-
Peter W. Draper authoredPeter W. Draper authored
engine.c 116.88 KiB
/*******************************************************************************
* This file is part of SWIFT.
* Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
* Matthieu Schaller (matthieu.schaller@durham.ac.uk)
* 2015 Peter W. Draper (p.w.draper@durham.ac.uk)
* Angus Lepper (angus.lepper@ed.ac.uk)
* 2016 John A. Regan (john.a.regan@durham.ac.uk)
* Tom Theuns (tom.theuns@durham.ac.uk)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
/* Config parameters. */
#include "../config.h"
/* Some standard headers. */
#include <float.h>
#include <limits.h>
#include <sched.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
/* MPI headers. */
#ifdef WITH_MPI
#include <mpi.h>
#endif
#ifdef HAVE_LIBNUMA
#include <numa.h>
#endif
/* This object's header. */
#include "engine.h"
/* Local headers. */
#include "atomic.h"
#include "cell.h"
#include "clocks.h"
#include "cycle.h"
#include "debug.h"
#include "error.h"
#include "hydro.h"
#include "minmax.h"
#include "parallel_io.h"
#include "part.h"
#include "partition.h"
#include "proxy.h"
#include "runner.h"
#include "serial_io.h"
#include "single_io.h"
#include "timers.h"
#include "tools.h"
#include "units.h"
#include "version.h"
const char *engine_policy_names[16] = {"none",
"rand",
"steal",
"keep",
"block",
"fix_dt",
"cpu_tight",
"mpi",
"numa_affinity",
"hydro",
"self_gravity",
"external_gravity",
"cosmology_integration",
"drift_all",
"cooling",
"sourceterms"};
/** The rank of the engine as a global variable (for messages). */
int engine_rank;
/**
* @brief Link a density/force task to a cell.
*
* @param e The #engine.
* @param l A pointer to the #link, will be modified atomically.
* @param t The #task.
*
* @return The new #link pointer.
*/
void engine_addlink(struct engine *e, struct link **l, struct task *t) {
/* Get the next free link. */
const int ind = atomic_inc(&e->nr_links);
if (ind >= e->size_links) {
error("Link table overflow.");
}
struct link *res = &e->links[ind];
/* Set it atomically. */
res->t = t;
res->next = atomic_swap(l, res);
}
/**
* @brief Generate the gravity hierarchical tasks for a hierarchy of cells -
* i.e. all the O(Npart) tasks.
*
* Tasks are only created here. The dependencies will be added later on.
*
* @param e The #engine.
* @param c The #cell.
* @param gsuper The gsuper #cell.
*/
void engine_make_gravity_hierarchical_tasks(struct engine *e, struct cell *c,
struct cell *gsuper) {
struct scheduler *s = &e->sched;
const int is_with_external_gravity =
(e->policy & engine_policy_external_gravity) ==
engine_policy_external_gravity;
const int is_fixdt = (e->policy & engine_policy_fixdt) == engine_policy_fixdt;
/* Is this the super-cell? */
if (gsuper == NULL && (c->grav != NULL || (!c->split && c->gcount > 0))) {
/* This is the super cell, i.e. the first with gravity tasks attached. */
gsuper = c;
/* Local tasks only... */
if (c->nodeID == e->nodeID) {
/* Add the init task. */
if (c->init == NULL)
c->init = scheduler_addtask(s, task_type_init, task_subtype_none, 0, 0,
c, NULL, 0);
/* Add the kick task that matches the policy. */
if (is_fixdt) {
if (c->kick == NULL)
c->kick = scheduler_addtask(s, task_type_kick_fixdt,
task_subtype_none, 0, 0, c, NULL, 0);
} else {
if (c->kick == NULL)
c->kick = scheduler_addtask(s, task_type_kick, task_subtype_none, 0,
0, c, NULL, 0);
}
if (is_with_external_gravity)
c->grav_external = scheduler_addtask(
s, task_type_grav_external, task_subtype_none, 0, 0, c, NULL, 0);
}
}
/* Set the super-cell. */
c->gsuper = gsuper;
/* Recurse. */
if (c->split)
for (int k = 0; k < 8; k++)
if (c->progeny[k] != NULL)
engine_make_gravity_hierarchical_tasks(e, c->progeny[k], gsuper);
}
/**
* @brief Generate the hydro hierarchical tasks for a hierarchy of cells -
* i.e. all the O(Npart) tasks.
*
* Tasks are only created here. The dependencies will be added later on.
*
* @param e The #engine.
* @param c The #cell.
* @param super The super #cell.
*/
void engine_make_hydro_hierarchical_tasks(struct engine *e, struct cell *c,
struct cell *super) {
struct scheduler *s = &e->sched;
const int is_fixdt = (e->policy & engine_policy_fixdt) == engine_policy_fixdt;
const int is_with_cooling =
(e->policy & engine_policy_cooling) == engine_policy_cooling;
const int is_with_sourceterms =
(e->policy & engine_policy_sourceterms) == engine_policy_sourceterms;
/* Is this the super-cell? */
if (super == NULL && (c->density != NULL || (c->count > 0 && !c->split))) {
/* This is the super cell, i.e. the first with density tasks attached. */
super = c;
/* Local tasks only... */
if (c->nodeID == e->nodeID) {
/* Add the init task. */
if (c->init == NULL)
c->init = scheduler_addtask(s, task_type_init, task_subtype_none, 0, 0,
c, NULL, 0);
/* Add the kick task that matches the policy. */
if (is_fixdt) {
if (c->kick == NULL)
c->kick = scheduler_addtask(s, task_type_kick_fixdt,
task_subtype_none, 0, 0, c, NULL, 0);
} else {
if (c->kick == NULL)
c->kick = scheduler_addtask(s, task_type_kick, task_subtype_none, 0,
0, c, NULL, 0);
}
/* Generate the ghost task. */
c->ghost = scheduler_addtask(s, task_type_ghost, task_subtype_none, 0, 0,
c, NULL, 0);
#ifdef EXTRA_HYDRO_LOOP
/* Generate the extra ghost task. */
c->extra_ghost = scheduler_addtask(s, task_type_extra_ghost,
task_subtype_none, 0, 0, c, NULL, 0);
#endif
if (is_with_cooling)
c->cooling = scheduler_addtask(s, task_type_cooling, task_subtype_none,
0, 0, c, NULL, 0);
/* add source terms */
if (is_with_sourceterms)
c->sourceterms = scheduler_addtask(s, task_type_sourceterms,
task_subtype_none, 0, 0, c, NULL, 0);
}
}
/* Set the super-cell. */
c->super = super;
/* Recurse. */
if (c->split)
for (int k = 0; k < 8; k++)
if (c->progeny[k] != NULL)
engine_make_hydro_hierarchical_tasks(e, c->progeny[k], super);
}
/**
* @brief Redistribute the particles amongst the nodes according
* to their cell's node IDs.
*
* The strategy here is as follows:
* 1) Each node counts the number of particles it has to send to each other
* node.
* 2) The number of particles of each type is then exchanged.
* 3) The particles to send are placed in a temporary buffer in which the
* part-gpart links are preserved.
* 4) Each node allocates enough space for the new particles.
* 5) (Asynchronous) communications are issued to transfer the data.
*
*
* @param e The #engine.
*/
void engine_redistribute(struct engine *e) {
#ifdef WITH_MPI
const int nr_nodes = e->nr_nodes;
const int nodeID = e->nodeID;
struct space *s = e->s;
struct cell *cells = s->cells_top;
const int nr_cells = s->nr_cells;
const int *cdim = s->cdim;
const double iwidth[3] = {s->iwidth[0], s->iwidth[1], s->iwidth[2]};
const double dim[3] = {s->dim[0], s->dim[1], s->dim[2]};
struct part *parts = s->parts;
struct xpart *xparts = s->xparts;
struct gpart *gparts = s->gparts;
ticks tic = getticks();
/* Allocate temporary arrays to store the counts of particles to be sent
and the destination of each particle */
int *counts, *g_counts;
if ((counts = (int *)malloc(sizeof(int) * nr_nodes * nr_nodes)) == NULL)
error("Failed to allocate count temporary buffer.");
if ((g_counts = (int *)malloc(sizeof(int) * nr_nodes * nr_nodes)) == NULL)
error("Failed to allocate gcount temporary buffer.");
bzero(counts, sizeof(int) * nr_nodes * nr_nodes);
bzero(g_counts, sizeof(int) * nr_nodes * nr_nodes);
/* Allocate the destination index arrays. */
int *dest, *g_dest;
if ((dest = (int *)malloc(sizeof(int) * s->nr_parts)) == NULL)
error("Failed to allocate dest temporary buffer.");
if ((g_dest = (int *)malloc(sizeof(int) * s->nr_gparts)) == NULL)
error("Failed to allocate g_dest temporary buffer.");
/* Get destination of each particle */
for (size_t k = 0; k < s->nr_parts; k++) {
/* Periodic boundary conditions */
for (int j = 0; j < 3; j++) {
if (parts[k].x[j] < 0.0)
parts[k].x[j] += dim[j];
else if (parts[k].x[j] >= dim[j])
parts[k].x[j] -= dim[j];
}
const int cid =
cell_getid(cdim, parts[k].x[0] * iwidth[0], parts[k].x[1] * iwidth[1],
parts[k].x[2] * iwidth[2]);
#ifdef SWIFT_DEBUG_CHECKS
if (cid < 0 || cid >= s->nr_cells)
error("Bad cell id %i for part %zu at [%.3e,%.3e,%.3e].", cid, k,
parts[k].x[0], parts[k].x[1], parts[k].x[2]);
#endif
dest[k] = cells[cid].nodeID;
/* The counts array is indexed as count[from * nr_nodes + to]. */
counts[nodeID * nr_nodes + dest[k]] += 1;
}
/* Sort the particles according to their cell index. */
space_parts_sort(s, dest, s->nr_parts, 0, nr_nodes - 1, e->verbose);
/* We need to re-link the gpart partners of parts. */
if (s->nr_parts > 0) {
int current_dest = dest[0];
size_t count_this_dest = 0;
for (size_t k = 0; k < s->nr_parts; ++k) {
if (s->parts[k].gpart != NULL) {
/* As the addresses will be invalidated by the communications, we will
* instead store the absolute index from the start of the sub-array of
* particles to be sent to a given node.
* Recall that gparts without partners have a negative id.
* We will restore the pointers on the receiving node later on. */
if (dest[k] != current_dest) {
current_dest = dest[k];
count_this_dest = 0;
}
#ifdef SWIFT_DEBUG_CHECKS
if (s->parts[k].gpart->id_or_neg_offset >= 0)
error("Trying to link a partnerless gpart !");
#endif
s->parts[k].gpart->id_or_neg_offset = -count_this_dest;
count_this_dest++;
}
}
}
/* Get destination of each g-particle */
for (size_t k = 0; k < s->nr_gparts; k++) {
/* Periodic boundary conditions */
for (int j = 0; j < 3; j++) {
if (gparts[k].x[j] < 0.0)
gparts[k].x[j] += dim[j];
else if (gparts[k].x[j] >= dim[j])
gparts[k].x[j] -= dim[j];
}
const int cid =
cell_getid(cdim, gparts[k].x[0] * iwidth[0], gparts[k].x[1] * iwidth[1],
gparts[k].x[2] * iwidth[2]);
#ifdef SWIFT_DEBUG_CHECKS
if (cid < 0 || cid >= s->nr_cells)
error("Bad cell id %i for part %zu at [%.3e,%.3e,%.3e].", cid, k,
gparts[k].x[0], gparts[k].x[1], gparts[k].x[2]);
#endif
g_dest[k] = cells[cid].nodeID;
/* The counts array is indexed as count[from * nr_nodes + to]. */
g_counts[nodeID * nr_nodes + g_dest[k]] += 1;
}
/* Sort the gparticles according to their cell index. */
space_gparts_sort(s, g_dest, s->nr_gparts, 0, nr_nodes - 1, e->verbose);
/* Get all the counts from all the nodes. */
if (MPI_Allreduce(MPI_IN_PLACE, counts, nr_nodes * nr_nodes, MPI_INT, MPI_SUM,
MPI_COMM_WORLD) != MPI_SUCCESS)
error("Failed to allreduce particle transfer counts.");
/* Get all the g_counts from all the nodes. */
if (MPI_Allreduce(MPI_IN_PLACE, g_counts, nr_nodes * nr_nodes, MPI_INT,
MPI_SUM, MPI_COMM_WORLD) != MPI_SUCCESS)
error("Failed to allreduce gparticle transfer counts.");
/* Each node knows how many parts and gparts will be transferred to every
other node. We can start preparing to receive data */
/* Get the new number of parts and gparts for this node */
size_t nr_parts = 0, nr_gparts = 0;
for (int k = 0; k < nr_nodes; k++) nr_parts += counts[k * nr_nodes + nodeID];
for (int k = 0; k < nr_nodes; k++)
nr_gparts += g_counts[k * nr_nodes + nodeID];
/* Allocate the new arrays with some extra margin */
struct part *parts_new = NULL;
struct xpart *xparts_new = NULL;
struct gpart *gparts_new = NULL;
if (posix_memalign((void **)&parts_new, part_align,
sizeof(struct part) * nr_parts *
engine_redistribute_alloc_margin) != 0)
error("Failed to allocate new part data.");
if (posix_memalign((void **)&xparts_new, xpart_align,
sizeof(struct xpart) * nr_parts *
engine_redistribute_alloc_margin) != 0)
error("Failed to allocate new xpart data.");
if (posix_memalign((void **)&gparts_new, gpart_align,
sizeof(struct gpart) * nr_gparts *
engine_redistribute_alloc_margin) != 0)
error("Failed to allocate new gpart data.");
/* Prepare MPI requests for the asynchronous communications */
MPI_Request *reqs;
if ((reqs = (MPI_Request *)malloc(sizeof(MPI_Request) * 6 * nr_nodes)) ==
NULL)
error("Failed to allocate MPI request list.");
for (int k = 0; k < 6 * nr_nodes; k++) reqs[k] = MPI_REQUEST_NULL;
/* Emit the sends and recvs for the particle and gparticle data. */
size_t offset_send = 0, offset_recv = 0;
size_t g_offset_send = 0, g_offset_recv = 0;
for (int k = 0; k < nr_nodes; k++) {
/* Indices in the count arrays of the node of interest */
const int ind_send = nodeID * nr_nodes + k;
const int ind_recv = k * nr_nodes + nodeID;
/* Are we sending any part/xpart ? */
if (counts[ind_send] > 0) {
/* message("Sending %d part to node %d", counts[ind_send], k); */
/* If the send is to the same node, just copy */
if (k == nodeID) {
memcpy(&parts_new[offset_recv], &s->parts[offset_send],
sizeof(struct part) * counts[ind_recv]);
memcpy(&xparts_new[offset_recv], &s->xparts[offset_send],
sizeof(struct xpart) * counts[ind_recv]);
offset_send += counts[ind_send];
offset_recv += counts[ind_recv];
/* Else, emit some communications */
