Skip to content
Snippets Groups Projects
Commit f90c5319 authored by Matthieu Schaller's avatar Matthieu Schaller
Browse files

Correction of a typo in the multipole expansion file

parent ed21d280
No related branches found
No related tags found
No related merge requests found
......@@ -83,17 +83,19 @@ Keeping only the $xx$ term of the Hessian matrix in the Taylor expansion and int
\sum_im_ip_{i,x}^2$, we get for the accelerations:
\begin{equation}
a_u(\rr) = Mf_u(\rr-\muu) + \frac{1}{2}(\sigma_{xx}^2 - M\mu_x)\nabla^2f_u(\dd)_{vv},
a_u(\rr) = Mf_u(\rr-\muu) + \frac{1}{2}(\sigma_{xx}^2 - M\mu_x^2)\nabla^2f_u(\dd)_{vv},
\end{equation}
with both $v=u$ or $v\neq u$. Expanding this coordinate by coordinate, we get:
\begin{eqnarray}
a_x(\rr) &=& M\frac{G}{|\dd|^3} d_x + \frac{1}{2}\left(\sigma_{xx}^2 - M\mu_x\right)\left(\frac{15Gd_x^3}{|\dd|^7} -
a_x(\rr) &=& M\frac{G}{|\dd|^3} d_x + \frac{1}{2}\left(\sigma_{xx}^2 - M\mu_x^2\right)\left(\frac{15Gd_x^3}{|\dd|^7} -
\frac{9Gd_x}{|\dd|^5}\right)\\
a_y(\rr) &=& M\frac{G}{|\dd|^3} d_y + \frac{1}{2}\left(\sigma_{xx}^2 - M\mu_x\right)\left(\frac{15Gd_xd_y^2}{|\dd|^7}-
a_y(\rr) &=& M\frac{G}{|\dd|^3} d_y + \frac{1}{2}\left(\sigma_{xx}^2 -
M\mu_x^2\right)\left(\frac{15Gd_xd_y^2}{|\dd|^7}-
\frac{3Gd_x}{|\dd|^5}\right) \\
a_z(\rr) &=& M\frac{G}{|\dd|^3} d_z + \frac{1}{2}\left(\sigma_{xx}^2 - M\mu_x\right)\left(\frac{15Gd_xd_z^2}{|\dd|^7}-
a_z(\rr) &=& M\frac{G}{|\dd|^3} d_z + \frac{1}{2}\left(\sigma_{xx}^2 -
M\mu_x^2\right)\left(\frac{15Gd_xd_z^2}{|\dd|^7}-
\frac{3Gd_x}{|\dd|^5}\right)
\end{eqnarray}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment