine *e, struct cell *c,
                                struct task *t_xv, struct task *t_rho,
                                struct task *t_gradient) {

#ifdef WITH_MPI
  struct scheduler *s = &e->sched;

  /* Have we reached a level where there are any hydro tasks ? */
  if (t_xv == NULL && c->hydro.density != NULL) {

#ifdef SWIFT_DEBUG_CHECKS
    /* Make sure this cell has a valid tag. */
    if (c->mpi.tag < 0) error("Trying to receive from untagged cell.");
#endif  // SWIFT_DEBUG_CHECKS

    /* Create the tasks. */
    t_xv = scheduler_addtask(s, task_type_recv, task_subtype_xv, c->mpi.tag, 0,
                             c, NULL);
    t_rho = scheduler_addtask(s, task_type_recv, task_subtype_rho, c->mpi.tag,
                              0, c, NULL);
#ifdef EXTRA_HYDRO_LOOP
    t_gradient = scheduler_addtask(s, task_type_recv, task_subtype_gradient,
                                   c->mpi.tag, 0, c, NULL);
#endif
  }

  c->mpi.hydro.recv_xv = t_xv;
  c->mpi.hydro.recv_rho = t_rho;
  c->mpi.hydro.recv_gradient = t_gradient;

  /* Add dependencies. */
  if (c->hydro.sorts != NULL) scheduler_addunlock(s, t_xv, c->hydro.sorts);

  for (struct link *l = c->hydro.density; l != NULL; l = l->next) {
    scheduler_addunlock(s, t_xv, l->t);
    scheduler_addunlock(s, l->t, t_rho);
  }
#ifdef EXTRA_HYDRO_LOOP
  for (struct link *l = c->hydro.gradient; l != NULL; l = l->next) {
    scheduler_addunlock(s, t_rho, l->t);
    scheduler_addunlock(s, l->t, t_gradient);
  }
  for (struct link *l = c->hydro.force; l != NULL; l = l->next)
    scheduler_addunlock(s, t_gradient, l->t);
#else
  for (struct link *l = c->hydro.force; l != NULL; l = l->next)
    scheduler_addunlock(s, t_rho, l->t);
#endif

  /* Recurse? */
  if (c->split)
    for (int k = 0; k < 8; k++)
      if (c->progeny[k] != NULL)
        engine_addtasks_recv_hydro(e, c->progeny[k], t_xv, t_rho, t_gradient);

#else
  error("SWIFT was not compiled with MPI support.");
#endif
}

/**
 * @brief Add recv tasks for gravity pairs to a hierarchy of cells.
 *
 * @param e The #engine.
 * @param c The foreign #cell.
 * @param t_grav The recv_gpart #task, if it has already been created.
 */
void engine_addtasks_recv_gravity(struct engine *e, struct cell *c,
                                  struct task *t_grav) {

#ifdef WITH_MPI
  struct scheduler *s = &e->sched;

  /* Have we reached a level where there are any gravity tasks ? */
  if (t_grav == NULL && c->grav.grav != NULL) {
#ifdef SWIFT_DEBUG_CHECKS
    /* Make sure this cell has a valid tag. */
    if (c->mpi.tag < 0) error("Trying to receive from untagged cell.");
#endif  // SWIFT_DEBUG_CHECKS

    /* Create the tasks. */
    t_grav = scheduler_addtask(s, task_type_recv, task_subtype_gpart,
                               c->mpi.tag, 0, c, NULL);
  }

  c->mpi.grav.recv = t_grav;

  for (struct link *l = c->grav.grav; l != NULL; l = l->next)
    scheduler_addunlock(s, t_grav, l->t);

  /* Recurse? */
  if (c->split)
    for (int k = 0; k < 8; k++)
      if (c->progeny[k] != NULL)
        engine_addtasks_recv_gravity(e, c->progeny[k], t_grav);

#else
  error("SWIFT was not compiled with MPI support.");
#endif
}

/**
 * @brief Add recv tasks for gravity pairs to a hierarchy of cells.
 *
 * @param e The #engine.
 * @param c The foreign #cell.
 * @param t_ti The recv_ti #task, if already been created.
 */
void engine_addtasks_recv_timestep(struct engine *e, struct cell *c,
                                   struct task *t_ti) {

#ifdef WITH_MPI
  struct scheduler *s = &e->sched;

  /* Have we reached a level where there are any self/pair tasks ? */
  if (t_ti == NULL && (c->grav.grav != NULL || c->hydro.density != NULL)) {

#ifdef SWIFT_DEBUG_CHECKS
    /* Make sure this cell has a valid tag. */
    if (c->mpi.tag < 0) error("Trying to receive from untagged cell.");
#endif  // SWIFT_DEBUG_CHECKS

    t_ti = scheduler_addtask(s, task_type_recv, task_subtype_tend, c->mpi.tag,
                             0, c, NULL);
  }

  c->mpi.recv_ti = t_ti;

  for (struct link *l = c->grav.grav; l != NULL; l = l->next)
    scheduler_addunlock(s, l->t, t_ti);

  for (struct link *l = c->hydro.force; l != NULL; l = l->next)
    scheduler_addunlock(s, l->t, t_ti);

  /* Recurse? */
  if (c->split)
    for (int k = 0; k < 8; k++)
      if (c->progeny[k] != NULL)
        engine_addtasks_recv_timestep(e, c->progeny[k], t_ti);

#else
  error("SWIFT was not compiled with MPI support.");
#endif
}
/**
 * @brief Generate the hydro hierarchical tasks for a hierarchy of cells -
 * i.e. all the O(Npart) tasks -- timestep version
 *
 * Tasks are only created here. The dependencies will be added later on.
 *
 * Note that there is no need to recurse below the super-cell. Note also
 * that we only add tasks if the relevant particles are present in the cell.
 *
 * @param e The #engine.
 * @param c The #cell.
 */
void engine_make_hierarchical_tasks_common(struct engine *e, struct cell *c) {

  struct scheduler *s = &e->sched;
  const int is_with_cooling = (e->policy & engine_policy_cooling);
  const int is_with_star_formation = (e->policy & engine_policy_star_formation);

  /* Are we in a super-cell ? */
  if (c->super == c) {

    /* Local tasks only... */
    if (c->nodeID == e->nodeID) {

      /* Add the two half kicks */
      c->kick1 = scheduler_addtask(s, task_type_kick1, task_subtype_none, 0, 0,
                                   c, NULL);

#if defined(WITH_LOGGER)
      c->logger = scheduler_addtask(s, task_type_logger, task_subtype_none, 0,
                                    0, c, NULL);
#endif

      c->kick2 = scheduler_addtask(s, task_type_kick2, task_subtype_none, 0, 0,
                                   c, NULL);

      /* Add the time-step calculation task and its dependency */
      c->timestep = scheduler_addtask(s, task_type_timestep, task_subtype_none,
                                      0, 0, c, NULL);

      /* Add the task finishing the force calculation */
      c->end_force = scheduler_addtask(s, task_type_end_force,
                                       task_subtype_none, 0, 0, c, NULL);

      /* Subgrid tasks */
      if (is_with_cooling) {

        c->hydro.cooling = scheduler_addtask(s, task_type_cooling,
                                             task_subtype_none, 0, 0, c, NULL);

        scheduler_addunlock(s, c->end_force, c->hydro.cooling);
        scheduler_addunlock(s, c->hydro.cooling, c->kick2);

      } else {
        scheduler_addunlock(s, c->end_force, c->kick2);
      }

      if (is_with_star_formation) {

        c->hydro.star_formation = scheduler_addtask(
            s, task_type_star_formation, task_subtype_none, 0, 0, c, NULL);

        scheduler_addunlock(s, c->kick2, c->hydro.star_formation);
        scheduler_addunlock(s, c->hydro.star_formation, c->timestep);

      } else {
        scheduler_addunlock(s, c->kick2, c->timestep);
      }

      scheduler_addunlock(s, c->timestep, c->kick1);

#if defined(WITH_LOGGER)
      scheduler_addunlock(s, c->kick1, c->logger);
#endif
    }
  } else { /* We are above the super-cell so need to go deeper */

    /* Recurse. */
    if (c->split)
      for (int k = 0; k < 8; k++)
        if (c->progeny[k] != NULL)
          engine_make_hierarchical_tasks_common(e, c->progeny[k]);
  }
}

/**
 * @brief Generate the hydro hierarchical tasks for a hierarchy of cells -
 * i.e. all the O(Npart) tasks -- gravity version
 *
 * Tasks are only created here. The dependencies will be added later on.
 *
 * Note that there is no need to recurse below the super-cell. Note also
 * that we only add tasks if the relevant particles are present in the cell.
 *
 * @param e The #engine.
 * @param c The #cell.
 */
void engine_make_hierarchical_tasks_gravity(struct engine *e, struct cell *c) {

  struct scheduler *s = &e->sched;
  const int periodic = e->s->periodic;
  const int is_self_gravity = (e->policy & engine_policy_self_gravity);