} else {
if (MPI_Isend(&s->parts[offset_send], counts[ind_send], part_mpi_type,
k, 3 * ind_send + 0, MPI_COMM_WORLD,
&reqs[6 * k]) != MPI_SUCCESS)
error("Failed to isend parts to node %i.", k);
if (MPI_Isend(&s->xparts[offset_send], counts[ind_send], xpart_mpi_type,
k, 3 * ind_send + 1, MPI_COMM_WORLD,
&reqs[6 * k + 1]) != MPI_SUCCESS)
error("Failed to isend xparts to node %i.", k);
offset_send += counts[ind_send];
}
}
/* Are we sending any gpart ? */
if (g_counts[ind_send] > 0) {
/* message("Sending %d gpart to node %d", g_counts[ind_send], k); */
/* If the send is to the same node, just copy */
if (k == nodeID) {
memcpy(&gparts_new[g_offset_recv], &s->gparts[g_offset_send],
sizeof(struct gpart) * g_counts[ind_recv]);
g_offset_send += g_counts[ind_send];
g_offset_recv += g_counts[ind_recv];
/* Else, emit some communications */
} else {
if (MPI_Isend(&s->gparts[g_offset_send], g_counts[ind_send],
gpart_mpi_type, k, 3 * ind_send + 2, MPI_COMM_WORLD,
&reqs[6 * k + 2]) != MPI_SUCCESS)
error("Failed to isend gparts to node %i.", k);
g_offset_send += g_counts[ind_send];
}
}
/* Now emit the corresponding Irecv() */
/* Are we receiving any part/xpart from this node ? */
if (k != nodeID && counts[ind_recv] > 0) {
if (MPI_Irecv(&parts_new[offset_recv], counts[ind_recv], part_mpi_type, k,
3 * ind_recv + 0, MPI_COMM_WORLD,
&reqs[6 * k + 3]) != MPI_SUCCESS)
error("Failed to emit irecv of parts from node %i.", k);
if (MPI_Irecv(&xparts_new[offset_recv], counts[ind_recv], xpart_mpi_type,
k, 3 * ind_recv + 1, MPI_COMM_WORLD,
&reqs[6 * k + 4]) != MPI_SUCCESS)
error("Failed to emit irecv of xparts from node %i.", k);
offset_recv += counts[ind_recv];
}
/* Are we receiving any gpart from this node ? */
if (k != nodeID && g_counts[ind_recv] > 0) {
if (MPI_Irecv(&gparts_new[g_offset_recv], g_counts[ind_recv],
gpart_mpi_type, k, 3 * ind_recv + 2, MPI_COMM_WORLD,
&reqs[6 * k + 5]) != MPI_SUCCESS)
error("Failed to emit irecv of gparts from node %i.", k);
g_offset_recv += g_counts[ind_recv];
}
}
/* Wait for all the sends and recvs to tumble in. */
MPI_Status stats[6 * nr_nodes];
int res;
if ((res = MPI_Waitall(6 * nr_nodes, reqs, stats)) != MPI_SUCCESS) {
for (int k = 0; k < 6 * nr_nodes; k++) {
char buff[MPI_MAX_ERROR_STRING];
MPI_Error_string(stats[k].MPI_ERROR, buff, &res);
message("request %i has error '%s'.", k, buff);
}
error("Failed during waitall for part data.");
}
/* We now need to restore the part<->gpart links */
size_t offset_parts = 0, offset_gparts = 0;
for (int node = 0; node < nr_nodes; ++node) {
const int ind_recv = node * nr_nodes + nodeID;
const size_t count_parts = counts[ind_recv];
const size_t count_gparts = g_counts[ind_recv];
/* Loop over the gparts received from that node */
for (size_t k = offset_gparts; k < offset_gparts + count_gparts; ++k) {
/* Does this gpart have a partner ? */
if (gparts_new[k].id_or_neg_offset <= 0) {
const ptrdiff_t partner_index =
offset_parts - gparts_new[k].id_or_neg_offset;
/* Re-link */
gparts_new[k].id_or_neg_offset = -partner_index;
parts_new[partner_index].gpart = &gparts_new[k];
}
}
offset_parts += count_parts;
offset_gparts += count_gparts;
}
#ifdef SWIFT_DEBUG_CHECKS
/* Verify that all parts are in the right place. */
for (size_t k = 0; k < nr_parts; k++) {
const int cid = cell_getid(cdim, parts_new[k].x[0] * iwidth[0],
parts_new[k].x[1] * iwidth[1],
parts_new[k].x[2] * iwidth[2]);
if (cells[cid].nodeID != nodeID)
error("Received particle (%zu) that does not belong here (nodeID=%i).", k,
cells[cid].nodeID);
}
/* Verify that the links are correct */
for (size_t k = 0; k < nr_gparts; ++k) {
if (gparts_new[k].id_or_neg_offset <= 0) {
struct part *part = &parts_new[-gparts_new[k].id_or_neg_offset];
if (part->gpart != &gparts_new[k]) error("Linking problem !");
if (gparts_new[k].x[0] != part->x[0] ||
gparts_new[k].x[1] != part->x[1] || gparts_new[k].x[2] != part->x[2])
error("Linked particles are not at the same position !");
}
}
for (size_t k = 0; k < nr_parts; ++k) {
if (parts_new[k].gpart != NULL &&
parts_new[k].gpart->id_or_neg_offset != -(ptrdiff_t)k) {
error("Linking problem !");
}
}
#endif
/* Set the new part data, free the old. */
free(parts);
free(xparts);
free(gparts);
s->parts = parts_new;
s->xparts = xparts_new;
s->gparts = gparts_new;
s->nr_parts = nr_parts;
s->nr_gparts = nr_gparts;
s->size_parts = engine_redistribute_alloc_margin * nr_parts;
s->size_gparts = engine_redistribute_alloc_margin * nr_gparts;
/* Clean up the temporary stuff. */
free(reqs);
free(counts);
free(dest);
/* Be verbose about what just happened. */
if (e->verbose) {
int my_cells = 0;
for (int k = 0; k < nr_cells; k++)
if (cells[k].nodeID == nodeID) my_cells += 1;
message("node %i now has %zu parts and %zu gparts in %i cells.", nodeID,
nr_parts, nr_gparts, my_cells);
}
if (e->verbose)
message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
clocks_getunit());
#else
error("SWIFT was not compiled with MPI support.");
#endif
}
/**
* @brief Repartition the cells amongst the nodes.
*
* @param e The #engine.
*/
void engine_repartition(struct engine *e) {
#if defined(WITH_MPI) && defined(HAVE_METIS)
ticks tic = getticks();
/* Clear the repartition flag. */
enum repartition_type reparttype = e->forcerepart;
e->forcerepart = REPART_NONE;
/* Nothing to do if only using a single node. Also avoids METIS
* bug that doesn't handle this case well. */
if (e->nr_nodes == 1) return;
/* Do the repartitioning. */
partition_repartition(reparttype, e->nodeID, e->nr_nodes, e->s,
e->sched.tasks, e->sched.nr_tasks);
/* Now comes the tricky part: Exchange particles between all nodes.
This is done in two steps, first allreducing a matrix of
how many particles go from where to where, then re-allocating
the parts array, and emitting the sends and receives.
Finally, the space, tasks, and proxies need to be rebuilt. */
/* Redistribute the particles between the nodes. */
engine_redistribute(e);
/* Make the proxies. */
engine_makeproxies(e);
/* Tell the engine it should re-build whenever possible */
e->forcerebuild = 1;
if (e->verbose)
message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
clocks_getunit());
#else
error("SWIFT was not compiled with MPI and METIS support.");
#endif
}
/**
* @brief Add up/down gravity tasks to a cell hierarchy.
*
* @param e The #engine.
* @param c The #cell
* @param up The upward gravity #task.
* @param down The downward gravity #task.
*/
void engine_addtasks_grav(struct engine *e, struct cell *c, struct task *up,
struct task *down) {
/* Link the tasks to this cell. */
c->grav_up = up;
c->grav_down = down;
/* Recurse? */
if (c->split)
for (int k = 0; k < 8; k++)
if (c->progeny[k] != NULL)
engine_addtasks_grav(e, c->progeny[k], up, down);
}
/**
* @brief Add send tasks to a hierarchy of cells.
*
* @param e The #engine.
* @param ci The sending #cell.
* @param cj Dummy cell containing the nodeID of the receiving node.
* @param t_xv The send_xv #task, if it has already been created.
* @param t_rho The send_rho #task, if it has already been created.
* @param t_gradient The send_gradient #task, if already created.
* @param t_ti The send_ti #task, if required and has already been created.
*/
void engine_addtasks_send(struct engine *e, struct cell *ci, struct cell *cj,
struct task *t_xv, struct task *t_rho,
struct task *t_gradient, struct task *t_ti) {
#ifdef WITH_MPI
struct link *l = NULL;
struct scheduler *s = &e->sched;
const int nodeID = cj->nodeID;
/* Check if any of the density tasks are for the target node. */
for (l = ci->density; l != NULL; l = l->next)
if (l->t->ci->nodeID == nodeID ||
(l->t->cj != NULL && l->t->cj->nodeID == nodeID))
break;
/* If so, attach send tasks. */
if (l != NULL) {
/* Create the tasks and their dependencies? */
if (t_xv == NULL) {
t_xv = scheduler_addtask(s, task_type_send, task_subtype_none,
4 * ci->tag, 0, ci, cj, 0);
t_rho = scheduler_addtask(s, task_type_send, task_subtype_none,
4 * ci->tag + 1, 0, ci, cj, 0);
if (!(e->policy & engine_policy_fixdt))
t_ti = scheduler_addtask(s, task_type_send, task_subtype_tend,
4 * ci->tag + 2, 0, ci, cj, 0);
#ifdef EXTRA_HYDRO_LOOP
t_gradient = scheduler_addtask(s, task_type_send, task_subtype_none,
4 * ci->tag + 3, 0, ci, cj, 0);
#endif
#ifdef EXTRA_HYDRO_LOOP
scheduler_addunlock(s, t_gradient, ci->super->kick);
scheduler_addunlock(s, ci->super->extra_ghost, t_gradient);
/* The send_rho task should unlock the super-cell's extra_ghost task. */
scheduler_addunlock(s, t_rho, ci->super->extra_ghost);
/* The send_rho task depends on the cell's ghost task. */
scheduler_addunlock(s, ci->super->ghost, t_rho);
/* The send_xv task should unlock the super-cell's ghost task. */
scheduler_addunlock(s, t_xv, ci->super->ghost);
#else
/* The send_rho task should unlock the super-cell's kick task. */
scheduler_addunlock(s, t_rho, ci->super->kick);
/* The send_rho task depends on the cell's ghost task. */
scheduler_addunlock(s, ci->super->ghost, t_rho);
/* The send_xv task should unlock the super-cell's ghost task. */
scheduler_addunlock(s, t_xv, ci->super->ghost);
#endif
/* The super-cell's kick task should unlock the send_ti task. */
if (t_ti != NULL) scheduler_addunlock(s, ci->super->kick, t_ti);
}
/* Add them to the local cell. */
engine_addlink(e, &ci->send_xv, t_xv);
engine_addlink(e, &ci->send_rho, t_rho);
#ifdef EXTRA_HYDRO_LOOP
engine_addlink(e, &ci->send_gradient, t_gradient);
#endif
if (t_ti != NULL) engine_addlink(e, &ci->send_ti, t_ti);
}
/* Recurse? */
if (ci->split)
for (int k = 0; k < 8; k++)
if (ci->progeny[k] != NULL)
engine_addtasks_send(e, ci->progeny[k], cj, t_xv, t_rho, t_gradient,
t_ti);
#else
error("SWIFT was not compiled with MPI support.");
#endif
}
/**
* @brief Add recv tasks to a hierarchy of cells.
*
* @param e The #engine.
* @param c The foreign #cell.
* @param t_xv The recv_xv #task, if it has already been created.
* @param t_rho The recv_rho #task, if it has already been created.
* @param t_gradient The recv_gradient #task, if it has already been created.
* @param t_ti The recv_ti #task, if required and has already been created.
*/
void engine_addtasks_recv(struct engine *e, struct cell *c, struct task *t_xv,
struct task *t_rho, struct task *t_gradient,
struct task *t_ti) {
#ifdef WITH_MPI
struct scheduler *s = &e->sched;
/* Do we need to construct a recv task?
Note that since c is a foreign cell, all its density tasks will involve
only the current rank, and thus we don't have to check them.*/
if (t_xv == NULL && c->density != NULL) {
/* Create the tasks. */
t_xv = scheduler_addtask(s, task_type_recv, task_subtype_none, 4 * c->tag,
0, c, NULL, 0);
t_rho = scheduler_addtask(s, task_type_recv, task_subtype_none,
4 * c->tag + 1, 0, c, NULL, 0);
if (!(e->policy & engine_policy_fixdt))
t_ti = scheduler_addtask(s, task_type_recv, task_subtype_tend,
4 * c->tag + 2, 0, c, NULL, 0);
#ifdef EXTRA_HYDRO_LOOP
t_gradient = scheduler_addtask(s, task_type_recv, task_subtype_none,
4 * c->tag + 3, 0, c, NULL, 0);
#endif
}
c->recv_xv = t_xv;
c->recv_rho = t_rho;
c->recv_gradient = t_gradient;
c->recv_ti = t_ti;
/* Add dependencies. */
#ifdef EXTRA_HYDRO_LOOP
for (struct link *l = c->density; l != NULL; l = l->next) {
scheduler_addunlock(s, t_xv, l->t);
scheduler_addunlock(s, l->t, t_rho);
}
for (struct link *l = c->gradient; l != NULL; l = l->next) {
scheduler_addunlock(s, t_rho, l->t);
scheduler_addunlock(s, l->t, t_gradient);
}
for (struct link *l = c->force; l != NULL; l = l->next) {
scheduler_addunlock(s, t_gradient, l->t);
if (t_ti != NULL) scheduler_addunlock(s, l->t, t_ti);
}
if (c->sorts != NULL) scheduler_addunlock(s, t_xv, c->sorts);
#else
for (struct link *l = c->density; l != NULL; l = l->next) {
scheduler_addunlock(s, t_xv, l->t);
scheduler_addunlock(s, l->t, t_rho);
}
for (struct link *l = c->force; l != NULL; l = l->next) {
scheduler_addunlock(s, t_rho, l->t);
if (t_ti != NULL) scheduler_addunlock(s, l->t, t_ti);
}
if (c->sorts != NULL) scheduler_addunlock(s, t_xv, c->sorts);
#endif
/* Recurse? */
if (c->split)
for (int k = 0; k < 8; k++)
if (c->progeny[k] != NULL)
engine_addtasks_recv(e, c->progeny[k], t_xv, t_rho, t_gradient, t_ti);
#else
error("SWIFT was not compiled with MPI support.");
#endif
}
/**
* @brief Exchange cell structures with other nodes.
*
* @param e The #engine.
*/
void engine_exchange_cells(struct engine *e) {
#ifdef WITH_MPI
struct space *s = e->s;
struct cell *cells = s->cells_top;
const int nr_cells = s->nr_cells;
const int nr_proxies = e->nr_proxies;
int offset[nr_cells];
MPI_Request reqs_in[engine_maxproxies];
MPI_Request reqs_out[engine_maxproxies];
MPI_Status status;
ticks tic = getticks();
/* Run through the cells and get the size of the ones that will be sent off.
