-
Bert Vandenbroucke authored
Wrote dimension dependent matrix inversion method and corresponding unit test. Started making Gizmo dimension independent.
Bert Vandenbroucke authoredWrote dimension dependent matrix inversion method and corresponding unit test. Started making Gizmo dimension independent.
testMatrixInversion.c 3.50 KiB
/*******************************************************************************
* This file is part of SWIFT.
* Copyright (C) 2016 Bert Vandenbroucke (bert.vandenbroucke@gmail.com).
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
#include <stdlib.h>
#include <string.h>
#include "const.h"
#include "dimension.h"
#include "error.h"
#include "tools.h"
void setup_matrix(float A[3][3]) {
A[0][0] = random_uniform(-1.0, 1.0);
A[0][1] = random_uniform(-1.0, 1.0);
A[0][2] = random_uniform(-1.0, 1.0);
A[1][0] = random_uniform(-1.0, 1.0);
A[1][1] = random_uniform(-1.0, 1.0);
A[1][2] = random_uniform(-1.0, 1.0);
A[2][0] = random_uniform(-1.0, 1.0);
A[2][1] = random_uniform(-1.0, 1.0);
A[2][2] = random_uniform(-1.0, 1.0);
}
int is_unit_matrix(float A[3][3]) {
int check = 1;
check &= (fabsf(A[0][0] - 1.0f) < 1.e-6f);
#if defined(HYDRO_DIMENSION_2D) && defined(HYDRO_DIMENSION_3D)
check &= (fabsf(A[0][1]) < 1.e-6f);
check &= (fabsf(A[1][0]) < 1.e-6f);
check &= (fabsf(A[1][1] - 1.0f) < 1.e-6f);
#if defined(HYDRO_DIMENSION_3D)
check &= (fabsf(A[0][2]) < 1.e-6f);
check &= (fabsf(A[1][2]) < 1.e-6f);
check &= (fabsf(A[2][0]) < 1.e-6f);
check &= (fabsf(A[2][1]) < 1.e-6f);
check &= (fabsf(A[2][2] - 1.0f) < 1.e-6f);
#endif // 3D
#endif // 2D and 3D
return check;
}
void print_matrix(float A[3][3], const char* s) {
message("Matrix %s:", s);
#if defined(HYDRO_DIMENSION_1D)
message("[%.3e]", A[0][0]);
#elif defined(HYDRO_DIMENSION_2D)
message("[%.3e, %.3e]", A[0][0], A[0][1]);
message("[%.3e, %.3e]", A[1][0], A[1][1]);
#elif defined(HYDRO_DIMENSION_3D)
message("[%.8e, %.8e, %.8e]", A[0][0], A[0][1], A[0][2]);
message("[%.8e, %.8e, %.8e]", A[1][0], A[1][1], A[1][2]);
message("[%.8e, %.8e, %.8e]", A[2][0], A[2][1], A[2][2]);
#endif
}
void multiply_matrices(float A[3][3], float B[3][3], float C[3][3]) {
#if defined(HYDRO_DIMENSION_1D)
C[0][0] = A[0][0] * B[0][0];
#elif defined(HYDRO_DIMENSION_2D)
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 2; ++j) {
C[i][j] = 0.0f;
for (int k = 0; k < 2; ++k) {
C[i][j] += A[i][k] * B[k][j];
}
}
}
#elif defined(HYDRO_DIMENSION_3D)
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 3; ++j) {
C[i][j] = 0.0f;
for (int k = 0; k < 3; ++k) {
C[i][j] += A[i][k] * B[k][j];
}
}
}
#endif
}
int main() {
float A[3][3], B[3][3], C[3][3];
setup_matrix(A);
memcpy(B, A, 9 * sizeof(float));
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 3; ++j) {
if (A[i][j] != B[i][j]) {
error("Matrices not equal after copy!");
}
}
}
invert_dimension_by_dimension_matrix(A);
multiply_matrices(A, B, C);
if (!is_unit_matrix(C)) {
print_matrix(A, "A");
print_matrix(B, "B");
print_matrix(C, "C");
error("Inverted matrix is wrong!");
}
return 0;
}