  /* Are we in a super-cell ? */
  if (c->grav.super == c) {

    /* Local tasks only... */
    if (c->nodeID == e->nodeID) {

      c->grav.drift = scheduler_addtask(s, task_type_drift_gpart,
                                        task_subtype_none, 0, 0, c, NULL);

      if (is_self_gravity) {

        /* Initialisation of the multipoles */
        c->grav.init = scheduler_addtask(s, task_type_init_grav,
                                         task_subtype_none, 0, 0, c, NULL);

        /* Gravity non-neighbouring pm calculations */
        c->grav.long_range = scheduler_addtask(
            s, task_type_grav_long_range, task_subtype_none, 0, 0, c, NULL);

        /* Gravity recursive down-pass */
        c->grav.down = scheduler_addtask(s, task_type_grav_down,
                                         task_subtype_none, 0, 0, c, NULL);

        /* Implicit tasks for the up and down passes */
        c->grav.drift_out = scheduler_addtask(s, task_type_drift_gpart_out,
                                              task_subtype_none, 0, 1, c, NULL);
        c->grav.init_out = scheduler_addtask(s, task_type_init_grav_out,
                                             task_subtype_none, 0, 1, c, NULL);
        c->grav.down_in = scheduler_addtask(s, task_type_grav_down_in,
                                            task_subtype_none, 0, 1, c, NULL);

        /* Gravity mesh force propagation */
        if (periodic)
          c->grav.mesh = scheduler_addtask(s, task_type_grav_mesh,
                                           task_subtype_none, 0, 0, c, NULL);

        if (periodic) scheduler_addunlock(s, c->grav.drift, c->grav.mesh);
        if (periodic) scheduler_addunlock(s, c->grav.mesh, c->grav.down);
        scheduler_addunlock(s, c->grav.init, c->grav.long_range);
        scheduler_addunlock(s, c->grav.long_range, c->grav.down);
        scheduler_addunlock(s, c->grav.down, c->super->end_force);

        /* Link in the implicit tasks */
        scheduler_addunlock(s, c->grav.init, c->grav.init_out);
        scheduler_addunlock(s, c->grav.drift, c->grav.drift_out);
        scheduler_addunlock(s, c->grav.down_in, c->grav.down);
      }
    }
  }

  /* We are below the super-cell but not below the maximal splitting depth */
  else if ((c->grav.super != NULL) &&
           ((c->maxdepth - c->depth) >= space_subdepth_diff_grav)) {

    /* Local tasks only... */
    if (c->nodeID == e->nodeID) {

      if (is_self_gravity) {

        c->grav.drift_out = scheduler_addtask(s, task_type_drift_gpart_out,
                                              task_subtype_none, 0, 1, c, NULL);

        c->grav.init_out = scheduler_addtask(s, task_type_init_grav_out,
                                             task_subtype_none, 0, 1, c, NULL);

        c->grav.down_in = scheduler_addtask(s, task_type_grav_down_in,
                                            task_subtype_none, 0, 1, c, NULL);

        scheduler_addunlock(s, c->parent->grav.init_out, c->grav.init_out);
        scheduler_addunlock(s, c->parent->grav.drift_out, c->grav.drift_out);
        scheduler_addunlock(s, c->grav.down_in, c->parent->grav.down_in);
      }
    }
  }

  /* Recurse but not below the maximal splitting depth */
  if (c->split && ((c->maxdepth - c->depth) >= space_subdepth_diff_grav))
    for (int k = 0; k < 8; k++)
      if (c->progeny[k] != NULL)
        engine_make_hierarchical_tasks_gravity(e, c->progeny[k]);
}

/**
 * @brief Recursively add non-implicit star ghost tasks to a cell hierarchy.
 */
void engine_add_stars_ghosts(struct engine *e, struct cell *c,
                             struct task *stars_ghost_in,
                             struct task *stars_ghost_out) {

  /* If we have reached the leaf OR have to few particles to play with*/
  if (!c->split || c->stars.count < engine_max_sparts_per_ghost) {

    /* Add the ghost task and its dependencies */
    struct scheduler *s = &e->sched;
    c->stars.ghost = scheduler_addtask(s, task_type_stars_ghost,
                                       task_subtype_none, 0, 0, c, NULL);
    scheduler_addunlock(s, stars_ghost_in, c->stars.ghost);
    scheduler_addunlock(s, c->stars.ghost, stars_ghost_out);
  } else {
    /* Keep recursing */
    for (int k = 0; k < 8; k++)
      if (c->progeny[k] != NULL)
        engine_add_stars_ghosts(e, c->progeny[k], stars_ghost_in,
                                stars_ghost_out);
  }
}
/**
 * @brief Recursively add non-implicit ghost tasks to a cell hierarchy.
 */
void engine_add_ghosts(struct engine *e, struct cell *c, struct task *ghost_in,
                       struct task *ghost_out) {

  /* If we have reached the leaf OR have to few particles to play with*/
  if (!c->split || c->hydro.count < engine_max_parts_per_ghost) {

    /* Add the ghost task and its dependencies */
    struct scheduler *s = &e->sched;
    c->hydro.ghost =
        scheduler_addtask(s, task_type_ghost, task_subtype_none, 0, 0, c, NULL);
    scheduler_addunlock(s, ghost_in, c->hydro.ghost);
    scheduler_addunlock(s, c->hydro.ghost, ghost_out);
  } else {
    /* Keep recursing */
    for (int k = 0; k < 8; k++)
      if (c->progeny[k] != NULL)
        engine_add_ghosts(e, c->progeny[k], ghost_in, ghost_out);
  }
}

/**
 * @brief Generate the hydro hierarchical tasks for a hierarchy of cells -
 * i.e. all the O(Npart) tasks -- hydro version
 *
 * Tasks are only created here. The dependencies will be added later on.
 *
 * Note that there is no need to recurse below the super-cell. Note also
 * that we only add tasks if the relevant particles are present in the cell.
 *
 * @param e The #engine.
 * @param c The #cell.
 */
void engine_make_hierarchical_tasks_hydro(struct engine *e, struct cell *c) {

  struct scheduler *s = &e->sched;
  const int is_with_sourceterms = (e->policy & engine_policy_sourceterms);

  /* Are we in a super-cell ? */
  if (c->hydro.super == c) {

    /* Add the sort task. */
    c->hydro.sorts =
        scheduler_addtask(s, task_type_sort, task_subtype_none, 0, 0, c, NULL);

    /* Local tasks only... */
    if (c->nodeID == e->nodeID) {

      /* Add the drift task. */
      c->hydro.drift = scheduler_addtask(s, task_type_drift_part,
                                         task_subtype_none, 0, 0, c, NULL);

      /* Generate the ghost tasks. */
      c->hydro.ghost_in =
          scheduler_addtask(s, task_type_ghost_in, task_subtype_none, 0,
                            /* implicit = */ 1, c, NULL);
      c->hydro.ghost_out =
          scheduler_addtask(s, task_type_ghost_out, task_subtype_none, 0,
                            /* implicit = */ 1, c, NULL);
      engine_add_ghosts(e, c, c->hydro.ghost_in, c->hydro.ghost_out);

#ifdef EXTRA_HYDRO_LOOP
      /* Generate the extra ghost task. */
      c->hydro.extra_ghost = scheduler_addtask(
          s, task_type_extra_ghost, task_subtype_none, 0, 0, c, NULL);
#endif

      /* add source terms */
      if (is_with_sourceterms) {
        c->sourceterms = scheduler_addtask(s, task_type_sourceterms,
                                           task_subtype_none, 0, 0, c, NULL);
      }
    }

  } else { /* We are above the super-cell so need to go deeper */

    /* Recurse. */
    if (c->split)
      for (int k = 0; k < 8; k++)
        if (c->progeny[k] != NULL)
          engine_make_hierarchical_tasks_hydro(e, c->progeny[k]);
  }
}

/**
 * @brief Generate the stars hierarchical tasks for a hierarchy of cells -
 * i.e. all the O(Npart) tasks -- star version
 *
 * Tasks are only created here. The dependencies will be added later on.
 *
 * Note that there is no need to recurse below the super-cell. Note also
 * that we only add tasks if the relevant particles are present in the cell.
 *
 * @param e The #engine.
 * @param c The #cell.
 */
void engine_make_hierarchical_tasks_stars(struct engine *e, struct cell *c) {

  struct scheduler *s = &e->sched;