*/
int count_out = 0;
for (int k = 0; k < nr_cells; k++) {
offset[k] = count_out;
if (cells[k].sendto)
count_out += (cells[k].pcell_size = cell_getsize(&cells[k]));
}
/* Allocate the pcells. */
struct pcell *pcells;
if ((pcells = (struct pcell *)malloc(sizeof(struct pcell) * count_out)) ==
NULL)
error("Failed to allocate pcell buffer.");
/* Pack the cells. */
cell_next_tag = 0;
for (int k = 0; k < nr_cells; k++)
if (cells[k].sendto) {
cell_pack(&cells[k], &pcells[offset[k]]);
cells[k].pcell = &pcells[offset[k]];
}
/* Launch the proxies. */
for (int k = 0; k < nr_proxies; k++) {
proxy_cells_exch1(&e->proxies[k]);
reqs_in[k] = e->proxies[k].req_cells_count_in;
reqs_out[k] = e->proxies[k].req_cells_count_out;
}
/* Wait for each count to come in and start the recv. */
for (int k = 0; k < nr_proxies; k++) {
int pid = MPI_UNDEFINED;
if (MPI_Waitany(nr_proxies, reqs_in, &pid, &status) != MPI_SUCCESS ||
pid == MPI_UNDEFINED)
error("MPI_Waitany failed.");
// message( "request from proxy %i has arrived." , pid );
proxy_cells_exch2(&e->proxies[pid]);
}
/* Wait for all the sends to have finished too. */
if (MPI_Waitall(nr_proxies, reqs_out, MPI_STATUSES_IGNORE) != MPI_SUCCESS)
error("MPI_Waitall on sends failed.");
/* Set the requests for the cells. */
for (int k = 0; k < nr_proxies; k++) {
reqs_in[k] = e->proxies[k].req_cells_in;
reqs_out[k] = e->proxies[k].req_cells_out;
}
/* Wait for each pcell array to come in from the proxies. */
for (int k = 0; k < nr_proxies; k++) {
int pid = MPI_UNDEFINED;
if (MPI_Waitany(nr_proxies, reqs_in, &pid, &status) != MPI_SUCCESS ||
pid == MPI_UNDEFINED)
error("MPI_Waitany failed.");
// message( "cell data from proxy %i has arrived." , pid );
for (int count = 0, j = 0; j < e->proxies[pid].nr_cells_in; j++)
count += cell_unpack(&e->proxies[pid].pcells_in[count],
e->proxies[pid].cells_in[j], e->s);
}
/* Wait for all the sends to have finished too. */
if (MPI_Waitall(nr_proxies, reqs_out, MPI_STATUSES_IGNORE) != MPI_SUCCESS)
error("MPI_Waitall on sends failed.");
/* Count the number of particles we need to import and re-allocate
the buffer if needed. */
size_t count_parts_in = 0, count_gparts_in = 0;
for (int k = 0; k < nr_proxies; k++)
for (int j = 0; j < e->proxies[k].nr_cells_in; j++) {
count_parts_in += e->proxies[k].cells_in[j]->count;
count_gparts_in += e->proxies[k].cells_in[j]->gcount;
}
if (count_parts_in > s->size_parts_foreign) {
if (s->parts_foreign != NULL) free(s->parts_foreign);
s->size_parts_foreign = 1.1 * count_parts_in;
if (posix_memalign((void **)&s->parts_foreign, part_align,
sizeof(struct part) * s->size_parts_foreign) != 0)
error("Failed to allocate foreign part data.");
}
if (count_gparts_in > s->size_gparts_foreign) {
if (s->gparts_foreign != NULL) free(s->gparts_foreign);
s->size_gparts_foreign = 1.1 * count_gparts_in;
if (posix_memalign((void **)&s->gparts_foreign, gpart_align,
sizeof(struct gpart) * s->size_gparts_foreign) != 0)
error("Failed to allocate foreign gpart data.");
}
/* Unpack the cells and link to the particle data. */
struct part *parts = s->parts_foreign;
struct gpart *gparts = s->gparts_foreign;
for (int k = 0; k < nr_proxies; k++) {
for (int j = 0; j < e->proxies[k].nr_cells_in; j++) {
cell_link_parts(e->proxies[k].cells_in[j], parts);
cell_link_gparts(e->proxies[k].cells_in[j], gparts);
parts = &parts[e->proxies[k].cells_in[j]->count];
gparts = &gparts[e->proxies[k].cells_in[j]->gcount];
}
}
s->nr_parts_foreign = parts - s->parts_foreign;
s->nr_gparts_foreign = gparts - s->gparts_foreign;
/* Free the pcell buffer. */
free(pcells);
if (e->verbose)
message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
clocks_getunit());
#else
error("SWIFT was not compiled with MPI support.");
#endif
}
/**
* @brief Exchange straying parts with other nodes.
*
* @param e The #engine.
* @param offset_parts The index in the parts array as of which the foreign
* parts reside.
* @param ind_part The foreign #cell ID of each part.
* @param Npart The number of stray parts, contains the number of parts received
* on return.
* @param offset_gparts The index in the gparts array as of which the foreign
* parts reside.
* @param ind_gpart The foreign #cell ID of each gpart.
* @param Ngpart The number of stray gparts, contains the number of gparts
* received on return.
*
* Note that this function does not mess-up the linkage between parts and
* gparts, i.e. the received particles have correct linkeage.
*/
void engine_exchange_strays(struct engine *e, size_t offset_parts,
int *ind_part, size_t *Npart, size_t offset_gparts,
int *ind_gpart, size_t *Ngpart) {
#ifdef WITH_MPI
struct space *s = e->s;
ticks tic = getticks();
/* Re-set the proxies. */
for (int k = 0; k < e->nr_proxies; k++) {
e->proxies[k].nr_parts_out = 0;
e->proxies[k].nr_gparts_out = 0;
}
/* Put the parts and gparts into the corresponding proxies. */
for (size_t k = 0; k < *Npart; k++) {
/* Get the target node and proxy ID. */
const int node_id = e->s->cells_top[ind_part[k]].nodeID;
if (node_id < 0 || node_id >= e->nr_nodes)
error("Bad node ID %i.", node_id);
const int pid = e->proxy_ind[node_id];
if (pid < 0) {
error(
"Do not have a proxy for the requested nodeID %i for part with "
"id=%lld, x=[%e,%e,%e].",
node_id, s->parts[offset_parts + k].id,
s->parts[offset_parts + k].x[0], s->parts[offset_parts + k].x[1],
s->parts[offset_parts + k].x[2]);
}
/* Re-link the associated gpart with the buffer offset of the part. */
if (s->parts[offset_parts + k].gpart != NULL) {
s->parts[offset_parts + k].gpart->id_or_neg_offset =
-e->proxies[pid].nr_parts_out;
}
/* Load the part and xpart into the proxy. */
proxy_parts_load(&e->proxies[pid], &s->parts[offset_parts + k],
&s->xparts[offset_parts + k], 1);
}
for (size_t k = 0; k < *Ngpart; k++) {
const int node_id = e->s->cells_top[ind_gpart[k]].nodeID;
if (node_id < 0 || node_id >= e->nr_nodes)
error("Bad node ID %i.", node_id);
const int pid = e->proxy_ind[node_id];
if (pid < 0)
error(
"Do not have a proxy for the requested nodeID %i for part with "
"id=%lli, x=[%e,%e,%e].",
node_id, s->gparts[offset_parts + k].id_or_neg_offset,
s->gparts[offset_gparts + k].x[0], s->gparts[offset_parts + k].x[1],
s->gparts[offset_gparts + k].x[2]);
proxy_gparts_load(&e->proxies[pid], &s->gparts[offset_gparts + k], 1);
}
/* Launch the proxies. */
MPI_Request reqs_in[3 * engine_maxproxies];
MPI_Request reqs_out[3 * engine_maxproxies];
for (int k = 0; k < e->nr_proxies; k++) {
proxy_parts_exch1(&e->proxies[k]);
reqs_in[k] = e->proxies[k].req_parts_count_in;
reqs_out[k] = e->proxies[k].req_parts_count_out;
}
/* Wait for each count to come in and start the recv. */
for (int k = 0; k < e->nr_proxies; k++) {
int pid = MPI_UNDEFINED;
if (MPI_Waitany(e->nr_proxies, reqs_in, &pid, MPI_STATUS_IGNORE) !=
MPI_SUCCESS ||
pid == MPI_UNDEFINED)
error("MPI_Waitany failed.");
// message( "request from proxy %i has arrived." , pid );
proxy_parts_exch2(&e->proxies[pid]);
}
/* Wait for all the sends to have finished too. */
if (MPI_Waitall(e->nr_proxies, reqs_out, MPI_STATUSES_IGNORE) != MPI_SUCCESS)
error("MPI_Waitall on sends failed.");
/* Count the total number of incoming particles and make sure we have
enough space to accommodate them. */
int count_parts_in = 0;
int count_gparts_in = 0;
for (int k = 0; k < e->nr_proxies; k++) {
count_parts_in += e->proxies[k].nr_parts_in;
count_gparts_in += e->proxies[k].nr_gparts_in;
}
if (e->verbose) {
message("sent out %zu/%zu parts/gparts, got %i/%i back.", *Npart, *Ngpart,
count_parts_in, count_gparts_in);
}
if (offset_parts + count_parts_in > s->size_parts) {
message("re-allocating parts array.");
s->size_parts = (offset_parts + count_parts_in) * engine_parts_size_grow;
struct part *parts_new = NULL;
struct xpart *xparts_new = NULL;
if (posix_memalign((void **)&parts_new, part_align,
sizeof(struct part) * s->size_parts) != 0 ||
posix_memalign((void **)&xparts_new, xpart_align,
sizeof(struct xpart) * s->size_parts) != 0)
error("Failed to allocate new part data.");
memcpy(parts_new, s->parts, sizeof(struct part) * offset_parts);
memcpy(xparts_new, s->xparts, sizeof(struct xpart) * offset_parts);
free(s->parts);
free(s->xparts);
s->parts = parts_new;
s->xparts = xparts_new;
for (size_t k = 0; k < offset_parts; k++) {
if (s->parts[k].gpart != NULL) {
s->parts[k].gpart->id_or_neg_offset = -k;
}
}
}
if (offset_gparts + count_gparts_in > s->size_gparts) {
message("re-allocating gparts array.");
s->size_gparts = (offset_gparts + count_gparts_in) * engine_parts_size_grow;
struct gpart *gparts_new = NULL;
if (posix_memalign((void **)&gparts_new, gpart_align,
sizeof(struct gpart) * s->size_gparts) != 0)
error("Failed to allocate new gpart data.");
memcpy(gparts_new, s->gparts, sizeof(struct gpart) * offset_gparts);
free(s->gparts);
s->gparts = gparts_new;
for (size_t k = 0; k < offset_gparts; k++) {
if (s->gparts[k].id_or_neg_offset < 0) {
s->parts[-s->gparts[k].id_or_neg_offset].gpart = &s->gparts[k];
}
}
}
/* Collect the requests for the particle data from the proxies. */
int nr_in = 0, nr_out = 0;
for (int k = 0; k < e->nr_proxies; k++) {
if (e->proxies[k].nr_parts_in > 0) {
reqs_in[3 * k] = e->proxies[k].req_parts_in;
reqs_in[3 * k + 1] = e->proxies[k].req_xparts_in;
nr_in += 2;
} else {
reqs_in[3 * k] = reqs_in[3 * k + 1] = MPI_REQUEST_NULL;
}
if (e->proxies[k].nr_gparts_in > 0) {
reqs_in[3 * k + 2] = e->proxies[k].req_gparts_in;
nr_in += 1;
} else {
reqs_in[3 * k + 2] = MPI_REQUEST_NULL;
}
if (e->proxies[k].nr_parts_out > 0) {
reqs_out[3 * k] = e->proxies[k].req_parts_out;
reqs_out[3 * k + 1] = e->proxies[k].req_xparts_out;
nr_out += 2;
} else {
reqs_out[3 * k] = reqs_out[3 * k + 1] = MPI_REQUEST_NULL;
}
if (e->proxies[k].nr_gparts_out > 0) {
reqs_out[3 * k + 2] = e->proxies[k].req_gparts_out;
nr_out += 1;
} else {
reqs_out[3 * k + 2] = MPI_REQUEST_NULL;
}
}
/* Wait for each part array to come in and collect the new
parts from the proxies. */
int count_parts = 0, count_gparts = 0;
for (int k = 0; k < nr_in; k++) {
int err, pid;
if ((err = MPI_Waitany(3 * e->nr_proxies, reqs_in, &pid,
MPI_STATUS_IGNORE)) != MPI_SUCCESS) {
char buff[MPI_MAX_ERROR_STRING];
int res;
MPI_Error_string(err, buff, &res);
error("MPI_Waitany failed (%s).", buff);
}
if (pid == MPI_UNDEFINED) break;
// message( "request from proxy %i has arrived." , pid / 3 );
pid = 3 * (pid / 3);
/* If all the requests for a given proxy have arrived... */
if (reqs_in[pid + 0] == MPI_REQUEST_NULL &&
reqs_in[pid + 1] == MPI_REQUEST_NULL &&
reqs_in[pid + 2] == MPI_REQUEST_NULL) {
/* Copy the particle data to the part/xpart/gpart arrays. */
struct proxy *prox = &e->proxies[pid / 3];
memcpy(&s->parts[offset_parts + count_parts], prox->parts_in,
sizeof(struct part) * prox->nr_parts_in);
memcpy(&s->xparts[offset_parts + count_parts], prox->xparts_in,
sizeof(struct xpart) * prox->nr_parts_in);
memcpy(&s->gparts[offset_gparts + count_gparts], prox->gparts_in,
sizeof(struct gpart) * prox->nr_gparts_in);
/* for (int k = offset; k < offset + count; k++)
message(
"received particle %lli, x=[%.3e %.3e %.3e], h=%.3e, from node %i.",
s->parts[k].id, s->parts[k].x[0], s->parts[k].x[1],
s->parts[k].x[2], s->parts[k].h, p->nodeID); */
/* Re-link the gparts. */
for (int kk = 0; kk < prox->nr_gparts_in; kk++) {
struct gpart *gp = &s->gparts[offset_gparts + count_gparts + kk];
if (gp->id_or_neg_offset <= 0) {
struct part *p =
&s->parts[offset_gparts + count_parts - gp->id_or_neg_offset];
gp->id_or_neg_offset = s->parts - p;
p->gpart = gp;
}
}
/* Advance the counters. */
count_parts += prox->nr_parts_in;
count_gparts += prox->nr_gparts_in;
}
}
/* Wait for all the sends to have finished too. */
if (nr_out > 0)
if (MPI_Waitall(3 * e->nr_proxies, reqs_out, MPI_STATUSES_IGNORE) !=
MPI_SUCCESS)
error("MPI_Waitall on sends failed.");
if (e->verbose)
message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
clocks_getunit());
/* Return the number of harvested parts. */
*Npart = count_parts;
*Ngpart = count_gparts;
#else
error("SWIFT was not compiled with MPI support.");
#endif
}
/**
* @brief Constructs the top-level tasks for the short-range gravity
* interactions.
*
* All top-cells get a self task.
* All neighbouring pairs get a pair task.
* All non-neighbouring pairs within a range of 6 cells get a M-M task.
*
* @param e The #engine.