  /* Are we in a super-cell ? */
  if (c->super == c) {

    /* Local tasks only... */
    if (c->nodeID == e->nodeID) {

      /* Generate the ghost tasks. */
      c->stars.ghost_in =
          scheduler_addtask(s, task_type_stars_ghost_in, task_subtype_none, 0,
                            /* implicit = */ 1, c, NULL);
      c->stars.ghost_out =
          scheduler_addtask(s, task_type_stars_ghost_out, task_subtype_none, 0,
                            /* implicit = */ 1, c, NULL);
      engine_add_stars_ghosts(e, c, c->stars.ghost_in, c->stars.ghost_out);
    }
  } else { /* We are above the super-cell so need to go deeper */

    /* Recurse. */
    if (c->split)
      for (int k = 0; k < 8; k++)
        if (c->progeny[k] != NULL)
          engine_make_hierarchical_tasks_stars(e, c->progeny[k]);
  }
}

/**
 * @brief Constructs the top-level tasks for the short-range gravity
 * and long-range gravity interactions.
 *
 * - All top-cells get a self task.
 * - All pairs within range according to the multipole acceptance
 *   criterion get a pair task.
 */
void engine_make_self_gravity_tasks_mapper(void *map_data, int num_elements,
                                           void *extra_data) {

  struct engine *e = ((struct engine **)extra_data)[0];
  struct space *s = e->s;
  struct scheduler *sched = &e->sched;
  const int nodeID = e->nodeID;
  const int periodic = s->periodic;
  const double dim[3] = {s->dim[0], s->dim[1], s->dim[2]};
  const int cdim[3] = {s->cdim[0], s->cdim[1], s->cdim[2]};
  struct cell *cells = s->cells_top;
  const double theta_crit = e->gravity_properties->theta_crit;
  const double max_distance = e->mesh->r_cut_max;

  /* Compute how many cells away we need to walk */
  const double distance = 2.5 * cells[0].width[0] / theta_crit;
  int delta = (int)(distance / cells[0].width[0]) + 1;
  int delta_m = delta;
  int delta_p = delta;

  /* Special case where every cell is in range of every other one */
  if (delta >= cdim[0] / 2) {
    if (cdim[0] % 2 == 0) {
      delta_m = cdim[0] / 2;
      delta_p = cdim[0] / 2 - 1;
    } else {
      delta_m = cdim[0] / 2;
      delta_p = cdim[0] / 2;
    }
  }

  /* Loop through the elements, which are just byte offsets from NULL. */
  for (int ind = 0; ind < num_elements; ind++) {

    /* Get the cell index. */
    const int cid = (size_t)(map_data) + ind;

    /* Integer indices of the cell in the top-level grid */
    const int i = cid / (cdim[1] * cdim[2]);
    const int j = (cid / cdim[2]) % cdim[1];
    const int k = cid % cdim[2];

    /* Get the cell */
    struct cell *ci = &cells[cid];

    /* Skip cells without gravity particles */
    if (ci->grav.count == 0) continue;

    /* Is that cell local ? */
    if (ci->nodeID != nodeID) continue;

    /* If the cells is local build a self-interaction */
    scheduler_addtask(sched, task_type_self, task_subtype_grav, 0, 0, ci, NULL);

    /* Recover the multipole information */
    const struct gravity_tensors *const multi_i = ci->grav.multipole;
    const double CoM_i[3] = {multi_i->CoM[0], multi_i->CoM[1], multi_i->CoM[2]};

#ifdef SWIFT_DEBUG_CHECKS
    if (cell_getid(cdim, i, j, k) != cid)
      error("Incorrect calculation of indices (i,j,k)=(%d,%d,%d) cid=%d", i, j,
            k, cid);

    if (multi_i->r_max != multi_i->r_max_rebuild)
      error(
          "Multipole size not equal ot it's size after rebuild. But we just "
          "rebuilt...");
#endif

    /* Loop over every other cell within (Manhattan) range delta */
    for (int x = -delta_m; x <= delta_p; x++) {
      int ii = i + x;
      if (ii >= cdim[0])
        ii -= cdim[0];
      else if (ii < 0)
        ii += cdim[0];
      for (int y = -delta_m; y <= delta_p; y++) {
        int jj = j + y;
        if (jj >= cdim[1])
          jj -= cdim[1];
        else if (jj < 0)
          jj += cdim[1];
        for (int z = -delta_m; z <= delta_p; z++) {
          int kk = k + z;
          if (kk >= cdim[2])
            kk -= cdim[2];
          else if (kk < 0)
            kk += cdim[2];

          /* Get the cell */
          const int cjd = cell_getid(cdim, ii, jj, kk);
          struct cell *cj = &cells[cjd];

#ifdef SWIFT_DEBUG_CHECKS
          const int iii = cjd / (cdim[1] * cdim[2]);
          const int jjj = (cjd / cdim[2]) % cdim[1];
          const int kkk = cjd % cdim[2];

          if (ii != iii || jj != jjj || kk != kkk)
            error(
                "Incorrect calculation of indices (iii,jjj,kkk)=(%d,%d,%d) "
                "cjd=%d",
                iii, jjj, kkk, cjd);
#endif

          /* Avoid duplicates of local pairs*/
          if (cid <= cjd && cj->nodeID == nodeID) continue;

          /* Skip cells without gravity particles */
          if (cj->grav.count == 0) continue;

          /* Recover the multipole information */
          const struct gravity_tensors *const multi_j = cj->grav.multipole;

          /* Get the distance between the CoMs */
          double dx = CoM_i[0] - multi_j->CoM[0];
          double dy = CoM_i[1] - multi_j->CoM[1];
          double dz = CoM_i[2] - multi_j->CoM[2];

          /* Apply BC */
          if (periodic) {
            dx = nearest(dx, dim[0]);
            dy = nearest(dy, dim[1]);
            dz = nearest(dz, dim[2]);
          }
          const double r2 = dx * dx + dy * dy + dz * dz;

          /* Minimal distance between any pair of particles */
          const double min_radius =
              sqrt(r2) - (multi_i->r_max + multi_j->r_max);

          /* Are we beyond the distance where the truncated forces are 0 ?*/
          if (periodic && min_radius > max_distance) continue;

          /* Are the cells too close for a MM interaction ? */
          if (!cell_can_use_pair_mm_rebuild(ci, cj, e, s)) {

            /* Ok, we need to add a direct pair calculation */
            scheduler_addtask(sched, task_type_pair, task_subtype_grav, 0, 0,
                              ci, cj);
          }
        }
      }
    }
  }
}

void engine_make_hierarchical_tasks_mapper(void *map_data, int num_elements,
                                           void *extra_data) {
  struct engine *e = (struct engine *)extra_data;
  const int is_with_hydro = (e->policy & engine_policy_hydro);
  const int is_with_self_gravity = (e->policy & engine_policy_self_gravity);
  const int is_with_external_gravity =
      (e->policy & engine_policy_external_gravity);
  const int is_with_feedback = (e->policy & engine_policy_feedback);

  for (int ind = 0; ind < num_elements; ind++) {
    struct cell *c = &((struct cell *)map_data)[ind];
    /* Make the common tasks (time integration) */
    engine_make_hierarchical_tasks_common(e, c);
    /* Add the hydro stuff */
    if (is_with_hydro) engine_make_hierarchical_tasks_hydro(e, c);
    /* And the gravity stuff */
    if (is_with_self_gravity || is_with_external_gravity)
      engine_make_hierarchical_tasks_gravity(e, c);
    if (is_with_feedback) engine_make_hierarchical_tasks_stars(e, c);
  }
}

/**
 * @brief Constructs the top-level tasks for the short-range gravity
 * interactions (master function).
 *
 * - Create the FFT task and the array of gravity ghosts.
 * - Call the mapper function to create the other tasks.
 *
 * @param e The #engine.
 */
void engine_make_self_gravity_tasks(struct engine *e) {

  struct space *s = e->s;
  struct task **ghosts = NULL;

  /* Create the multipole self and pair tasks. */
  void *extra_data[2] = {e, ghosts};
  threadpool_map(&e->threadpool, engine_make_self_gravity_tasks_mapper, NULL,
                 s->nr_cells, 1, 0, extra_data);
}

/**
 * @brief Constructs the top-level tasks for the external gravity.
 *
 * @param e The #engine.
 */
void engine_make_external_gravity_tasks(struct engine *e) {

  struct space *s = e->s;
  struct scheduler *sched = &e->sched;
  const int nodeID = e->nodeID;
  struct cell *cells = s->cells_top;
  const int nr_cells = s->nr_cells;

  for (int cid = 0; cid < nr_cells; ++cid) {

    struct cell *ci = &cells[cid];

    /* Skip cells without gravity particles */
    if (ci->grav.count == 0) continue;

    /* Is that neighbour local ? */
    if (ci->nodeID != nodeID) continue;