*/
void engine_make_gravity_tasks(struct engine *e) {
struct space *s = e->s;
struct scheduler *sched = &e->sched;
const int nodeID = e->nodeID;
struct cell *cells = s->cells_top;
const int nr_cells = s->nr_cells;
for (int cid = 0; cid < nr_cells; ++cid) {
struct cell *ci = &cells[cid];
/* Skip cells without gravity particles */
if (ci->gcount == 0) continue;
/* Is that neighbour local ? */
if (ci->nodeID != nodeID) continue;
/* If the cells is local build a self-interaction */
scheduler_addtask(sched, task_type_self, task_subtype_grav, 0, 0, ci, NULL,
0);
/* Let's also build a task for all the non-neighbouring pm calculations */
scheduler_addtask(sched, task_type_grav_mm, task_subtype_none, 0, 0, ci,
NULL, 0);
for (int cjd = cid + 1; cjd < nr_cells; ++cjd) {
struct cell *cj = &cells[cjd];
/* Skip cells without gravity particles */
if (cj->gcount == 0) continue;
/* Is that neighbour local ? */
if (cj->nodeID != nodeID) continue;
if (cell_are_neighbours(ci, cj))
scheduler_addtask(sched, task_type_pair, task_subtype_grav, 0, 0, ci,
cj, 1);
}
}
}
/**
* @brief Constructs the top-level pair tasks for the first hydro loop over
* neighbours
*
* Here we construct all the tasks for all possible neighbouring non-empty
* local cells in the hierarchy. No dependencies are being added thus far.
* Additional loop over neighbours can later be added by simply duplicating
* all the tasks created by this function.
*
* @param e The #engine.
*/
void engine_make_hydroloop_tasks(struct engine *e) {
struct space *s = e->s;
struct scheduler *sched = &e->sched;
const int nodeID = e->nodeID;
const int *cdim = s->cdim;
struct cell *cells = s->cells_top;
/* Run through the highest level of cells and add pairs. */
for (int i = 0; i < cdim[0]; i++) {
for (int j = 0; j < cdim[1]; j++) {
for (int k = 0; k < cdim[2]; k++) {
/* Get the cell */
const int cid = cell_getid(cdim, i, j, k);
struct cell *ci = &cells[cid];
/* Skip cells without hydro particles */
if (ci->count == 0) continue;
/* If the cells is local build a self-interaction */
if (ci->nodeID == nodeID)
scheduler_addtask(sched, task_type_self, task_subtype_density, 0, 0,
ci, NULL, 0);
/* Now loop over all the neighbours of this cell */
for (int ii = -1; ii < 2; ii++) {
int iii = i + ii;
if (!s->periodic && (iii < 0 || iii >= cdim[0])) continue;
iii = (iii + cdim[0]) % cdim[0];
for (int jj = -1; jj < 2; jj++) {
int jjj = j + jj;
if (!s->periodic && (jjj < 0 || jjj >= cdim[1])) continue;
jjj = (jjj + cdim[1]) % cdim[1];
for (int kk = -1; kk < 2; kk++) {
int kkk = k + kk;
if (!s->periodic && (kkk < 0 || kkk >= cdim[2])) continue;
kkk = (kkk + cdim[2]) % cdim[2];
/* Get the neighbouring cell */
const int cjd = cell_getid(cdim, iii, jjj, kkk);
struct cell *cj = &cells[cjd];
/* Is that neighbour local and does it have particles ? */
if (cid >= cjd || cj->count == 0 ||
(ci->nodeID != nodeID && cj->nodeID != nodeID))
continue;
/* Construct the pair task */
const int sid =
sortlistID[(kk + 1) + 3 * ((jj + 1) + 3 * (ii + 1))];
scheduler_addtask(sched, task_type_pair, task_subtype_density,
sid, 0, ci, cj, 1);
}
}
}
}
}
}
}
/**
* @brief Counts the tasks associated with one cell and constructs the links
*
* For each hydrodynamic task, construct the links with the corresponding cell.
* Similarly, construct the dependencies for all the sorting tasks.
*
* @param e The #engine.
*/
void engine_count_and_link_tasks(struct engine *e) {
struct scheduler *sched = &e->sched;
for (int ind = 0; ind < sched->nr_tasks; ind++) {
struct task *t = &sched->tasks[ind];
/* Link sort tasks together. */
if (t->type == task_type_sort && t->ci->split)
for (int j = 0; j < 8; j++)
if (t->ci->progeny[j] != NULL && t->ci->progeny[j]->sorts != NULL) {
scheduler_addunlock(sched, t->ci->progeny[j]->sorts, t);
}
/* Link density tasks to cells. */
if (t->type == task_type_self) {
atomic_inc(&t->ci->nr_tasks);
if (t->subtype == task_subtype_density) {
engine_addlink(e, &t->ci->density, t);
atomic_inc(&t->ci->nr_density);
}
} else if (t->type == task_type_pair) {
atomic_inc(&t->ci->nr_tasks);
atomic_inc(&t->cj->nr_tasks);
if (t->subtype == task_subtype_density) {
engine_addlink(e, &t->ci->density, t);
atomic_inc(&t->ci->nr_density);
engine_addlink(e, &t->cj->density, t);
atomic_inc(&t->cj->nr_density);
}
} else if (t->type == task_type_sub_self) {
atomic_inc(&t->ci->nr_tasks);
if (t->subtype == task_subtype_density) {
engine_addlink(e, &t->ci->density, t);
atomic_inc(&t->ci->nr_density);
}
} else if (t->type == task_type_sub_pair) {
atomic_inc(&t->ci->nr_tasks);
atomic_inc(&t->cj->nr_tasks);
if (t->subtype == task_subtype_density) {
engine_addlink(e, &t->ci->density, t);
atomic_inc(&t->ci->nr_density);
engine_addlink(e, &t->cj->density, t);
atomic_inc(&t->cj->nr_density);
}
}
}
}
/**
* @brief Creates the dependency network for the gravity tasks of a given cell.
*
* @param sched The #scheduler.
* @param gravity The gravity task to link.
* @param c The cell.
*/
static inline void engine_make_gravity_dependencies(struct scheduler *sched,
struct task *gravity,
struct cell *c) {
/* init --> gravity --> kick */
scheduler_addunlock(sched, c->gsuper->init, gravity);
scheduler_addunlock(sched, gravity, c->gsuper->kick);
/* grav_up --> gravity ( --> kick) */
scheduler_addunlock(sched, c->gsuper->grav_up, gravity);
}
/**
* @brief Creates all the task dependencies for the gravity
*
* @param e The #engine
*/
void engine_link_gravity_tasks(struct engine *e) {
struct scheduler *sched = &e->sched;
const int nodeID = e->nodeID;
const int nr_tasks = sched->nr_tasks;
/* Add one task gathering all the multipoles */
struct task *gather = scheduler_addtask(
sched, task_type_grav_gather_m, task_subtype_none, 0, 0, NULL, NULL, 0);
/* And one task performing the FFT */
struct task *fft = scheduler_addtask(sched, task_type_grav_fft,
task_subtype_none, 0, 0, NULL, NULL, 0);
scheduler_addunlock(sched, gather, fft);
for (int k = 0; k < nr_tasks; k++) {
/* Get a pointer to the task. */
struct task *t = &sched->tasks[k];
/* Multipole construction */
if (t->type == task_type_grav_up) {
scheduler_addunlock(sched, t, gather);
}
/* Long-range interaction */
if (t->type == task_type_grav_mm) {
/* Gather the multipoles --> mm interaction --> kick */
scheduler_addunlock(sched, gather, t);
scheduler_addunlock(sched, t, t->ci->gsuper->kick);
/* init --> mm interaction */
scheduler_addunlock(sched, t->ci->gsuper->init, t);
}
/* Self-interaction? */
if (t->type == task_type_self && t->subtype == task_subtype_grav) {
engine_make_gravity_dependencies(sched, t, t->ci);
}
/* Otherwise, pair interaction? */
else if (t->type == task_type_pair && t->subtype == task_subtype_grav) {
if (t->ci->nodeID == nodeID) {
engine_make_gravity_dependencies(sched, t, t->ci);
}
if (t->cj->nodeID == nodeID && t->ci->gsuper != t->cj->gsuper) {
engine_make_gravity_dependencies(sched, t, t->cj);
}
}
/* Otherwise, sub-self interaction? */
else if (t->type == task_type_sub_self && t->subtype == task_subtype_grav) {
if (t->ci->nodeID == nodeID) {
engine_make_gravity_dependencies(sched, t, t->ci);
}
}
/* Otherwise, sub-pair interaction? */
else if (t->type == task_type_sub_pair && t->subtype == task_subtype_grav) {
if (t->ci->nodeID == nodeID) {
engine_make_gravity_dependencies(sched, t, t->ci);
}
if (t->cj->nodeID == nodeID && t->ci->gsuper != t->cj->gsuper) {
engine_make_gravity_dependencies(sched, t, t->cj);
}
}
}
}
#ifdef EXTRA_HYDRO_LOOP
/**
* @brief Creates the dependency network for the hydro tasks of a given cell.
*
* @param sched The #scheduler.
* @param density The density task to link.
* @param gradient The gradient task to link.
* @param force The force task to link.
* @param c The cell.
*/
static inline void engine_make_hydro_loops_dependencies(struct scheduler *sched,
struct task *density,
struct task *gradient,
struct task *force,
struct cell *c) {
/* init --> density loop --> ghost --> gradient loop --> extra_ghost */
/* extra_ghost --> force loop --> kick */
scheduler_addunlock(sched, c->super->init, density);
scheduler_addunlock(sched, density, c->super->ghost);
scheduler_addunlock(sched, c->super->ghost, gradient);
scheduler_addunlock(sched, gradient, c->super->extra_ghost);
scheduler_addunlock(sched, c->super->extra_ghost, force);
scheduler_addunlock(sched, force, c->super->kick);
}
#else
/**
* @brief Creates the dependency network for the hydro tasks of a given cell.
*
* @param sched The #scheduler.
* @param density The density task to link.
* @param force The force task to link.
* @param c The cell.
*/
static inline void engine_make_hydro_loops_dependencies(struct scheduler *sched,
struct task *density,
struct task *force,
struct cell *c) {
/* init --> density loop --> ghost --> force loop --> kick */
scheduler_addunlock(sched, c->super->init, density);
scheduler_addunlock(sched, density, c->super->ghost);
scheduler_addunlock(sched, c->super->ghost, force);
scheduler_addunlock(sched, force, c->super->kick);
}
#endif
/**
* @brief Duplicates the first hydro loop and construct all the
* dependencies for the hydro part
*
* This is done by looping over all the previously constructed tasks
* and adding another task involving the same cells but this time
* corresponding to the second hydro loop over neighbours.
* With all the relevant tasks for a given cell available, we construct
* all the dependencies for that cell.
*
* @param e The #engine.
*/
void engine_make_extra_hydroloop_tasks(struct engine *e) {
struct scheduler *sched = &e->sched;
const int nr_tasks = sched->nr_tasks;
const int nodeID = e->nodeID;
for (int ind = 0; ind < nr_tasks; ind++) {
struct task *t = &sched->tasks[ind];
/* Self-interaction? */
if (t->type == task_type_self && t->subtype == task_subtype_density) {
#ifdef EXTRA_HYDRO_LOOP
/* Start by constructing the task for the second and third hydro loop */
struct task *t2 = scheduler_addtask(
sched, task_type_self, task_subtype_gradient, 0, 0, t->ci, NULL, 0);
struct task *t3 = scheduler_addtask(
sched, task_type_self, task_subtype_force, 0, 0, t->ci, NULL, 0);
/* Add the link between the new loops and the cell */
engine_addlink(e, &t->ci->gradient, t2);
atomic_inc(&t->ci->nr_gradient);
engine_addlink(e, &t->ci->force, t3);
atomic_inc(&t->ci->nr_force);
/* Now, build all the dependencies for the hydro */
engine_make_hydro_loops_dependencies(sched, t, t2, t3, t->ci);
#else
/* Start by constructing the task for the second hydro loop */
struct task *t2 = scheduler_addtask(
sched, task_type_self, task_subtype_force, 0, 0, t->ci, NULL, 0);
/* Add the link between the new loop and the cell */
engine_addlink(e, &t->ci->force, t2);
atomic_inc(&t->ci->nr_force);
/* Now, build all the dependencies for the hydro */
engine_make_hydro_loops_dependencies(sched, t, t2, t->ci);
#endif
}
/* Otherwise, pair interaction? */
else if (t->type == task_type_pair && t->subtype == task_subtype_density) {
#ifdef EXTRA_HYDRO_LOOP
/* Start by constructing the task for the second and third hydro loop */
struct task *t2 = scheduler_addtask(
sched, task_type_pair, task_subtype_gradient, 0, 0, t->ci, t->cj, 0);
struct task *t3 = scheduler_addtask(
sched, task_type_pair, task_subtype_force, 0, 0, t->ci, t->cj, 0);
/* Add the link between the new loop and both cells */
engine_addlink(e, &t->ci->gradient, t2);
atomic_inc(&t->ci->nr_gradient);
engine_addlink(e, &t->cj->gradient, t2);
atomic_inc(&t->cj->nr_gradient);
engine_addlink(e, &t->ci->force, t3);
atomic_inc(&t->ci->nr_force);
engine_addlink(e, &t->cj->force, t3);
atomic_inc(&t->cj->nr_force);
/* Now, build all the dependencies for the hydro for the cells */
/* that are local and are not descendant of the same super-cells */
if (t->ci->nodeID == nodeID) {
engine_make_hydro_loops_dependencies(sched, t, t2, t3, t->ci);
}
if (t->cj->nodeID == nodeID && t->ci->super != t->cj->super) {
engine_make_hydro_loops_dependencies(sched, t, t2, t3, t->cj);
}
#else
/* Start by constructing the task for the second hydro loop */
struct task *t2 = scheduler_addtask(
sched, task_type_pair, task_subtype_force, 0, 0, t->ci, t->cj, 0);
/* Add the link between the new loop and both cells */
engine_addlink(e, &t->ci->force, t2);
atomic_inc(&t->ci->nr_force);
engine_addlink(e, &t->cj->force, t2);
atomic_inc(&t->cj->nr_force);
/* Now, build all the dependencies for the hydro for the cells */
/* that are local and are not descendant of the same super-cells */
if (t->ci->nodeID == nodeID) {
engine_make_hydro_loops_dependencies(sched, t, t2, t->ci);
}
if (t->cj->nodeID == nodeID && t->ci->super != t->cj->super) {
engine_make_hydro_loops_dependencies(sched, t, t2, t->cj);
}
#endif
}
/* Otherwise, sub-self interaction? */
else if (t->type == task_type_sub_self &&
t->subtype == task_subtype_density) {
#ifdef EXTRA_HYDRO_LOOP
/* Start by constructing the task for the second and third hydro loop */
struct task *t2 =
scheduler_addtask(sched, task_type_sub_self, task_subtype_gradient,
t->flags, 0, t->ci, t->cj, 0);
struct task *t3 =
scheduler_addtask(sched, task_type_sub_self, task_subtype_force,
t->flags, 0, t->ci, t->cj, 0);
/* Add the link between the new loop and the cell */
engine_addlink(e, &t->ci->gradient, t2);
atomic_inc(&t->ci->nr_gradient);
engine_addlink(e, &t->ci->force, t3);
atomic_inc(&t->ci->nr_force);
/* Now, build all the dependencies for the hydro for the cells */
/* that are local and are not descendant of the same super-cells */
if (t->ci->nodeID == nodeID) {
engine_make_hydro_loops_dependencies(sched, t, t2, t3, t->ci);
}
#else
/* Start by constructing the task for the second hydro loop */
struct task *t2 =
scheduler_addtask(sched, task_type_sub_self, task_subtype_force,
t->flags, 0, t->ci, t->cj, 0);
/* Add the link between the new loop and the cell */
engine_addlink(e, &t->ci->force, t2);
atomic_inc(&t->ci->nr_force);
/* Now, build all the dependencies for the hydro for the cells */
/* that are local and are not descendant of the same super-cells */
if (t->ci->nodeID == nodeID) {
engine_make_hydro_loops_dependencies(sched, t, t2, t->ci);
}
#endif
}
/* Otherwise, sub-pair interaction? */
else if (t->type == task_type_sub_pair &&
t->subtype == task_subtype_density) {
#ifdef EXTRA_HYDRO_LOOP
/* Start by constructing the task for the second and third hydro loop */
struct task *t2 =
scheduler_addtask(sched, task_type_sub_pair, task_subtype_gradient,
t->flags, 0, t->ci, t->cj, 0);
struct task *t3 =
scheduler_addtask(sched, task_type_sub_pair, task_subtype_force,
t->flags, 0, t->ci, t->cj, 0);
/* Add the link between the new loop and both cells */
engine_addlink(e, &t->ci->gradient, t2);
atomic_inc(&t->ci->nr_gradient);
engine_addlink(e, &t->cj->gradient, t2);
atomic_inc(&t->cj->nr_gradient);
engine_addlink(e, &t->ci->force, t3);
atomic_inc(&t->ci->nr_force);
engine_addlink(e, &t->cj->force, t3);
atomic_inc(&t->cj->nr_force);
/* Now, build all the dependencies for the hydro for the cells */
/* that are local and are not descendant of the same super-cells */
if (t->ci->nodeID == nodeID) {
engine_make_hydro_loops_dependencies(sched, t, t2, t3, t->ci);
}
if (t->cj->nodeID == nodeID && t->ci->super != t->cj->super) {
engine_make_hydro_loops_dependencies(sched, t, t2, t3, t->cj);
}
#else
/* Start by constructing the task for the second hydro loop */
struct task *t2 =
scheduler_addtask(sched, task_type_sub_pair, task_subtype_force,
t->flags, 0, t->ci, t->cj, 0);
/* Add the link between the new loop and both cells */
engine_addlink(e, &t->ci->force, t2);
atomic_inc(&t->ci->nr_force);
engine_addlink(e, &t->cj->force, t2);
atomic_inc(&t->cj->nr_force);
/* Now, build all the dependencies for the hydro for the cells */
/* that are local and are not descendant of the same super-cells */
if (t->ci->nodeID == nodeID) {
engine_make_hydro_loops_dependencies(sched, t, t2, t->ci);
}
if (t->cj->nodeID == nodeID && t->ci->super != t->cj->super) {
engine_make_hydro_loops_dependencies(sched, t, t2, t->cj);
}
#endif
}
/* External gravity tasks should depend on init and unlock the kick */
else if (t->type == task_type_grav_external) {
scheduler_addunlock(sched, t->ci->init, t);
scheduler_addunlock(sched, t, t->ci->kick);
}
/* Cooling tasks should depend on kick and unlock sourceterms */
else if (t->type == task_type_cooling) {
scheduler_addunlock(sched, t->ci->kick, t);
}
/* source terms depend on cooling if performed, else on kick. It is the last
task */
else if (t->type == task_type_sourceterms) {
if (e->policy == engine_policy_cooling)
scheduler_addunlock(sched, t->ci->cooling, t);
else
scheduler_addunlock(sched, t->ci->kick, t);
}
}
}
/**
* @brief Constructs the gravity tasks building the multipoles and propagating
*them to the children
*
* Correct implementation is still lacking here.