    /* If the cell is local, build a self-interaction */
    scheduler_addtask(sched, task_type_self, task_subtype_external_grav, 0, 0,
                      ci, NULL);
  }
}

/**
 * @brief Counts the tasks associated with one cell and constructs the links
 *
 * For each hydrodynamic and gravity task, construct the links with
 * the corresponding cell.  Similarly, construct the dependencies for
 * all the sorting tasks.
 */
void engine_count_and_link_tasks_mapper(void *map_data, int num_elements,
                                        void *extra_data) {

  struct engine *e = (struct engine *)extra_data;
  struct scheduler *const sched = &e->sched;

  for (int ind = 0; ind < num_elements; ind++) {
    struct task *t = &((struct task *)map_data)[ind];

    struct cell *ci = t->ci;
    struct cell *cj = t->cj;
    const enum task_types t_type = t->type;
    const enum task_subtypes t_subtype = t->subtype;

    /* Link sort tasks to all the higher sort task. */
    if (t_type == task_type_sort) {
      for (struct cell *finger = t->ci->parent; finger != NULL;
           finger = finger->parent)
        if (finger->hydro.sorts != NULL)
          scheduler_addunlock(sched, t, finger->hydro.sorts);
    }

    /* Link self tasks to cells. */
    else if (t_type == task_type_self) {
      atomic_inc(&ci->nr_tasks);

      if (t_subtype == task_subtype_density) {
        engine_addlink(e, &ci->hydro.density, t);
      } else if (t_subtype == task_subtype_grav) {
        engine_addlink(e, &ci->grav.grav, t);
      } else if (t_subtype == task_subtype_external_grav) {
        engine_addlink(e, &ci->grav.grav, t);
      } else if (t->subtype == task_subtype_stars_density) {
        engine_addlink(e, &ci->stars.density, t);
      }

      /* Link pair tasks to cells. */
    } else if (t_type == task_type_pair) {
      atomic_inc(&ci->nr_tasks);
      atomic_inc(&cj->nr_tasks);

      if (t_subtype == task_subtype_density) {
        engine_addlink(e, &ci->hydro.density, t);
        engine_addlink(e, &cj->hydro.density, t);
      } else if (t_subtype == task_subtype_grav) {
        engine_addlink(e, &ci->grav.grav, t);
        engine_addlink(e, &cj->grav.grav, t);
      } else if (t->subtype == task_subtype_stars_density) {
        engine_addlink(e, &ci->stars.density, t);
        engine_addlink(e, &cj->stars.density, t);
      }
#ifdef SWIFT_DEBUG_CHECKS
      else if (t_subtype == task_subtype_external_grav) {
        error("Found a pair/external-gravity task...");
      }
#endif

      /* Link sub-self tasks to cells. */
    } else if (t_type == task_type_sub_self) {
      atomic_inc(&ci->nr_tasks);

      if (t_subtype == task_subtype_density) {
        engine_addlink(e, &ci->hydro.density, t);
      } else if (t_subtype == task_subtype_grav) {
        engine_addlink(e, &ci->grav.grav, t);
      } else if (t_subtype == task_subtype_external_grav) {
        engine_addlink(e, &ci->grav.grav, t);
      } else if (t->subtype == task_subtype_stars_density) {
        engine_addlink(e, &ci->stars.density, t);
      }

      /* Link sub-pair tasks to cells. */
    } else if (t_type == task_type_sub_pair) {
      atomic_inc(&ci->nr_tasks);
      atomic_inc(&cj->nr_tasks);

      if (t_subtype == task_subtype_density) {
        engine_addlink(e, &ci->hydro.density, t);
        engine_addlink(e, &cj->hydro.density, t);
      } else if (t_subtype == task_subtype_grav) {
        engine_addlink(e, &ci->grav.grav, t);
        engine_addlink(e, &cj->grav.grav, t);
      } else if (t->subtype == task_subtype_stars_density) {
        engine_addlink(e, &ci->stars.density, t);
        engine_addlink(e, &cj->stars.density, t);
      }
#ifdef SWIFT_DEBUG_CHECKS
      else if (t_subtype == task_subtype_external_grav) {
        error("Found a sub-pair/external-gravity task...");
      }
#endif

      /* Multipole-multipole interaction of progenies */
    } else if (t_type == task_type_grav_mm) {

      atomic_inc(&ci->grav.nr_mm_tasks);
      atomic_inc(&cj->grav.nr_mm_tasks);
      engine_addlink(e, &ci->grav.mm, t);
      engine_addlink(e, &cj->grav.mm, t);
    }
  }
}

/**
 * @brief Creates all the task dependencies for the gravity
 *
 * @param e The #engine
 */
void engine_link_gravity_tasks(struct engine *e) {

  struct scheduler *sched = &e->sched;
  const int nodeID = e->nodeID;
  const int nr_tasks = sched->nr_tasks;

  for (int k = 0; k < nr_tasks; k++) {

    /* Get a pointer to the task. */
    struct task *t = &sched->tasks[k];

    if (t->type == task_type_none) continue;

    /* Get the cells we act on */
    struct cell *ci = t->ci;
    struct cell *cj = t->cj;
    const enum task_types t_type = t->type;
    const enum task_subtypes t_subtype = t->subtype;

    struct cell *ci_parent = (ci->parent != NULL) ? ci->parent : ci;
    struct cell *cj_parent =
        (cj != NULL && cj->parent != NULL) ? cj->parent : cj;

/* Node ID (if running with MPI) */
#ifdef WITH_MPI
    const int ci_nodeID = ci->nodeID;
    const int cj_nodeID = (cj != NULL) ? cj->nodeID : -1;
#else
    const int ci_nodeID = nodeID;
    const int cj_nodeID = nodeID;
#endif

    /* Self-interaction for self-gravity? */
    if (t_type == task_type_self && t_subtype == task_subtype_grav) {

#ifdef SWIFT_DEBUG_CHECKS
      if (ci_nodeID != nodeID) error("Non-local self task");
#endif

      /* drift ---+-> gravity --> grav_down */
      /* init  --/    */
      scheduler_addunlock(sched, ci_parent->grav.drift_out, t);
      scheduler_addunlock(sched, ci_parent->grav.init_out, t);
      scheduler_addunlock(sched, t, ci_parent->grav.down_in);
    }

    /* Self-interaction for external gravity ? */
    if (t_type == task_type_self && t_subtype == task_subtype_external_grav) {

#ifdef SWIFT_DEBUG_CHECKS
      if (ci_nodeID != nodeID) error("Non-local self task");
#endif

      /* drift -----> gravity --> end_force */
      scheduler_addunlock(sched, ci->grav.super->grav.drift, t);
      scheduler_addunlock(sched, t, ci->super->end_force);
    }

    /* Otherwise, pair interaction? */
    else if (t_type == task_type_pair && t_subtype == task_subtype_grav) {

      if (ci_nodeID == nodeID) {

        /* drift ---+-> gravity --> grav_down */
        /* init  --/    */
        scheduler_addunlock(sched, ci_parent->grav.drift_out, t);
        scheduler_addunlock(sched, ci_parent->grav.init_out, t);
        scheduler_addunlock(sched, t, ci_parent->grav.down_in);
      }
      if (cj_nodeID == nodeID) {

        /* drift ---+-> gravity --> grav_down */
        /* init  --/    */
        if (ci_parent != cj_parent) { /* Avoid double unlock */
          scheduler_addunlock(sched, cj_parent->grav.drift_out, t);
          scheduler_addunlock(sched, cj_parent->grav.init_out, t);
          scheduler_addunlock(sched, t, cj_parent->grav.down_in);
        }
      }
    }

    /* Otherwise, sub-self interaction? */
    else if (t_type == task_type_sub_self && t_subtype == task_subtype_grav) {

#ifdef SWIFT_DEBUG_CHECKS
      if (ci_nodeID != nodeID) error("Non-local sub-self task");
#endif
      /* drift ---+-> gravity --> grav_down */
      /* init  --/    */
      scheduler_addunlock(sched, ci_parent->grav.drift_out, t);
      scheduler_addunlock(sched, ci_parent->grav.init_out, t);
      scheduler_addunlock(sched, t, ci_parent->grav.down_in);
    }

    /* Sub-self-interaction for external gravity ? */
    else if (t_type == task_type_sub_self &&
             t_subtype == task_subtype_external_grav) {

#ifdef SWIFT_DEBUG_CHECKS
      if (ci_nodeID != nodeID) error("Non-local sub-self task");
#endif

      /* drift -----> gravity --> end_force */
      scheduler_addunlock(sched, ci->grav.super->grav.drift, t);
      scheduler_addunlock(sched, t, ci->super->end_force);
    }

    /* Otherwise, sub-pair interaction? */
    else if (t_type == task_type_sub_pair && t_subtype == task_subtype_grav) {

      if (ci_nodeID == nodeID) {

        /* drift ---+-> gravity --> grav_down */
        /* init  --/    */
        scheduler_addunlock(sched, ci_parent->grav.drift_out, t);
        scheduler_addunlock(sched, ci_parent->grav.init_out, t);
        scheduler_addunlock(sched, t, ci_parent->grav.down_in);
      }
      if (cj_nodeID == nodeID) {

        /* drift ---+-> gravity --> grav_down */
        /* init  --/    */
        if (ci_parent != cj_parent) { /* Avoid double unlock */
          scheduler_addunlock(sched, cj_parent->grav.drift_out, t);
          scheduler_addunlock(sched, cj_parent->grav.init_out, t);
          scheduler_addunlock(sched, t, cj_parent->grav.down_in);
        }
      }
    }

    /* Otherwise M-M interaction? */
    else if (t_type == task_type_grav_mm) {

      if (ci_nodeID == nodeID) {

        /* init -----> gravity --> grav_down */
        scheduler_addunlock(sched, ci_parent->grav.init_out, t);
        scheduler_addunlock(sched, t, ci_parent->grav.down_in);
      }
      if (cj_nodeID == nodeID) {

        /* init -----> gravity --> grav_down */
        if (ci_parent != cj_parent) { /* Avoid double unlock */
          scheduler_addunlock(sched, cj_parent->grav.init_out, t);
          scheduler_addunlock(sched, t, cj_parent->grav.down_in);
        }
      }
    }
  }
}

#ifdef EXTRA_HYDRO_LOOP

/**
 * @brief Creates the dependency network for the hydro tasks of a given cell.
 *
 * @param sched The #scheduler.
 * @param density The density task to link.
 * @param gradient The gradient task to link.
 * @param force The force task to link.
 * @param c The cell.
 * @param with_cooling Do we have a cooling task ?
 */
static inline void engine_make_hydro_loops_dependencies(
    struct scheduler *sched, struct task *density, struct task *gradient,
    struct task *force, struct cell *c, int with_cooling) {

  /* density loop --> ghost --> gradient loop --> extra_ghost */
  /* extra_ghost --> force loop  */
  scheduler_addunlock(sched, density, c->hydro.super->hydro.ghost_in);
  scheduler_addunlock(sched, c->hydro.super->hydro.ghost_out, gradient);
  scheduler_addunlock(sched, gradient, c->hydro.super->hydro.extra_ghost);
  scheduler_addunlock(sched, c->hydro.super->hydro.extra_ghost, force);
}

#else

/**
 * @brief Creates the dependency network for the hydro tasks of a given cell.
 *
 * @param sched The #scheduler.
 * @param density The density task to link.
 * @param force The force task to link.
 * @param c The cell.
 * @param with_cooling Are we running with cooling switched on ?
 */
static inline void engine_make_hydro_loops_dependencies(struct scheduler *sched,
                                                        struct task *density,
                                                        struct task *force,
                                                        struct cell *c,
                                                        int with_cooling) {
  /* density loop --> ghost --> force loop */
  scheduler_addunlock(sched, density, c->hydro.super->hydro.ghost_in);
  scheduler_addunlock(sched, c->hydro.super->hydro.ghost_out, force);
}

#endif
/**
 * @brief Creates the dependency network for the stars tasks of a given cell.
 *
 * @param sched The #scheduler.
 * @param density The density task to link.
 * @param c The cell.
 */
static inline void engine_make_stars_loops_dependencies(struct scheduler *sched,
                                                        struct task *density,
                                                        struct cell *c) {
  /* density loop --> ghost */
  scheduler_addunlock(sched, density, c->super->stars.ghost_in);
}

/**
 * @brief Duplicates the first hydro loop and construct all the
 * dependencies for the hydro part
 *
 * This is done by looping over all the previously constructed tasks
 * and adding another task involving the same cells but this time
 * corresponding to the second hydro loop over neighbours.
 * With all the relevant tasks for a given cell available, we construct
 * all the dependencies for that cell.
 */
void engine_make_extra_hydroloop_tasks_mapper(void *map_data, int num_elements,
                                              void *extra_data) {

  struct engine *e = (struct engine *)extra_data;
  struct scheduler *sched = &e->sched;
  const int nodeID = e->nodeID;
  const int with_cooling = (e->policy & engine_policy_cooling);

  for (int ind = 0; ind < num_elements; ind++) {
    struct task *t = &((struct task *)map_data)[ind];
    /* Sort tasks depend on the drift of the cell. */
    if (t->type == task_type_sort && t->ci->nodeID == engine_rank) {
      scheduler_addunlock(sched, t->ci->hydro.super->hydro.drift, t);
    }

    /* Self-interaction? */
    else if (t->type == task_type_self && t->subtype == task_subtype_density) {

      /* Make the self-density tasks depend on the drift only. */
      scheduler_addunlock(sched, t->ci->hydro.super->hydro.drift, t);

#ifdef EXTRA_HYDRO_LOOP
      /* Start by constructing the task for the second  and third hydro loop. */
      struct task *t2 = scheduler_addtask(
          sched, task_type_self, task_subtype_gradient, 0, 0, t->ci, NULL);
      struct task *t3 = scheduler_addtask(
          sched, task_type_self, task_subtype_force, 0, 0, t->ci, NULL);

      /* Add the link between the new loops and the cell */
      engine_addlink(e, &t->ci->hydro.gradient, t2);
      engine_addlink(e, &t->ci->hydro.force, t3);

      /* Now, build all the dependencies for the hydro */
      engine_make_hydro_loops_dependencies(sched, t, t2, t3, t->ci,
                                           with_cooling);
      scheduler_addunlock(sched, t3, t->ci->super->end_force);
#else

      /* Start by constructing the task for the second hydro loop */
      struct task *t2 = scheduler_addtask(
          sched, task_type_self, task_subtype_force, 0, 0, t->ci, NULL);

      /* Add the link between the new loop and the cell */
      engine_addlink(e, &t->ci->hydro.force, t2);

      /* Now, build all the dependencies for the hydro */
      engine_make_hydro_loops_dependencies(sched, t, t2, t->ci, with_cooling);
      scheduler_addunlock(sched, t2, t->ci->super->end_force);
#endif
    }

    /* Otherwise, pair interaction? */
    else if (t->type == task_type_pair && t->subtype == task_subtype_density) {

      /* Make all density tasks depend on the drift and the sorts. */
      if (t->ci->nodeID == engine_rank)
        scheduler_addunlock(sched, t->ci->hydro.super->hydro.drift, t);
      scheduler_addunlock(sched, t->ci->hydro.super->hydro.sorts, t);
      if (t->ci->hydro.super != t->cj->hydro.super) {
        if (t->cj->nodeID == engine_rank)
          scheduler_addunlock(sched, t->cj->hydro.super->hydro.drift, t);
        scheduler_addunlock(sched, t->cj->hydro.super->hydro.sorts, t);
      }

#ifdef EXTRA_HYDRO_LOOP
      /* Start by constructing the task for the second and third hydro loop */
      struct task *t2 = scheduler_addtask(
          sched, task_type_pair, task_subtype_gradient, 0, 0, t->ci, t->cj);
      struct task *t3 = scheduler_addtask(
          sched, task_type_pair, task_subtype_force, 0, 0, t->ci, t->cj);

      /* Add the link between the new loop and both cells */
      engine_addlink(e, &t->ci->hydro.gradient, t2);
      engine_addlink(e, &t->cj->hydro.gradient, t2);
      engine_addlink(e, &t->ci->hydro.force, t3);
      engine_addlink(e, &t->cj->hydro.force, t3);

      /* Now, build all the dependencies for the hydro for the cells */
      /* that are local and are not descendant of the same super_hydro-cells */
      if (t->ci->nodeID == nodeID) {
        engine_make_hydro_loops_dependencies(sched, t, t2, t3, t->ci,
                                             with_cooling);
        scheduler_addunlock(sched, t3, t->ci->super->end_force);
      }
      if (t->cj->nodeID == nodeID) {
        if (t->ci->hydro.super != t->cj->hydro.super)
          engine_make_hydro_loops_dependencies(sched, t, t2, t3, t->cj,
                                               with_cooling);
        if (t->ci->super != t->cj->super)
          scheduler_addunlock(sched, t3, t->cj->super->end_force);
      }

#else

      /* Start by constructing the task for the second hydro loop */
      struct task *t2 = scheduler_addtask(
          sched, task_type_pair, task_subtype_force, 0, 0, t->ci, t->cj);

      /* Add the link between the new loop and both cells */
      engine_addlink(e, &t->ci->hydro.force, t2);
      engine_addlink(e, &t->cj->hydro.force, t2);