*
* @param e The #engine.
*/
void engine_make_gravityrecursive_tasks(struct engine *e) {
struct space *s = e->s;
struct scheduler *sched = &e->sched;
const int nodeID = e->nodeID;
const int nr_cells = s->nr_cells;
struct cell *cells = s->cells_top;
for (int k = 0; k < nr_cells; k++) {
/* Only do this for local cells containing gravity particles */
if (cells[k].nodeID == nodeID && cells[k].gcount > 0) {
/* Create tasks at top level. */
struct task *up =
scheduler_addtask(sched, task_type_grav_up, task_subtype_none, 0, 0,
&cells[k], NULL, 0);
struct task *down = NULL;
/* struct task *down = */
/* scheduler_addtask(sched, task_type_grav_down, task_subtype_none, 0,
* 0, */
/* &cells[k], NULL, 0); */
/* Push tasks down the cell hierarchy. */
engine_addtasks_grav(e, &cells[k], up, down);
}
}
}
/**
* @brief Fill the #space's task list.
*
* @param e The #engine we are working with.
*/
void engine_maketasks(struct engine *e) {
struct space *s = e->s;
struct scheduler *sched = &e->sched;
struct cell *cells = s->cells_top;
const int nr_cells = s->nr_cells;
const ticks tic = getticks();
/* Re-set the scheduler. */
scheduler_reset(sched, s->tot_cells * engine_maxtaskspercell);
/* Construct the firt hydro loop over neighbours */
if (e->policy & engine_policy_hydro) engine_make_hydroloop_tasks(e);
/* Add the gravity mm tasks. */
if (e->policy & engine_policy_self_gravity) engine_make_gravity_tasks(e);
/* Split the tasks. */
scheduler_splittasks(sched);
/* Allocate the list of cell-task links. The maximum number of links
is the number of cells (s->tot_cells) times the number of neighbours (27)
times the number of interaction types (2, density and force). */
if (e->links != NULL) free(e->links);
#ifdef EXTRA_HYDRO_LOOP
e->size_links = s->tot_cells * 27 * 3;
#else
e->size_links = s->tot_cells * 27 * 2;
#endif
if ((e->links = malloc(sizeof(struct link) * e->size_links)) == NULL)
error("Failed to allocate cell-task links.");
e->nr_links = 0;
/* Add the gravity up/down tasks at the top-level cells and push them down. */
if (e->policy & engine_policy_self_gravity)
engine_make_gravityrecursive_tasks(e);
/* Count the number of tasks associated with each cell and
store the density tasks in each cell, and make each sort
depend on the sorts of its progeny. */
if (e->policy & engine_policy_hydro) engine_count_and_link_tasks(e);
/* Append hierarchical tasks to each cells */
if (e->policy & engine_policy_hydro)
for (int k = 0; k < nr_cells; k++)
engine_make_hydro_hierarchical_tasks(e, &cells[k], NULL);
if ((e->policy & engine_policy_self_gravity) ||
(e->policy & engine_policy_external_gravity))
for (int k = 0; k < nr_cells; k++)
engine_make_gravity_hierarchical_tasks(e, &cells[k], NULL);
/* Run through the tasks and make force tasks for each density task.
Each force task depends on the cell ghosts and unlocks the kick task
of its super-cell. */
if (e->policy & engine_policy_hydro) engine_make_extra_hydroloop_tasks(e);
/* Add the dependencies for the self-gravity stuff */
if (e->policy & engine_policy_self_gravity) engine_link_gravity_tasks(e);
#ifdef WITH_MPI
/* Add the communication tasks if MPI is being used. */
if (e->policy & engine_policy_mpi) {
/* Loop over the proxies. */
for (int pid = 0; pid < e->nr_proxies; pid++) {
/* Get a handle on the proxy. */
struct proxy *p = &e->proxies[pid];
/* Loop through the proxy's incoming cells and add the
recv tasks. */
for (int k = 0; k < p->nr_cells_in; k++)
engine_addtasks_recv(e, p->cells_in[k], NULL, NULL, NULL, NULL);
/* Loop through the proxy's outgoing cells and add the
send tasks. */
for (int k = 0; k < p->nr_cells_out; k++)
engine_addtasks_send(e, p->cells_out[k], p->cells_in[0], NULL, NULL,
NULL, NULL);
}
}
#endif
/* Set the unlocks per task. */
scheduler_set_unlocks(sched);
/* Rank the tasks. */
scheduler_ranktasks(sched);
/* Weight the tasks. */
scheduler_reweight(sched, e->verbose);
/* Set the tasks age. */
e->tasks_age = 0;
if (e->verbose)
message("took %.3f %s (including reweight).",
clocks_from_ticks(getticks() - tic), clocks_getunit());
}
/**
* @brief Mark tasks to be skipped and set the sort flags accordingly.
* Threadpool mapper function for fixdt version.
*
* @param map_data pointer to the tasks
* @param num_elements number of tasks
* @param extra_data pointer to int that will define if a rebuild is needed.
*/
void engine_marktasks_fixdt_mapper(void *map_data, int num_elements,
void *extra_data) {
/* Unpack the arguments. */
struct task *tasks = (struct task *)map_data;
int *rebuild_space = (int *)extra_data;
for (int ind = 0; ind < num_elements; ind++) {
struct task *t = &tasks[ind];
/* Pair? */
if (t->type == task_type_pair || t->type == task_type_sub_pair) {
/* Local pointers. */
const struct cell *ci = t->ci;
const struct cell *cj = t->cj;
/* Too much particle movement? */
if (t->tight &&
(max(ci->h_max, cj->h_max) + ci->dx_max + cj->dx_max > cj->dmin ||
ci->dx_max > space_maxreldx * ci->h_max ||
cj->dx_max > space_maxreldx * cj->h_max))
*rebuild_space = 1;
}
/* Sort? */
else if (t->type == task_type_sort) {
/* If all the sorts have been done, make this task implicit. */
if (!(t->flags & (t->flags ^ t->ci->sorted))) t->implicit = 1;
}
}
}
/**
* @brief Mark tasks to be skipped and set the sort flags accordingly.
* Threadpool mapper function.
*
* @param map_data pointer to the tasks
* @param num_elements number of tasks
* @param extra_data pointer to int that will define if a rebuild is needed.
*/
void engine_marktasks_mapper(void *map_data, int num_elements,
void *extra_data) {
/* Unpack the arguments. */
struct task *tasks = (struct task *)map_data;
const int ti_end = ((int *)extra_data)[0];
int *rebuild_space = &((int *)extra_data)[1];
for (int ind = 0; ind < num_elements; ind++) {
struct task *t = &tasks[ind];
/* Single-cell task? */
if (t->type == task_type_self || t->type == task_type_ghost ||
t->type == task_type_extra_ghost || t->type == task_type_sub_self) {
/* Set this task's skip. */
t->skip = (t->ci->ti_end_min > ti_end);
}
/* Pair? */
else if (t->type == task_type_pair || t->type == task_type_sub_pair) {
/* Local pointers. */
const struct cell *ci = t->ci;
const struct cell *cj = t->cj;
/* Too much particle movement? */
if (t->tight &&
(max(ci->h_max, cj->h_max) + ci->dx_max + cj->dx_max > cj->dmin ||
ci->dx_max > space_maxreldx * ci->h_max ||
cj->dx_max > space_maxreldx * cj->h_max))
*rebuild_space = 1;
/* Set this task's skip. */
if ((t->skip = (ci->ti_end_min > ti_end && cj->ti_end_min > ti_end)) == 1)
continue;
/* Set the sort flags. */
if (t->type == task_type_pair && t->subtype != task_subtype_grav) {
if (!(ci->sorted & (1 << t->flags))) {
atomic_or(&ci->sorts->flags, (1 << t->flags));
ci->sorts->skip = 0;
}
if (!(cj->sorted & (1 << t->flags))) {
atomic_or(&cj->sorts->flags, (1 << t->flags));
cj->sorts->skip = 0;
}
}
#ifdef WITH_MPI
/* Activate the send/recv flags. */
if (ci->nodeID != engine_rank) {
/* Activate the tasks to recv foreign cell ci's data. */
ci->recv_xv->skip = 0;
ci->recv_rho->skip = 0;
ci->recv_ti->skip = 0;
/* Look for the local cell cj's send tasks. */
struct link *l = NULL;
for (l = cj->send_xv; l != NULL && l->t->cj->nodeID != ci->nodeID;
l = l->next)
;
if (l == NULL) error("Missing link to send_xv task.");
l->t->skip = 0;
for (l = cj->send_rho; l != NULL && l->t->cj->nodeID != ci->nodeID;
l = l->next)
;
if (l == NULL) error("Missing link to send_rho task.");
l->t->skip = 0;
for (l = cj->send_ti; l != NULL && l->t->cj->nodeID != ci->nodeID;
l = l->next)
;
if (l == NULL) error("Missing link to send_ti task.");
l->t->skip = 0;
} else if (cj->nodeID != engine_rank) {
/* Activate the tasks to recv foreign cell cj's data. */
cj->recv_xv->skip = 0;
cj->recv_rho->skip = 0;
cj->recv_ti->skip = 0;
/* Look for the local cell ci's send tasks. */
struct link *l = NULL;
for (l = ci->send_xv; l != NULL && l->t->cj->nodeID != cj->nodeID;
l = l->next)
;
if (l == NULL) error("Missing link to send_xv task.");
l->t->skip = 0;
for (l = ci->send_rho; l != NULL && l->t->cj->nodeID != cj->nodeID;
l = l->next)
;
if (l == NULL) error("Missing link to send_rho task.");
l->t->skip = 0;
for (l = ci->send_ti; l != NULL && l->t->cj->nodeID != cj->nodeID;
l = l->next)
;
if (l == NULL) error("Missing link to send_ti task.");
l->t->skip = 0;
}
#endif
}
/* Kick? */
else if (t->type == task_type_kick) {
t->skip = (t->ci->ti_end_min > ti_end);
t->ci->updated = 0;
t->ci->g_updated = 0;
}
/* Init? */
else if (t->type == task_type_init) {
/* Set this task's skip. */
t->skip = (t->ci->ti_end_min > ti_end);
}
/* None? */
else if (t->type == task_type_none)
t->skip = 1;
}
}
/**
* @brief Mark tasks to be skipped and set the sort flags accordingly.
*
* @return 1 if the space has to be rebuilt, 0 otherwise.
*/
int engine_marktasks(struct engine *e) {
struct scheduler *s = &e->sched;
const ticks tic = getticks();
int rebuild_space = 0;
/* Much less to do here if we're on a fixed time-step. */
if (e->policy & engine_policy_fixdt) {
/* Run through the tasks and mark as skip or not. */
threadpool_map(&e->threadpool, engine_marktasks_fixdt_mapper, s->tasks,
s->nr_tasks, sizeof(struct task), 1000, &rebuild_space);
return rebuild_space;
/* Multiple-timestep case */
} else {
/* Run through the tasks and mark as skip or not. */
int extra_data[2] = {e->ti_current, rebuild_space};
threadpool_map(&e->threadpool, engine_marktasks_mapper, s->tasks,
s->nr_tasks, sizeof(struct task), 10000, extra_data);
rebuild_space = extra_data[1];
}
if (e->verbose)
message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
clocks_getunit());
/* All is well... */
return rebuild_space;
}
/**
* @brief Prints the number of tasks in the engine
*
* @param e The #engine.
*/
void engine_print_task_counts(struct engine *e) {
struct scheduler *sched = &e->sched;
/* Count and print the number of each task type. */
int counts[task_type_count + 1];
for (int k = 0; k <= task_type_count; k++) counts[k] = 0;
for (int k = 0; k < sched->nr_tasks; k++) {
if (sched->tasks[k].skip)
counts[task_type_count] += 1;
else
counts[(int)sched->tasks[k].type] += 1;
}
#ifdef WITH_MPI
printf("[%04i] %s engine_print_task_counts: task counts are [ %s=%i",
e->nodeID, clocks_get_timesincestart(), taskID_names[0], counts[0]);
#else
printf("%s engine_print_task_counts: task counts are [ %s=%i",
clocks_get_timesincestart(), taskID_names[0], counts[0]);
#endif
for (int k = 1; k < task_type_count; k++)
printf(" %s=%i", taskID_names[k], counts[k]);
printf(" skipped=%i ]\n", counts[task_type_count]);
fflush(stdout);
message("nr_parts = %zu.", e->s->nr_parts);
message("nr_gparts = %zu.", e->s->nr_gparts);
}
/**
* @brief Rebuild the space and tasks.
*
* @param e The #engine.
*/
void engine_rebuild(struct engine *e) {
const ticks tic = getticks();
/* Clear the forcerebuild flag, whatever it was. */
e->forcerebuild = 0;
/* Re-build the space. */
space_rebuild(e->s, 0.0, e->verbose);
if (e->ti_current == 0) space_sanitize(e->s);
/* If in parallel, exchange the cell structure. */
#ifdef WITH_MPI
engine_exchange_cells(e);
#endif
/* Re-build the tasks. */
engine_maketasks(e);
/* Run through the tasks and mark as skip or not. */
if (engine_marktasks(e))
error("engine_marktasks failed after space_rebuild.");
/* Print the status of the system */
if (e->verbose) engine_print_task_counts(e);
if (e->verbose)
message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
clocks_getunit());
}
/**
* @brief Prepare the #engine by re-building the cells and tasks.
*
* @param e The #engine to prepare.
* @param nodrift Whether to drift particles before rebuilding or not. Will
* not be necessary if all particles have already been
* drifted (before repartitioning for instance).
*/
void engine_prepare(struct engine *e, int nodrift) {
TIMER_TIC;
/* Run through the tasks and mark as skip or not. */
int rebuild = e->forcerebuild;
/* Collect the values of rebuild from all nodes. */
#ifdef WITH_MPI
int buff = 0;
if (MPI_Allreduce(&rebuild, &buff, 1, MPI_INT, MPI_MAX, MPI_COMM_WORLD) !=
MPI_SUCCESS)
error("Failed to aggregate the rebuild flag across nodes.");
rebuild = buff;
#endif
/* And rebuild if necessary. */
if (rebuild) {
/* Drift all particles to the current time if needed. */
if (!nodrift) {
e->drift_all = 1;
engine_drift(e);
/* Restore the default drifting policy */
e->drift_all = (e->policy & engine_policy_drift_all);
}
engine_rebuild(e);
}
/* Re-rank the tasks every now and then. */
if (e->tasks_age % engine_tasksreweight == 1) {
scheduler_reweight(&e->sched, e->verbose);
}
e->tasks_age += 1;
TIMER_TOC(timer_prepare);
if (e->verbose)
message("took %.3f %s (including marktask, rebuild and reweight).",
clocks_from_ticks(getticks() - tic), clocks_getunit());
}
/**
* @brief Implements a barrier for the #runner threads.
*
* @param e The #engine.
* @param tid The thread ID
*/
void engine_barrier(struct engine *e, int tid) {
/* First, get the barrier mutex. */
if (pthread_mutex_lock(&e->barrier_mutex) != 0)
error("Failed to get barrier mutex.");
/* This thread is no longer running. */
e->barrier_running -= 1;
/* If all threads are in, send a signal... */
if (e->barrier_running == 0)
if (pthread_cond_broadcast(&e->barrier_cond) != 0)
error("Failed to broadcast barrier full condition.");
/* Wait for the barrier to open. */
while (e->barrier_launch == 0 || tid >= e->barrier_launchcount)
if (pthread_cond_wait(&e->barrier_cond, &e->barrier_mutex) != 0)
error("Error waiting for barrier to close.");
/* This thread has been launched. */
e->barrier_running += 1;
e->barrier_launch -= 1;
/* If I'm the last one out, signal the condition again. */
if (e->barrier_launch == 0)
if (pthread_cond_broadcast(&e->barrier_cond) != 0)
error("Failed to broadcast empty barrier condition.");
/* Last but not least, release the mutex. */
if (pthread_mutex_unlock(&e->barrier_mutex) != 0)
error("Failed to get unlock the barrier mutex.");
}
/**
* @brief Mapping function to collect the data from the kick.
*
* @param c A super-cell.
*/
void engine_collect_kick(struct cell *c) {
/* Skip super-cells (Their values are already set) */
if (c->kick != NULL) return;
/* Counters for the different quantities. */
int updated = 0, g_updated = 0;
int ti_end_min = max_nr_timesteps;
/* Only do something is the cell is non-empty */
if (c->count != 0 || c->gcount != 0) {
/* If this cell is not split, I'm in trouble. */
if (!c->split) error("Cell is not split.");
/* Collect the values from the progeny. */
for (int k = 0; k < 8; k++) {
struct cell *cp = c->progeny[k];
if (cp != NULL) {
/* Recurse */
engine_collect_kick(cp);
/* And update */
ti_end_min = min(ti_end_min, cp->ti_end_min);
updated += cp->updated;
g_updated += cp->g_updated;
}
}
}
/* Store the collected values in the cell. */
c->ti_end_min = ti_end_min;
c->updated = updated;
c->g_updated = g_updated;
}
/**
* @brief Collects the next time-step by making each super-cell recurse
* to collect the minimal of ti_end and the number of updated particles.
*
* @param e The #engine.
*/
void engine_collect_timestep(struct engine *e) {
const ticks tic = getticks();
int updates = 0, g_updates = 0;
int ti_end_min = max_nr_timesteps;
const struct space *s = e->s;
/* Collect the cell data. */
for (int k = 0; k < s->nr_cells; k++)
if (s->cells_top[k].nodeID == e->nodeID) {
struct cell *c = &s->cells_top[k];
/* Make the top-cells recurse */
engine_collect_kick(c);
/* And aggregate */
ti_end_min = min(ti_end_min, c->ti_end_min);
updates += c->updated;
g_updates += c->g_updated;
}
/* Aggregate the data from the different nodes. */
#ifdef WITH_MPI
{
int in_i[1], out_i[1];
in_i[0] = 0;
out_i[0] = ti_end_min;
if (MPI_Allreduce(out_i, in_i, 1, MPI_INT, MPI_MIN, MPI_COMM_WORLD) !=
MPI_SUCCESS)
error("Failed to aggregate t_end_min.");
ti_end_min = in_i[0];
}
{
unsigned long long in_ll[2], out_ll[2];
out_ll[0] = updates;
out_ll[1] = g_updates;
if (MPI_Allreduce(out_ll, in_ll, 2, MPI_LONG_LONG_INT, MPI_SUM,
MPI_COMM_WORLD) != MPI_SUCCESS)
error("Failed to aggregate energies.");
updates = in_ll[0];
g_updates = in_ll[1];
}
#endif
e->ti_end_min = ti_end_min;
e->updates = updates;
e->g_updates = g_updates;
if (e->verbose)
message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
clocks_getunit());
}
/**
* @brief Print the conserved quantities statistics to a log file
*
* @param e The #engine.
*/
void engine_print_stats(struct engine *e) {
const ticks tic = getticks();
const struct space *s = e->s;
double e_kin = 0.0, e_int = 0.0, e_pot = 0.0, e_rad = 0.0;
double entropy = 0.0, mass = 0.0;
double mom[3] = {0.0, 0.0, 0.0}, ang_mom[3] = {0.0, 0.0, 0.0};
/* Collect the cell data. */
for (int k = 0; k < s->nr_cells; k++)
if (s->cells_top[k].nodeID == e->nodeID) {
struct cell *c = &s->cells_top[k];
mass += c->mass;
e_kin += c->e_kin;
e_int += c->e_int;
e_pot += c->e_pot;
e_rad += c->e_rad;
entropy += c->entropy;
mom[0] += c->mom[0];
mom[1] += c->mom[1];
mom[2] += c->mom[2];
ang_mom[0] += c->ang_mom[0];
ang_mom[1] += c->ang_mom[1];
ang_mom[2] += c->ang_mom[2];
}
/* Aggregate the data from the different nodes. */
#ifdef WITH_MPI
{
double in[12] = {0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.};
double out[12];
out[0] = e_kin;
out[1] = e_int;
out[2] = e_pot;
out[3] = e_rad;
out[4] = mom[0];
out[5] = mom[1];
out[6] = mom[2];
out[7] = ang_mom[0];
out[8] = ang_mom[1];
out[9] = ang_mom[2];
out[10] = mass;
out[11] = entropy;
if (MPI_Reduce(out, in, 11, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD) !=
MPI_SUCCESS)
error("Failed to aggregate stats.");
e_kin = out[0];
e_int = out[1];
e_pot = out[2];
e_rad = out[3];
mom[0] = out[4];
mom[1] = out[5];
mom[2] = out[6];
ang_mom[0] = out[7];
ang_mom[1] = out[8];
ang_mom[2] = out[9];
mass = out[10];
entropy = out[11];
}
#endif
const double e_tot = e_kin + e_int + e_pot;
/* Print info */
if (e->nodeID == 0) {
fprintf(e->file_stats,
" %14e %14e %14e %14e %14e %14e %14e %14e %14e %14e %14e %14e %14e "
"%14e\n",
e->time, mass, e_tot, e_kin, e_int, e_pot, e_rad, entropy, mom[0],
mom[1], mom[2], ang_mom[0], ang_mom[1], ang_mom[2]);
fflush(e->file_stats);
}
if (e->verbose)
message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
clocks_getunit());
}
/**
* @brief Launch the runners.
*
* @param e The #engine.
* @param nr_runners The number of #runner to let loose.
* @param mask The task mask to launch.
* @param submask The sub-task mask to launch.
*/
void engine_launch(struct engine *e, int nr_runners, unsigned int mask,
unsigned int submask) {
const ticks tic = getticks();
/* Prepare the scheduler. */
atomic_inc(&e->sched.waiting);
/* Cry havoc and let loose the dogs of war. */
e->barrier_launch = nr_runners;
e->barrier_launchcount = nr_runners;
if (pthread_cond_broadcast(&e->barrier_cond) != 0)
error("Failed to broadcast barrier open condition.");
/* Load the tasks. */
pthread_mutex_unlock(&e->barrier_mutex);
scheduler_start(&e->sched, mask, submask);
pthread_mutex_lock(&e->barrier_mutex);
/* Remove the safeguard. */
pthread_mutex_lock(&e->sched.sleep_mutex);
atomic_dec(&e->sched.waiting);
pthread_cond_broadcast(&e->sched.sleep_cond);
pthread_mutex_unlock(&e->sched.sleep_mutex);
/* Sit back and wait for the runners to come home. */
while (e->barrier_launch || e->barrier_running)
if (pthread_cond_wait(&e->barrier_cond, &e->barrier_mutex) != 0)
error("Error while waiting for barrier.");
if (e->verbose)
message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
clocks_getunit());
}
/**
* @brief Initialises the particles and set them in a state ready to move
*forward in time.
*
* @param e The #engine
* @param flag_entropy_ICs Did the 'Internal Energy' of the particles actually
*contain entropy ?
*/
void engine_init_particles(struct engine *e, int flag_entropy_ICs) {
struct space *s = e->s;
struct clocks_time time1, time2;
clocks_gettime(&time1);
if (e->nodeID == 0) message("Running initialisation fake time-step.");
engine_prepare(e, 1);
engine_marktasks(e);
/* Build the masks corresponding to the policy */
unsigned int mask = 0;
unsigned int submask = 0;
/* We always have sort tasks */
mask |= 1 << task_type_sort;
mask |= 1 << task_type_init;
/* Add the tasks corresponding to hydro operations to the masks */
if (e->policy & engine_policy_hydro) {
mask |= 1 << task_type_self;
mask |= 1 << task_type_pair;
mask |= 1 << task_type_sub_self;
mask |= 1 << task_type_sub_pair;
mask |= 1 << task_type_ghost;
submask |= 1 << task_subtype_density;
}
/* Add the tasks corresponding to self-gravity to the masks */
if (e->policy & engine_policy_self_gravity) {
mask |= 1 << task_type_grav_up;
mask |= 1 << task_type_grav_mm;
mask |= 1 << task_type_grav_gather_m;
mask |= 1 << task_type_grav_fft;
mask |= 1 << task_type_self;
mask |= 1 << task_type_pair;
mask |= 1 << task_type_sub_self;
mask |= 1 << task_type_sub_pair;
submask |= 1 << task_subtype_grav;
}
/* Add the tasks corresponding to external gravity to the masks */
if (e->policy & engine_policy_external_gravity) {
mask |= 1 << task_type_grav_external;
}
/* Add MPI tasks if need be */
if (e->policy & engine_policy_mpi) {
mask |= 1 << task_type_send;
mask |= 1 << task_type_recv;
submask |= 1 << task_subtype_tend;
}
/* Now, launch the calculation */
TIMER_TIC;
engine_launch(e, e->nr_threads, mask, submask);
TIMER_TOC(timer_runners);
/* Apply some conversions (e.g. internal energy -> entropy) */
if (!flag_entropy_ICs) {
/* Apply the conversion */
space_map_cells_pre(s, 0, cell_convert_hydro, NULL);
/* Correct what we did (e.g. in PE-SPH, need to recompute rho_bar) */
if (hydro_need_extra_init_loop)
engine_launch(e, e->nr_threads, mask, submask);
}
clocks_gettime(&time2);
/* Ready to go */
e->step = -1;
e->wallclock_time = (float)clocks_diff(&time1, &time2);
if (e->verbose) message("took %.3f %s.", e->wallclock_time, clocks_getunit());
}
/**
* @brief Let the #engine loose to compute the forces.
*
* @param e The #engine.