      /* Now, build all the dependencies for the hydro for the cells */
      /* that are local and are not descendant of the same super_hydro-cells */
      if (t->ci->nodeID == nodeID) {
        engine_make_hydro_loops_dependencies(sched, t, t2, t->ci, with_cooling);
        scheduler_addunlock(sched, t2, t->ci->super->end_force);
      }
      if (t->cj->nodeID == nodeID) {
        if (t->ci->hydro.super != t->cj->hydro.super)
          engine_make_hydro_loops_dependencies(sched, t, t2, t->cj,
                                               with_cooling);
        if (t->ci->super != t->cj->super)
          scheduler_addunlock(sched, t2, t->cj->super->end_force);
      }

#endif

    }

    /* Otherwise, sub-self interaction? */
    else if (t->type == task_type_sub_self &&
             t->subtype == task_subtype_density) {

      /* Make all density tasks depend on the drift and sorts. */
      scheduler_addunlock(sched, t->ci->hydro.super->hydro.drift, t);
      scheduler_addunlock(sched, t->ci->hydro.super->hydro.sorts, t);

#ifdef EXTRA_HYDRO_LOOP

      /* Start by constructing the task for the second and third hydro loop */
      struct task *t2 =
          scheduler_addtask(sched, task_type_sub_self, task_subtype_gradient,
                            t->flags, 0, t->ci, t->cj);
      struct task *t3 =
          scheduler_addtask(sched, task_type_sub_self, task_subtype_force,
                            t->flags, 0, t->ci, t->cj);

      /* Add the link between the new loop and the cell */
      engine_addlink(e, &t->ci->hydro.gradient, t2);
      engine_addlink(e, &t->ci->hydro.force, t3);

      /* Now, build all the dependencies for the hydro for the cells */
      /* that are local and are not descendant of the same super_hydro-cells */
      if (t->ci->nodeID == nodeID) {
        engine_make_hydro_loops_dependencies(sched, t, t2, t3, t->ci,
                                             with_cooling);
        scheduler_addunlock(sched, t3, t->ci->super->end_force);
      }
#else
      /* Start by constructing the task for the second hydro loop */
      struct task *t2 =
          scheduler_addtask(sched, task_type_sub_self, task_subtype_force,
                            t->flags, 0, t->ci, t->cj);

      /* Add the link between the new loop and the cell */
      engine_addlink(e, &t->ci->hydro.force, t2);

      /* Now, build all the dependencies for the hydro for the cells */
      /* that are local and are not descendant of the same super_hydro-cells */
      if (t->ci->nodeID == nodeID) {
        engine_make_hydro_loops_dependencies(sched, t, t2, t->ci, with_cooling);
        scheduler_addunlock(sched, t2, t->ci->super->end_force);
      }
#endif
    }

    /* Otherwise, sub-pair interaction? */
    else if (t->type == task_type_sub_pair &&
             t->subtype == task_subtype_density) {

      /* Make all density tasks depend on the drift. */
      if (t->ci->nodeID == engine_rank)
        scheduler_addunlock(sched, t->ci->hydro.super->hydro.drift, t);
      scheduler_addunlock(sched, t->ci->hydro.super->hydro.sorts, t);
      if (t->ci->hydro.super != t->cj->hydro.super) {
        if (t->cj->nodeID == engine_rank)
          scheduler_addunlock(sched, t->cj->hydro.super->hydro.drift, t);
        scheduler_addunlock(sched, t->cj->hydro.super->hydro.sorts, t);
      }

#ifdef EXTRA_HYDRO_LOOP

      /* Start by constructing the task for the second and third hydro loop */
      struct task *t2 =
          scheduler_addtask(sched, task_type_sub_pair, task_subtype_gradient,
                            t->flags, 0, t->ci, t->cj);
      struct task *t3 =
          scheduler_addtask(sched, task_type_sub_pair, task_subtype_force,
                            t->flags, 0, t->ci, t->cj);

      /* Add the link between the new loop and both cells */
      engine_addlink(e, &t->ci->hydro.gradient, t2);
      engine_addlink(e, &t->cj->hydro.gradient, t2);
      engine_addlink(e, &t->ci->hydro.force, t3);
      engine_addlink(e, &t->cj->hydro.force, t3);

      /* Now, build all the dependencies for the hydro for the cells */
      /* that are local and are not descendant of the same super_hydro-cells */
      if (t->ci->nodeID == nodeID) {
        engine_make_hydro_loops_dependencies(sched, t, t2, t3, t->ci,
                                             with_cooling);
        scheduler_addunlock(sched, t3, t->ci->super->end_force);
      }
      if (t->cj->nodeID == nodeID) {
        if (t->ci->hydro.super != t->cj->hydro.super)
          engine_make_hydro_loops_dependencies(sched, t, t2, t3, t->cj,
                                               with_cooling);
        if (t->ci->super != t->cj->super)
          scheduler_addunlock(sched, t3, t->cj->super->end_force);
      }

#else
      /* Start by constructing the task for the second hydro loop */
      struct task *t2 =
          scheduler_addtask(sched, task_type_sub_pair, task_subtype_force,
                            t->flags, 0, t->ci, t->cj);

      /* Add the link between the new loop and both cells */
      engine_addlink(e, &t->ci->hydro.force, t2);
      engine_addlink(e, &t->cj->hydro.force, t2);

      /* Now, build all the dependencies for the hydro for the cells */
      /* that are local and are not descendant of the same super_hydro-cells */
      if (t->ci->nodeID == nodeID) {
        engine_make_hydro_loops_dependencies(sched, t, t2, t->ci, with_cooling);
        scheduler_addunlock(sched, t2, t->ci->super->end_force);
      }
      if (t->cj->nodeID == nodeID) {
        if (t->ci->hydro.super != t->cj->hydro.super)
          engine_make_hydro_loops_dependencies(sched, t, t2, t->cj,
                                               with_cooling);
        if (t->ci->super != t->cj->super)
          scheduler_addunlock(sched, t2, t->cj->super->end_force);
      }
#endif
    }
  }
}

/**
 * @brief Creates all the task dependencies for the stars
 *
 * @param map_data The tasks
 * @param num_elements number of tasks
 * @param extra_data The #engine
 */
void engine_link_stars_tasks_mapper(void *map_data, int num_elements,
                                    void *extra_data) {

  struct engine *e = (struct engine *)extra_data;
  struct scheduler *sched = &e->sched;
  const int nodeID = e->nodeID;

  for (int ind = 0; ind < num_elements; ind++) {
    struct task *t = &((struct task *)map_data)[ind];

    /* Self-interaction? */
    if (t->type == task_type_self && t->subtype == task_subtype_stars_density) {

      /* Make the self-density tasks depend on the drifts. */
      scheduler_addunlock(sched, t->ci->super->hydro.drift, t);

      scheduler_addunlock(sched, t->ci->super->grav.drift, t);

      /* Now, build all the dependencies for the stars */
      engine_make_stars_loops_dependencies(sched, t, t->ci);
      if (t->ci == t->ci->super)
        scheduler_addunlock(sched, t->ci->super->stars.ghost_out,
                            t->ci->super->end_force);
    }

    /* Otherwise, pair interaction? */
    else if (t->type == task_type_pair &&
             t->subtype == task_subtype_stars_density) {

      /* Make all density tasks depend on the drift and the sorts. */
      if (t->ci->nodeID == engine_rank)
        scheduler_addunlock(sched, t->ci->super->hydro.drift, t);
      scheduler_addunlock(sched, t->ci->super->hydro.sorts, t);
      if (t->ci->super != t->cj->super) {
        if (t->cj->nodeID == engine_rank)
          scheduler_addunlock(sched, t->cj->super->hydro.drift, t);
        scheduler_addunlock(sched, t->cj->super->hydro.sorts, t);
      }

      /* Now, build all the dependencies for the stars for the cells */
      /* that are local and are not descendant of the same super-cells */
      if (t->ci->nodeID == nodeID) {
        engine_make_stars_loops_dependencies(sched, t, t->ci);
      }
      if (t->cj->nodeID == nodeID) {
        if (t->ci->super != t->cj->super)
          engine_make_stars_loops_dependencies(sched, t, t->cj);
      }

    }

    /* Otherwise, sub-self interaction? */
    else if (t->type == task_type_sub_self &&
             t->subtype == task_subtype_stars_density) {

      /* Make all density tasks depend on the drift and sorts. */
      scheduler_addunlock(sched, t->ci->super->hydro.drift, t);
      scheduler_addunlock(sched, t->ci->super->hydro.sorts, t);

      /* Now, build all the dependencies for the stars for the cells */
      /* that are local and are not descendant of the same super-cells */
      if (t->ci->nodeID == nodeID) {
        engine_make_stars_loops_dependencies(sched, t, t->ci);
      } else
        error("oo");
    }

    /* Otherwise, sub-pair interaction? */
    else if (t->type == task_type_sub_pair &&
             t->subtype == task_subtype_stars_density) {

      /* Make all density tasks depend on the drift. */
      if (t->ci->nodeID == engine_rank)
        scheduler_addunlock(sched, t->ci->super->hydro.drift, t);
      scheduler_addunlock(sched, t->ci->super->hydro.sorts, t);
      if (t->ci->super != t->cj->super) {
        if (t->cj->nodeID == engine_rank)
          scheduler_addunlock(sched, t->cj->super->hydro.drift, t);
        scheduler_addunlock(sched, t->cj->super->hydro.sorts, t);
      }

      /* Now, build all the dependencies for the stars for the cells */
      /* that are local and are not descendant of the same super-cells */
      if (t->ci->nodeID == nodeID) {
        engine_make_stars_loops_dependencies(sched, t, t->ci);
      }
      if (t->cj->nodeID == nodeID) {
        if (t->ci->super != t->cj->super)
          engine_make_stars_loops_dependencies(sched, t, t->cj);
      }
    }
  }
}

/**
 * @brief Constructs the top-level pair tasks for the star loop over
 * neighbours
 *
 * Here we construct all the tasks for all possible neighbouring non-empty
 * local cells in the hierarchy. No dependencies are being added thus far.
 * Additional loop over neighbours can later be added by simply duplicating
 * all the tasks created by this function.
 *
 * @param map_data Offset of first two indices disguised as a pointer.
 * @param num_elements Number of cells to traverse.
 * @param extra_data The #engine.
 */
void engine_make_starsloop_tasks_mapper(void *map_data, int num_elements,
                                        void *extra_data) {

  /* Extract the engine pointer. */
  struct engine *e = (struct engine *)extra_data;

  struct space *s = e->s;
  struct scheduler *sched = &e->sched;
  const int nodeID = e->nodeID;
  const int *cdim = s->cdim;
  struct cell *cells = s->cells_top;

  /* Loop through the elements, which are just byte offsets from NULL. */
  for (int ind = 0; ind < num_elements; ind++) {

    /* Get the cell index. */
    const int cid = (size_t)(map_data) + ind;
    const int i = cid / (cdim[1] * cdim[2]);
    const int j = (cid / cdim[2]) % cdim[1];
    const int k = cid % cdim[2];

    /* Get the cell */
    struct cell *ci = &cells[cid];

    /* Skip cells without star particles */
    if (ci->stars.count == 0) continue;

    /* If the cells is local build a self-interaction */
    if (ci->nodeID == nodeID)
      scheduler_addtask(sched, task_type_self, task_subtype_stars_density, 0, 0,
                        ci, NULL);

    /* Now loop over all the neighbours of this cell */
    for (int ii = -1; ii < 2; ii++) {
      int iii = i + ii;
      if (!s->periodic && (iii < 0 || iii >= cdim[0])) continue;
      iii = (iii + cdim[0]) % cdim[0];
      for (int jj = -1; jj < 2; jj++) {
        int jjj = j + jj;
        if (!s->periodic && (jjj < 0 || jjj >= cdim[1])) continue;
        jjj = (jjj + cdim[1]) % cdim[1];
        for (int kk = -1; kk < 2; kk++) {
          int kkk = k + kk;
          if (!s->periodic && (kkk < 0 || kkk >= cdim[2])) continue;
          kkk = (kkk + cdim[2]) % cdim[2];

          /* Get the neighbouring cell */
          const int cjd = cell_getid(cdim, iii, jjj, kkk);
          struct cell *cj = &cells[cjd];

          /* Is that neighbour local and does it have particles ? */
          if (cid >= cjd || cj->hydro.count == 0 ||
              (ci->nodeID != nodeID && cj->nodeID != nodeID))
            continue;

          /* Construct the pair task */
          const int sid = sortlistID[(kk + 1) + 3 * ((jj + 1) + 3 * (ii + 1))];
          scheduler_addtask(sched, task_type_pair, task_subtype_stars_density,
                            sid, 0, ci, cj);
        }
      }
    }
  }
}

/**
 * @brief Constructs the top-level pair tasks for the first hydro loop over
 * neighbours
 *
 * Here we construct all the tasks for all possible neighbouring non-empty
 * local cells in the hierarchy. No dependencies are being added thus far.
 * Additional loop over neighbours can later be added by simply duplicating
 * all the tasks created by this function.
 *
 * @param map_data Offset of first two indices disguised as a pointer.
 * @param num_elements Number of cells to traverse.
 * @param extra_data The #engine.
 */
void engine_make_hydroloop_tasks_mapper(void *map_data, int num_elements,
                                        void *extra_data) {

  /* Extract the engine pointer. */
  struct engine *e = (struct engine *)extra_data;

  struct space *s = e->s;
  struct scheduler *sched = &e->sched;
  const int nodeID = e->nodeID;
  const int *cdim = s->cdim;
  struct cell *cells = s->cells_top;

  /* Loop through the elements, which are just byte offsets from NULL. */
  for (int ind = 0; ind < num_elements; ind++) {

    /* Get the cell index. */
    const int cid = (size_t)(map_data) + ind;
    const int i = cid / (cdim[1] * cdim[2]);
    const int j = (cid / cdim[2]) % cdim[1];
    const int k = cid % cdim[2];

    /* Get the cell */
    struct cell *ci = &cells[cid];

    /* Skip cells without hydro particles */
    if (ci->hydro.count == 0) continue;

    /* If the cells is local build a self-interaction */
    if (ci->nodeID == nodeID)
      scheduler_addtask(sched, task_type_self, task_subtype_density, 0, 0, ci,
                        NULL);

    /* Now loop over all the neighbours of this cell */
    for (int ii = -1; ii < 2; ii++) {
      int iii = i + ii;
      if (!s->periodic && (iii < 0 || iii >= cdim[0])) continue;
      iii = (iii + cdim[0]) % cdim[0];
      for (int jj = -1; jj < 2; jj++) {
        int jjj = j + jj;
        if (!s->periodic && (jjj < 0 || jjj >= cdim[1])) continue;
        jjj = (jjj + cdim[1]) % cdim[1];
        for (int kk = -1; kk < 2; kk++) {
          int kkk = k + kk;
          if (!s->periodic && (kkk < 0 || kkk >= cdim[2])) continue;
          kkk = (kkk + cdim[2]) % cdim[2];

          /* Get the neighbouring cell */
          const int cjd = cell_getid(cdim, iii, jjj, kkk);
          struct cell *cj = &cells[cjd];

          /* Is that neighbour local and does it have particles ? */
          if (cid >= cjd || cj->hydro.count == 0 ||
              (ci->nodeID != nodeID && cj->nodeID != nodeID))
            continue;

          /* Construct the pair task */
          const int sid = sortlistID[(kk + 1) + 3 * ((jj + 1) + 3 * (ii + 1))];
          scheduler_addtask(sched, task_type_pair, task_subtype_density, sid, 0,
                            ci, cj);
        }
      }
    }
  }
}

/**
 * @brief Fill the #space's task list.
 *
 * @param e The #engine we are working with.
 */
void engine_maketasks(struct engine *e) {

  struct space *s = e->s;
  struct scheduler *sched = &e->sched;
  struct cell *cells = s->cells_top;
  const int nr_cells = s->nr_cells;
  const ticks tic = getticks();

  /* Re-set the scheduler. */
  scheduler_reset(sched, engine_estimate_nr_tasks(e));

  ticks tic2 = getticks();

  /* Construct the first hydro loop over neighbours */
  if (e->policy & engine_policy_hydro)
    threadpool_map(&e->threadpool, engine_make_hydroloop_tasks_mapper, NULL,
                   s->nr_cells, 1, 0, e);

  if (e->verbose)
    message("Making hydro tasks took %.3f %s.",
            clocks_from_ticks(getticks() - tic2), clocks_getunit());

  tic2 = getticks();

  /* Construct the stars hydro loop over neighbours */
  if (e->policy & engine_policy_feedback) {
    threadpool_map(&e->threadpool, engine_make_starsloop_tasks_mapper, NULL,
                   s->nr_cells, 1, 0, e);
  }

  /* Add the self gravity tasks. */
  if (e->policy & engine_policy_self_gravity) engine_make_self_gravity_tasks(e);

  if (e->verbose)
    message("Making gravity tasks took %.3f %s.",
            clocks_from_ticks(getticks() - tic2), clocks_getunit());

  /* Add the external gravity tasks. */
  if (e->policy & engine_policy_external_gravity)
    engine_make_external_gravity_tasks(e);

  if (e->sched.nr_tasks == 0 && (s->nr_gparts > 0 || s->nr_parts > 0))
    error("We have particles but no hydro or gravity tasks were created.");