*/
void engine_step(struct engine *e) {
double snapshot_drift_time = 0.;
TIMER_TIC2;
struct clocks_time time1, time2;
clocks_gettime(&time1);
e->tic_step = getticks();
/* Recover the (integer) end of the next time-step */
engine_collect_timestep(e);
/* Check for output */
while (e->ti_end_min >= e->ti_nextSnapshot && e->ti_nextSnapshot > 0) {
e->ti_old = e->ti_current;
e->ti_current = e->ti_nextSnapshot;
e->time = e->ti_current * e->timeBase + e->timeBegin;
e->timeOld = e->ti_old * e->timeBase + e->timeBegin;
e->timeStep = (e->ti_current - e->ti_old) * e->timeBase;
snapshot_drift_time = e->timeStep;
/* Drift everybody to the snapshot position */
e->drift_all = 1;
engine_drift(e);
/* Restore the default drifting policy */
e->drift_all = (e->policy & engine_policy_drift_all);
/* Dump... */
engine_dump_snapshot(e);
/* ... and find the next output time */
engine_compute_next_snapshot_time(e);
}
/* Move forward in time */
e->ti_old = e->ti_current;
e->ti_current = e->ti_end_min;
e->step += 1;
e->time = e->ti_current * e->timeBase + e->timeBegin;
e->timeOld = e->ti_old * e->timeBase + e->timeBegin;
e->timeStep = (e->ti_current - e->ti_old) * e->timeBase + snapshot_drift_time;
if (e->nodeID == 0) {
/* Print some information to the screen */
printf(" %6d %14e %14e %10zu %10zu %21.3f\n", e->step, e->time,
e->timeStep, e->updates, e->g_updates, e->wallclock_time);
fflush(stdout);
fprintf(e->file_timesteps, " %6d %14e %14e %10zu %10zu %21.3f\n", e->step,
e->time, e->timeStep, e->updates, e->g_updates, e->wallclock_time);
fflush(e->file_timesteps);
}
/* Save some statistics */
if (e->time - e->timeLastStatistics >= e->deltaTimeStatistics) {
engine_print_stats(e);
e->timeLastStatistics += e->deltaTimeStatistics;
}
/* Drift only the necessary particles, that means all particles
* if we are about to repartition. */
int repart = (e->forcerepart != REPART_NONE);
e->drift_all = repart || e->drift_all;
engine_drift(e);
/* Re-distribute the particles amongst the nodes? */
if (repart) engine_repartition(e);
/* Prepare the space. */
engine_prepare(e, e->drift_all);
/* Restore the default drifting policy */
e->drift_all = (e->policy & engine_policy_drift_all);
/* Build the masks corresponding to the policy */
unsigned int mask = 0, submask = 0;
/* We always have sort tasks and init tasks */
mask |= 1 << task_type_sort;
mask |= 1 << task_type_init;
/* Add the correct kick task */
if (e->policy & engine_policy_fixdt) {
mask |= 1 << task_type_kick_fixdt;
} else {
mask |= 1 << task_type_kick;
}
/* Add the tasks corresponding to hydro operations to the masks */
if (e->policy & engine_policy_hydro) {
mask |= 1 << task_type_self;
mask |= 1 << task_type_pair;
mask |= 1 << task_type_sub_self;
mask |= 1 << task_type_sub_pair;
mask |= 1 << task_type_ghost;
submask |= 1 << task_subtype_density;
submask |= 1 << task_subtype_force;
#ifdef EXTRA_HYDRO_LOOP
mask |= 1 << task_type_extra_ghost;
submask |= 1 << task_subtype_gradient;
#endif
}
/* Add the tasks corresponding to self-gravity to the masks */
if (e->policy & engine_policy_self_gravity) {
mask |= 1 << task_type_grav_up;
mask |= 1 << task_type_grav_mm;
mask |= 1 << task_type_grav_gather_m;
mask |= 1 << task_type_grav_fft;
mask |= 1 << task_type_self;
mask |= 1 << task_type_pair;
mask |= 1 << task_type_sub_self;
mask |= 1 << task_type_sub_pair;
submask |= 1 << task_subtype_grav;
}
/* Add the tasks corresponding to external gravity to the masks */
if (e->policy & engine_policy_external_gravity) {
mask |= 1 << task_type_grav_external;
}
/* Add the tasks corresponding to cooling to the masks */
if (e->policy & engine_policy_cooling) {
mask |= 1 << task_type_cooling;
}
/* Add the tasks corresponding to sourceterms to the masks */
if (e->policy & engine_policy_sourceterms) {
mask |= 1 << task_type_sourceterms;
}
/* Add MPI tasks if need be */
if (e->policy & engine_policy_mpi) {
mask |= 1 << task_type_send;
mask |= 1 << task_type_recv;
submask |= 1 << task_subtype_tend;
}
if (e->verbose) engine_print_task_counts(e);
/* Send off the runners. */
TIMER_TIC;
engine_launch(e, e->nr_threads, mask, submask);
TIMER_TOC(timer_runners);
TIMER_TOC2(timer_step);
clocks_gettime(&time2);
e->wallclock_time = (float)clocks_diff(&time1, &time2);
e->toc_step = getticks();
}
/**
* @brief Returns 1 if the simulation has reached its end point, 0 otherwise
*/
int engine_is_done(struct engine *e) {
return !(e->ti_current < max_nr_timesteps);
}
/**
* @brief Drift particles using the current engine drift policy.
*
* @param e The #engine.
*/
void engine_drift(struct engine *e) {
const ticks tic = getticks();
threadpool_map(&e->threadpool, runner_do_drift_mapper, e->s->cells_top,
e->s->nr_cells, sizeof(struct cell), 1, e);
if (e->verbose)
message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
clocks_getunit());
}
/**
* @brief Create and fill the proxies.
*
* @param e The #engine.
*/
void engine_makeproxies(struct engine *e) {
#ifdef WITH_MPI
const int *cdim = e->s->cdim;
const struct space *s = e->s;
struct cell *cells = s->cells_top;
struct proxy *proxies = e->proxies;
ticks tic = getticks();
/* Prepare the proxies and the proxy index. */
if (e->proxy_ind == NULL)
if ((e->proxy_ind = (int *)malloc(sizeof(int) * e->nr_nodes)) == NULL)
error("Failed to allocate proxy index.");
for (int k = 0; k < e->nr_nodes; k++) e->proxy_ind[k] = -1;
e->nr_proxies = 0;
/* The following loop is super-clunky, but it's necessary
to ensure that the order of the send and recv cells in
the proxies is identical for all nodes! */
/* Loop over each cell in the space. */
int ind[3];
for (ind[0] = 0; ind[0] < cdim[0]; ind[0]++)
for (ind[1] = 0; ind[1] < cdim[1]; ind[1]++)
for (ind[2] = 0; ind[2] < cdim[2]; ind[2]++) {
/* Get the cell ID. */
const int cid = cell_getid(cdim, ind[0], ind[1], ind[2]);
/* Loop over all its neighbours (periodic). */
for (int i = -1; i <= 1; i++) {
int ii = ind[0] + i;
if (ii >= cdim[0])
ii -= cdim[0];
else if (ii < 0)
ii += cdim[0];
for (int j = -1; j <= 1; j++) {
int jj = ind[1] + j;
if (jj >= cdim[1])
jj -= cdim[1];
else if (jj < 0)
jj += cdim[1];
for (int k = -1; k <= 1; k++) {
int kk = ind[2] + k;
if (kk >= cdim[2])
kk -= cdim[2];
else if (kk < 0)
kk += cdim[2];
/* Get the cell ID. */
const int cjd = cell_getid(cdim, ii, jj, kk);
/* Add to proxies? */
if (cells[cid].nodeID == e->nodeID &&
cells[cjd].nodeID != e->nodeID) {
int pid = e->proxy_ind[cells[cjd].nodeID];
if (pid < 0) {
if (e->nr_proxies == engine_maxproxies)
error("Maximum number of proxies exceeded.");
proxy_init(&proxies[e->nr_proxies], e->nodeID,
cells[cjd].nodeID);
e->proxy_ind[cells[cjd].nodeID] = e->nr_proxies;
pid = e->nr_proxies;
e->nr_proxies += 1;
}
proxy_addcell_in(&proxies[pid], &cells[cjd]);
proxy_addcell_out(&proxies[pid], &cells[cid]);
cells[cid].sendto |= (1ULL << pid);
}
if (cells[cjd].nodeID == e->nodeID &&
cells[cid].nodeID != e->nodeID) {
int pid = e->proxy_ind[cells[cid].nodeID];
if (pid < 0) {
if (e->nr_proxies == engine_maxproxies)
error("Maximum number of proxies exceeded.");
proxy_init(&proxies[e->nr_proxies], e->nodeID,
cells[cid].nodeID);
e->proxy_ind[cells[cid].nodeID] = e->nr_proxies;
pid = e->nr_proxies;
e->nr_proxies += 1;
}
proxy_addcell_in(&proxies[pid], &cells[cid]);
proxy_addcell_out(&proxies[pid], &cells[cjd]);
cells[cjd].sendto |= (1ULL << pid);
}
}
}
}
}
if (e->verbose)
message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
clocks_getunit());
#else
error("SWIFT was not compiled with MPI support.");
#endif
}
/**
* @brief Split the underlying space into regions and assign to separate nodes.
*
* @param e The #engine.
* @param initial_partition structure defining the cell partition technique
*/
void engine_split(struct engine *e, struct partition *initial_partition) {
#ifdef WITH_MPI
struct space *s = e->s;
/* Do the initial partition of the cells. */
partition_initial_partition(initial_partition, e->nodeID, e->nr_nodes, s);
/* Make the proxies. */
engine_makeproxies(e);
/* Re-allocate the local parts. */
if (e->verbose)
message("Re-allocating parts array from %zu to %zu.", s->size_parts,
(size_t)(s->nr_parts * 1.2));
s->size_parts = s->nr_parts * 1.2;
struct part *parts_new = NULL;
struct xpart *xparts_new = NULL;
if (posix_memalign((void **)&parts_new, part_align,
sizeof(struct part) * s->size_parts) != 0 ||
posix_memalign((void **)&xparts_new, xpart_align,
sizeof(struct xpart) * s->size_parts) != 0)
error("Failed to allocate new part data.");
memcpy(parts_new, s->parts, sizeof(struct part) * s->nr_parts);
memcpy(xparts_new, s->xparts, sizeof(struct xpart) * s->nr_parts);
free(s->parts);
free(s->xparts);
s->parts = parts_new;
s->xparts = xparts_new;
/* Re-link the gparts. */
if (s->nr_parts > 0 && s->nr_gparts > 0)
part_relink_gparts(s->parts, s->nr_parts, 0);
/* Re-allocate the local gparts. */
if (e->verbose)
message("Re-allocating gparts array from %zu to %zu.", s->size_gparts,
(size_t)(s->nr_gparts * 1.2));
s->size_gparts = s->nr_gparts * 1.2;
struct gpart *gparts_new = NULL;
if (posix_memalign((void **)&gparts_new, gpart_align,
sizeof(struct gpart) * s->size_gparts) != 0)
error("Failed to allocate new gpart data.");
memcpy(gparts_new, s->gparts, sizeof(struct gpart) * s->nr_gparts);
free(s->gparts);
s->gparts = gparts_new;
/* Re-link the parts. */
if (s->nr_parts > 0 && s->nr_gparts > 0)
part_relink_parts(s->gparts, s->nr_gparts, s->parts);
#ifdef SWIFT_DEBUG_CHECKS
/* Verify that the links are correct */
for (size_t k = 0; k < s->nr_gparts; ++k) {
if (s->gparts[k].id_or_neg_offset <= 0) {
struct part *part = &s->parts[-s->gparts[k].id_or_neg_offset];
if (part->gpart != &s->gparts[k]) error("Linking problem !");
if (s->gparts[k].x[0] != part->x[0] || s->gparts[k].x[1] != part->x[1] ||
s->gparts[k].x[2] != part->x[2])
error("Linked particles are not at the same position !");
}
}
for (size_t k = 0; k < s->nr_parts; ++k) {
if (s->parts[k].gpart != NULL &&
s->parts[k].gpart->id_or_neg_offset != -(ptrdiff_t)k)
error("Linking problem !");
}
#endif
#else
error("SWIFT was not compiled with MPI support.");
#endif
}
/**
* @brief Writes a snapshot with the current state of the engine
*
* @param e The #engine.
*/
void engine_dump_snapshot(struct engine *e) {
struct clocks_time time1, time2;
clocks_gettime(&time1);
if (e->verbose) message("writing snapshot at t=%e.", e->time);
/* Dump... */
#if defined(WITH_MPI)
#if defined(HAVE_PARALLEL_HDF5)
write_output_parallel(e, e->snapshotBaseName, e->internalUnits,
e->snapshotUnits, e->nodeID, e->nr_nodes,
MPI_COMM_WORLD, MPI_INFO_NULL);
#else
write_output_serial(e, e->snapshotBaseName, e->internalUnits,
e->snapshotUnits, e->nodeID, e->nr_nodes, MPI_COMM_WORLD,
MPI_INFO_NULL);
#endif
#else
write_output_single(e, e->snapshotBaseName, e->internalUnits,
e->snapshotUnits);
#endif
clocks_gettime(&time2);
if (e->verbose)
message("writing particle properties took %.3f %s.",
(float)clocks_diff(&time1, &time2), clocks_getunit());
}
#ifdef HAVE_SETAFFINITY
/**
* @brief Returns the initial affinity the main thread is using.
*/
static cpu_set_t *engine_entry_affinity() {
static int use_entry_affinity = 0;
static cpu_set_t entry_affinity;
if (!use_entry_affinity) {
pthread_t engine = pthread_self();
pthread_getaffinity_np(engine, sizeof(entry_affinity), &entry_affinity);
use_entry_affinity = 1;
}
return &entry_affinity;
}
#endif
/**
* @brief Ensure the NUMA node on which we initialise (first touch) everything
* doesn't change before engine_init allocates NUMA-local workers.
*/
void engine_pin() {
#ifdef HAVE_SETAFFINITY
cpu_set_t *entry_affinity = engine_entry_affinity();
int pin;
for (pin = 0; pin < CPU_SETSIZE && !CPU_ISSET(pin, entry_affinity); ++pin)
;
cpu_set_t affinity;
CPU_ZERO(&affinity);
CPU_SET(pin, &affinity);
if (sched_setaffinity(0, sizeof(affinity), &affinity) != 0) {
error("failed to set engine's affinity");
}
#else
error("SWIFT was not compiled with support for pinning.");
#endif
}
/**
* @brief Unpins the main thread.
*/
void engine_unpin() {
#ifdef HAVE_SETAFFINITY
pthread_t main_thread = pthread_self();
cpu_set_t *entry_affinity = engine_entry_affinity();
pthread_setaffinity_np(main_thread, sizeof(*entry_affinity), entry_affinity);
#else
error("SWIFT was not compiled with support for pinning.");
#endif
}
/**
* @brief init an engine with the given number of threads, queues, and
* the given policy.
*
* @param e The #engine.
* @param s The #space in which this #runner will run.
* @param params The parsed parameter file.
* @param nr_nodes The number of MPI ranks.
* @param nodeID The MPI rank of this node.
* @param nr_threads The number of threads per MPI rank.
* @param with_aff use processor affinity, if supported.
* @param policy The queuing policy to use.
* @param verbose Is this #engine talkative ?
* @param internal_units The system of units used internally.
* @param physical_constants The #phys_const used for this run.
* @param hydro The #hydro_props used for this run.
* @param potential The properties of the external potential.
* @param cooling_func The properties of the cooling function.
* @param sourceterms The properties of the source terms function.