  /* Free the old list of cell-task links. */
  if (e->links != NULL) free(e->links);
  e->size_links = 0;

/* The maximum number of links is the
 * number of cells (s->tot_cells) times the number of neighbours (26) times
 * the number of interaction types, so 26 * 2 (density, force) pairs
 * and 2 (density, force) self.
 */
#ifdef EXTRA_HYDRO_LOOP
  const size_t hydro_tasks_per_cell = 27 * 3;
#else
  const size_t hydro_tasks_per_cell = 27 * 2;
#endif
  const size_t self_grav_tasks_per_cell = 125;
  const size_t ext_grav_tasks_per_cell = 1;
  const size_t stars_tasks_per_cell = 15;

  if (e->policy & engine_policy_hydro)
    e->size_links += s->tot_cells * hydro_tasks_per_cell;
  if (e->policy & engine_policy_external_gravity)
    e->size_links += s->tot_cells * ext_grav_tasks_per_cell;
  if (e->policy & engine_policy_self_gravity)
    e->size_links += s->tot_cells * self_grav_tasks_per_cell;
  if (e->policy & engine_policy_stars)
    e->size_links += s->tot_cells * stars_tasks_per_cell;

  /* Allocate the new link list */
  if ((e->links = (struct link *)malloc(sizeof(struct link) * e->size_links)) ==
      NULL)
    error("Failed to allocate cell-task links.");
  e->nr_links = 0;

  tic2 = getticks();

  /* Split the tasks. */
  scheduler_splittasks(sched);

  if (e->verbose)
    message("Splitting tasks took %.3f %s.",
            clocks_from_ticks(getticks() - tic2), clocks_getunit());

#ifdef SWIFT_DEBUG_CHECKS
  /* Verify that we are not left with invalid tasks */
  for (int i = 0; i < e->sched.nr_tasks; ++i) {
    const struct task *t = &e->sched.tasks[i];
    if (t->ci == NULL && t->cj != NULL && !t->skip) error("Invalid task");
  }
#endif

  tic2 = getticks();

  /* Count the number of tasks associated with each cell and
     store the density tasks in each cell, and make each sort
     depend on the sorts of its progeny. */
  threadpool_map(&e->threadpool, engine_count_and_link_tasks_mapper,
                 sched->tasks, sched->nr_tasks, sizeof(struct task), 0, e);

  if (e->verbose)
    message("Counting and linking tasks took %.3f %s.",
            clocks_from_ticks(getticks() - tic2), clocks_getunit());

  tic2 = getticks();

  /* Re-set the tag counter. MPI tags are defined for top-level cells in
   * cell_set_super_mapper. */
#ifdef WITH_MPI
  cell_next_tag = 0;
#endif

  /* Now that the self/pair tasks are at the right level, set the super
   * pointers. */
  threadpool_map(&e->threadpool, cell_set_super_mapper, cells, nr_cells,
                 sizeof(struct cell), 0, e);

  if (e->verbose)
    message("Setting super-pointers took %.3f %s.",
            clocks_from_ticks(getticks() - tic2), clocks_getunit());

  /* Append hierarchical tasks to each cell. */
  threadpool_map(&e->threadpool, engine_make_hierarchical_tasks_mapper, cells,
                 nr_cells, sizeof(struct cell), 0, e);

  tic2 = getticks();

  /* Run through the tasks and make force tasks for each density task.
     Each force task depends on the cell ghosts and unlocks the kick task
     of its super-cell. */
  if (e->policy & engine_policy_hydro)
    threadpool_map(&e->threadpool, engine_make_extra_hydroloop_tasks_mapper,
                   sched->tasks, sched->nr_tasks, sizeof(struct task), 0, e);

  if (e->verbose)
    message("Making extra hydroloop tasks took %.3f %s.",
            clocks_from_ticks(getticks() - tic2), clocks_getunit());

  tic2 = getticks();

  /* Add the dependencies for the gravity stuff */
  if (e->policy & (engine_policy_self_gravity | engine_policy_external_gravity))
    engine_link_gravity_tasks(e);

  if (e->verbose)
    message("Linking gravity tasks took %.3f %s.",
            clocks_from_ticks(getticks() - tic2), clocks_getunit());

  tic2 = getticks();

  if (e->policy & engine_policy_stars)
    threadpool_map(&e->threadpool, engine_link_stars_tasks_mapper, sched->tasks,
                   sched->nr_tasks, sizeof(struct task), 0, e);

  if (e->verbose)
    message("Linking stars tasks took %.3f %s (including reweight).",
            clocks_from_ticks(getticks() - tic2), clocks_getunit());

#ifdef WITH_MPI
  if (e->policy & engine_policy_feedback)
    error("Cannot run stellar feedback with MPI (yet).");

  /* Add the communication tasks if MPI is being used. */
  if (e->policy & engine_policy_mpi) {

    tic2 = getticks();

    /* Loop over the proxies and add the send tasks, which also generates the
     * cell tags for super-cells. */
    for (int pid = 0; pid < e->nr_proxies; pid++) {

      /* Get a handle on the proxy. */
      struct proxy *p = &e->proxies[pid];

      for (int k = 0; k < p->nr_cells_out; k++)
        engine_addtasks_send_timestep(e, p->cells_out[k], p->cells_in[0], NULL);

      /* Loop through the proxy's outgoing cells and add the
         send tasks for the cells in the proxy that have a hydro connection. */
      if (e->policy & engine_policy_hydro)
        for (int k = 0; k < p->nr_cells_out; k++)
          if (p->cells_out_type[k] & proxy_cell_type_hydro)
            engine_addtasks_send_hydro(e, p->cells_out[k], p->cells_in[0], NULL,
                                       NULL, NULL);

      /* Loop through the proxy's outgoing cells and add the
         send tasks for the cells in the proxy that have a gravity connection.
         */
      if (e->policy & engine_policy_self_gravity)
        for (int k = 0; k < p->nr_cells_out; k++)
          if (p->cells_out_type[k] & proxy_cell_type_gravity)
            engine_addtasks_send_gravity(e, p->cells_out[k], p->cells_in[0],
                                         NULL);
    }

    if (e->verbose)
      message("Creating send tasks took %.3f %s.",
              clocks_from_ticks(getticks() - tic2), clocks_getunit());

    tic2 = getticks();

    /* Exchange the cell tags. */
    proxy_tags_exchange(e->proxies, e->nr_proxies, s);

    if (e->verbose)
      message("Exchanging cell tags took %.3f %s.",
              clocks_from_ticks(getticks() - tic2), clocks_getunit());

    tic2 = getticks();

    /* Loop over the proxies and add the recv tasks, which relies on having the
     * cell tags. */
    for (int pid = 0; pid < e->nr_proxies; pid++) {

      /* Get a handle on the proxy. */
      struct proxy *p = &e->proxies[pid];

      for (int k = 0; k < p->nr_cells_in; k++)
        engine_addtasks_recv_timestep(e, p->cells_in[k], NULL);

      /* Loop through the proxy's incoming cells and add the
         recv tasks for the cells in the proxy that have a hydro connection. */
      if (e->policy & engine_policy_hydro)
        for (int k = 0; k < p->nr_cells_in; k++)
          if (p->cells_in_type[k] & proxy_cell_type_hydro)
            engine_addtasks_recv_hydro(e, p->cells_in[k], NULL, NULL, NULL);

      /* Loop through the proxy's incoming cells and add the
         recv tasks for the cells in the proxy that have a gravity connection.
         */
      if (e->policy & engine_policy_self_gravity)
        for (int k = 0; k < p->nr_cells_in; k++)
          if (p->cells_in_type[k] & proxy_cell_type_gravity)
            engine_addtasks_recv_gravity(e, p->cells_in[k], NULL);
    }

    if (e->verbose)
      message("Creating recv tasks took %.3f %s.",
              clocks_from_ticks(getticks() - tic2), clocks_getunit());
  }
#endif

  tic2 = getticks();

  /* Set the unlocks per task. */
  scheduler_set_unlocks(sched);

  if (e->verbose)
    message("Setting unlocks took %.3f %s.",
            clocks_from_ticks(getticks() - tic2), clocks_getunit());

  tic2 = getticks();

  /* Rank the tasks. */
  scheduler_ranktasks(sched);

  if (e->verbose)
    message("Ranking the tasks took %.3f %s.",
            clocks_from_ticks(getticks() - tic2), clocks_getunit());

  /* Weight the tasks. */
  scheduler_reweight(sched, e->verbose);

  /* Set the tasks age. */
  e->tasks_age = 0;

  if (e->verbose)
    message("took %.3f %s (including reweight).",
            clocks_from_ticks(getticks() - tic), clocks_getunit());
}