*/
void engine_init(struct engine *e, struct space *s,
const struct swift_params *params, int nr_nodes, int nodeID,
int nr_threads, int with_aff, int policy, int verbose,
const struct UnitSystem *internal_units,
const struct phys_const *physical_constants,
const struct hydro_props *hydro,
const struct external_potential *potential,
const struct cooling_function_data *cooling_func,
struct sourceterms *sourceterms) {
/* Clean-up everything */
bzero(e, sizeof(struct engine));
/* Store the values. */
e->s = s;
e->nr_threads = nr_threads;
e->policy = policy;
e->step = 0;
e->nr_nodes = nr_nodes;
e->nodeID = nodeID;
e->proxy_ind = NULL;
e->nr_proxies = 0;
e->forcerebuild = 1;
e->forcerepart = REPART_NONE;
e->links = NULL;
e->nr_links = 0;
e->timeBegin = parser_get_param_double(params, "TimeIntegration:time_begin");
e->timeEnd = parser_get_param_double(params, "TimeIntegration:time_end");
e->timeOld = e->timeBegin;
e->time = e->timeBegin;
e->ti_old = 0;
e->ti_current = 0;
e->timeStep = 0.;
e->timeBase = 0.;
e->timeBase_inv = 0.;
e->drift_all = (policy & engine_policy_drift_all);
e->internalUnits = internal_units;
e->timeFirstSnapshot =
parser_get_param_double(params, "Snapshots:time_first");
e->deltaTimeSnapshot =
parser_get_param_double(params, "Snapshots:delta_time");
e->ti_nextSnapshot = 0;
parser_get_param_string(params, "Snapshots:basename", e->snapshotBaseName);
e->snapshotCompression =
parser_get_opt_param_int(params, "Snapshots:compression", 0);
e->snapshotUnits = malloc(sizeof(struct UnitSystem));
units_init_default(e->snapshotUnits, params, "Snapshots", internal_units);
e->dt_min = parser_get_param_double(params, "TimeIntegration:dt_min");
e->dt_max = parser_get_param_double(params, "TimeIntegration:dt_max");
e->file_stats = NULL;
e->file_timesteps = NULL;
e->deltaTimeStatistics =
parser_get_param_double(params, "Statistics:delta_time");
e->timeLastStatistics = e->timeBegin - e->deltaTimeStatistics;
e->verbose = verbose;
e->count_step = 0;
e->wallclock_time = 0.f;
e->physical_constants = physical_constants;
e->hydro_properties = hydro;
e->external_potential = potential;
e->cooling_func = cooling_func;
e->sourceterms = sourceterms;
e->parameter_file = params;
engine_rank = nodeID;
/* Make the space link back to the engine. */
s->e = e;
/* Get the number of queues */
int nr_queues =
parser_get_opt_param_int(params, "Scheduler:nr_queues", nr_threads);
if (nr_queues <= 0) nr_queues = e->nr_threads;
if (nr_queues != nr_threads)
message("Number of task queues set to %d", nr_queues);
s->nr_queues = nr_queues;
/* Deal with affinity. For now, just figure out the number of cores. */
#if defined(HAVE_SETAFFINITY)
const int nr_cores = sysconf(_SC_NPROCESSORS_ONLN);
cpu_set_t *entry_affinity = engine_entry_affinity();
const int nr_affinity_cores = CPU_COUNT(entry_affinity);
if (nr_cores > CPU_SETSIZE) /* Unlikely, except on e.g. SGI UV. */
error("must allocate dynamic cpu_set_t (too many cores per node)");
char *buf = malloc((nr_cores + 1) * sizeof(char));
buf[nr_cores] = '\0';
for (int j = 0; j < nr_cores; ++j) {
/* Reversed bit order from convention, but same as e.g. Intel MPI's
* I_MPI_PIN_DOMAIN explicit mask: left-to-right, LSB-to-MSB. */
buf[j] = CPU_ISSET(j, entry_affinity) ? '1' : '0';
}
if (verbose && with_aff) message("Affinity at entry: %s", buf);
int *cpuid = NULL;
cpu_set_t cpuset;
if (with_aff) {
cpuid = malloc(nr_affinity_cores * sizeof(int));
int skip = 0;
for (int k = 0; k < nr_affinity_cores; k++) {
int c;
for (c = skip; c < CPU_SETSIZE && !CPU_ISSET(c, entry_affinity); ++c)
;
cpuid[k] = c;
skip = c + 1;
}
#if defined(HAVE_LIBNUMA) && defined(_GNU_SOURCE)
if ((policy & engine_policy_cputight) != engine_policy_cputight) {
if (numa_available() >= 0) {
if (nodeID == 0) message("prefer NUMA-distant CPUs");
/* Get list of numa nodes of all available cores. */
int *nodes = malloc(nr_affinity_cores * sizeof(int));
int nnodes = 0;
for (int i = 0; i < nr_affinity_cores; i++) {
nodes[i] = numa_node_of_cpu(cpuid[i]);
if (nodes[i] > nnodes) nnodes = nodes[i];
}
nnodes += 1;
/* Count cores per node. */
int *core_counts = malloc(nnodes * sizeof(int));
for (int i = 0; i < nr_affinity_cores; i++) {
core_counts[nodes[i]] = 0;
}
for (int i = 0; i < nr_affinity_cores; i++) {
core_counts[nodes[i]] += 1;
}
/* Index cores within each node. */
int *core_indices = malloc(nr_affinity_cores * sizeof(int));
for (int i = nr_affinity_cores - 1; i >= 0; i--) {
core_indices[i] = core_counts[nodes[i]];
core_counts[nodes[i]] -= 1;
}
/* Now sort so that we pick adjacent cpuids from different nodes
* by sorting internal node core indices. */
int done = 0;
while (!done) {
done = 1;
for (int i = 1; i < nr_affinity_cores; i++) {
if (core_indices[i] < core_indices[i - 1]) {
int t = cpuid[i - 1];
cpuid[i - 1] = cpuid[i];
cpuid[i] = t;
t = core_indices[i - 1];
core_indices[i - 1] = core_indices[i];
core_indices[i] = t;
done = 0;
}
}
}
free(nodes);
free(core_counts);
free(core_indices);
}
}
#endif
} else {
if (nodeID == 0) message("no processor affinity used");
} /* with_aff */
/* Avoid (unexpected) interference between engine and runner threads. We can
* do this once we've made at least one call to engine_entry_affinity and
* maybe numa_node_of_cpu(sched_getcpu()), even if the engine isn't already
* pinned. Also unpin this when asked to not pin at all (!with_aff). */
engine_unpin();
#endif
if (with_aff) {
#ifdef WITH_MPI
printf("[%04i] %s engine_init: cpu map is [ ", nodeID,
clocks_get_timesincestart());
#else
printf("%s engine_init: cpu map is [ ", clocks_get_timesincestart());
#endif
for (int i = 0; i < nr_affinity_cores; i++) printf("%i ", cpuid[i]);
printf("].\n");
}
/* Are we doing stuff in parallel? */
if (nr_nodes > 1) {
#ifndef WITH_MPI
error("SWIFT was not compiled with MPI support.");
#else
e->policy |= engine_policy_mpi;
if ((e->proxies = (struct proxy *)malloc(sizeof(struct proxy) *
engine_maxproxies)) == NULL)
error("Failed to allocate memory for proxies.");
bzero(e->proxies, sizeof(struct proxy) * engine_maxproxies);
e->nr_proxies = 0;
#endif
}
/* Open some files */
if (e->nodeID == 0) {
char energyfileName[200] = "";
parser_get_opt_param_string(params, "Statistics:energy_file_name",
energyfileName,
engine_default_energy_file_name);
sprintf(energyfileName + strlen(energyfileName), ".txt");
e->file_stats = fopen(energyfileName, "w");
fprintf(e->file_stats,
"#%14s %14s %14s %14s %14s %14s %14s %14s %14s %14s %14s %14s %14s "
"%14s\n",
"Time", "Mass", "E_tot", "E_kin", "E_int", "E_pot", "E_radcool",
"Entropy", "p_x", "p_y", "p_z", "ang_x", "ang_y", "ang_z");
fflush(e->file_stats);
char timestepsfileName[200] = "";
parser_get_opt_param_string(params, "Statistics:timestep_file_name",
timestepsfileName,
engine_default_timesteps_file_name);
sprintf(timestepsfileName + strlen(timestepsfileName), "_%d.txt",
nr_nodes * nr_threads);
e->file_timesteps = fopen(timestepsfileName, "w");
fprintf(e->file_timesteps,
"# Host: %s\n# Branch: %s\n# Revision: %s\n# Compiler: %s, "
"Version: %s \n# "
"Number of threads: %d\n# Number of MPI ranks: %d\n# Hydrodynamic "
"scheme: %s\n# Hydrodynamic kernel: %s\n# No. of neighbours: %.2f "
"+/- %.2f\n# Eta: %f\n",
hostname(), git_branch(), git_revision(), compiler_name(),
compiler_version(), e->nr_threads, e->nr_nodes, SPH_IMPLEMENTATION,
kernel_name, e->hydro_properties->target_neighbours,
e->hydro_properties->delta_neighbours,
e->hydro_properties->eta_neighbours);
fprintf(e->file_timesteps, "# %6s %14s %14s %10s %10s %16s [%s]\n", "Step",
"Time", "Time-step", "Updates", "g-Updates", "Wall-clock time",
clocks_getunit());
fflush(e->file_timesteps);
}
/* Print policy */
engine_print_policy(e);
/* Print information about the hydro scheme */
if (e->policy & engine_policy_hydro)
if (e->nodeID == 0) hydro_props_print(e->hydro_properties);
/* Check we have sensible time bounds */
if (e->timeBegin >= e->timeEnd)
error(
"Final simulation time (t_end = %e) must be larger than the start time "
"(t_beg = %e)",
e->timeEnd, e->timeBegin);
/* Check we have sensible time-step values */
if (e->dt_min > e->dt_max)
error(
"Minimal time-step size (%e) must be smaller than maximal time-step "
"size (%e)",
e->dt_min, e->dt_max);
/* Deal with timestep */
e->timeBase = (e->timeEnd - e->timeBegin) / max_nr_timesteps;
e->timeBase_inv = 1.0 / e->timeBase;
e->ti_current = 0;
/* Fixed time-step case */
if (e->policy & engine_policy_fixdt) {
e->dt_min = e->dt_max;
/* Find timestep on the timeline */
int dti_timeline = max_nr_timesteps;
while (e->dt_min < dti_timeline * e->timeBase) dti_timeline /= 2;
e->dt_min = e->dt_max = dti_timeline * e->timeBase;
if (e->nodeID == 0) message("Timestep set to %e", e->dt_max);
} else {
if (e->nodeID == 0) {
message("Absolute minimal timestep size: %e", e->timeBase);
float dt_min = e->timeEnd - e->timeBegin;
while (dt_min > e->dt_min) dt_min /= 2.f;
message("Minimal timestep size (on time-line): %e", dt_min);
float dt_max = e->timeEnd - e->timeBegin;
while (dt_max > e->dt_max) dt_max /= 2.f;
message("Maximal timestep size (on time-line): %e", dt_max);
}
}
if (e->dt_min < e->timeBase && e->nodeID == 0)
error(
"Minimal time-step size smaller than the absolute possible minimum "
"dt=%e",
e->timeBase);
if (e->dt_max > (e->timeEnd - e->timeBegin) && e->nodeID == 0)
error("Maximal time-step size larger than the simulation run time t=%e",
e->timeEnd - e->timeBegin);
/* Deal with outputs */
if (e->deltaTimeSnapshot < 0.)
error("Time between snapshots (%e) must be positive.",
e->deltaTimeSnapshot);
if (e->timeFirstSnapshot < e->timeBegin)
error(
"Time of first snapshot (%e) must be after the simulation start t=%e.",
e->timeFirstSnapshot, e->timeBegin);
/* Find the time of the first output */
engine_compute_next_snapshot_time(e);
/* Construct types for MPI communications */
#ifdef WITH_MPI
part_create_mpi_types();
#endif
/* Initialize the threadpool. */
threadpool_init(&e->threadpool, e->nr_threads);
/* First of all, init the barrier and lock it. */
if (pthread_mutex_init(&e->barrier_mutex, NULL) != 0)
error("Failed to initialize barrier mutex.");
if (pthread_cond_init(&e->barrier_cond, NULL) != 0)
error("Failed to initialize barrier condition variable.");
if (pthread_mutex_lock(&e->barrier_mutex) != 0)
error("Failed to lock barrier mutex.");
e->barrier_running = 0;
e->barrier_launch = 0;
e->barrier_launchcount = 0;
/* Init the scheduler with enough tasks for the initial sorting tasks. */
const int nr_tasks = 2 * s->tot_cells + 2 * e->nr_threads;
scheduler_init(&e->sched, e->s, nr_tasks, nr_queues, scheduler_flag_steal,
e->nodeID, &e->threadpool);
/* Allocate and init the threads. */
if ((e->runners = (struct runner *)malloc(sizeof(struct runner) *
e->nr_threads)) == NULL)
error("Failed to allocate threads array.");
for (int k = 0; k < e->nr_threads; k++) {
e->runners[k].id = k;
e->runners[k].e = e;
e->barrier_running += 1;
if (pthread_create(&e->runners[k].thread, NULL, &runner_main,
&e->runners[k]) != 0)
error("Failed to create runner thread.");
/* Try to pin the runner to a given core */
if (with_aff &&
(e->policy & engine_policy_setaffinity) == engine_policy_setaffinity) {
#if defined(HAVE_SETAFFINITY)
/* Set a reasonable queue ID. */
int coreid = k % nr_affinity_cores;
e->runners[k].cpuid = cpuid[coreid];
if (nr_queues < e->nr_threads)
e->runners[k].qid = cpuid[coreid] * nr_queues / nr_affinity_cores;
else
e->runners[k].qid = k;
/* Set the cpu mask to zero | e->id. */
CPU_ZERO(&cpuset);
CPU_SET(cpuid[coreid], &cpuset);
/* Apply this mask to the runner's pthread. */
if (pthread_setaffinity_np(e->runners[k].thread, sizeof(cpu_set_t),
&cpuset) != 0)
error("Failed to set thread affinity.");
#else
error("SWIFT was not compiled with affinity enabled.");
#endif
} else {
e->runners[k].cpuid = k;
e->runners[k].qid = k * nr_queues / e->nr_threads;
}
if (verbose) {
if (with_aff)
message("runner %i on cpuid=%i with qid=%i.", e->runners[k].id,
e->runners[k].cpuid, e->runners[k].qid);
else
message("runner %i using qid=%i no cpuid.", e->runners[k].id,
e->runners[k].qid);
}
}
/* Free the affinity stuff */
#if defined(HAVE_SETAFFINITY)
if (with_aff) {
free(cpuid);
}
free(buf);
#endif
/* Wait for the runner threads to be in place. */
while (e->barrier_running || e->barrier_launch)
if (pthread_cond_wait(&e->barrier_cond, &e->barrier_mutex) != 0)
error("Error while waiting for runner threads to get in place.");
}
/**
* @brief Prints the current policy of an engine
*
* @param e The engine to print information about
*/
void engine_print_policy(struct engine *e) {
#ifdef WITH_MPI
if (e->nodeID == 0) {
printf("[0000] %s engine_policy: engine policies are [ ",
clocks_get_timesincestart());
for (int k = 1; k < 32; k++)
if (e->policy & (1 << k)) printf(" %s ", engine_policy_names[k + 1]);
printf(" ]\n");
fflush(stdout);
}
#else
printf("%s engine_policy: engine policies are [ ",
clocks_get_timesincestart());
for (int k = 1; k < 32; k++)
if (e->policy & (1 << k)) printf(" %s ", engine_policy_names[k + 1]);
printf(" ]\n");
fflush(stdout);
#endif
}
/**
* @brief Computes the next time (on the time line) for a dump
*
* @param e The #engine.
*/
void engine_compute_next_snapshot_time(struct engine *e) {
for (double time = e->timeFirstSnapshot;
time < e->timeEnd + e->deltaTimeSnapshot; time += e->deltaTimeSnapshot) {
/* Output time on the integer timeline */
e->ti_nextSnapshot = (time - e->timeBegin) / e->timeBase;
if (e->ti_nextSnapshot > e->ti_current) break;
}
/* Deal with last snapshot */
if (e->ti_nextSnapshot >= max_nr_timesteps) {
e->ti_nextSnapshot = -1;
if (e->verbose) message("No further output time.");
} else {
/* Be nice, talk... */
const float next_snapshot_time =
e->ti_nextSnapshot * e->timeBase + e->timeBegin;
if (e->verbose)
message("Next output time set to t=%e.", next_snapshot_time);
}
}
/**
* @brief Frees up the memory allocated for this #engine
*/
void engine_clean(struct engine *e) {
free(e->snapshotUnits);
free(e->links);
scheduler_clean(&e->sched);
space_clean(e->s);
threadpool_clean(&e->threadpool);
}