diff --git a/examples/theory/multipoles.tex b/examples/theory/multipoles.tex index e9b6b6cc1808016b22c27affe4eb66ed4735734f..0947a5d9fc9f33dc8ac8ef7aaaadd611aa11a223 100644 --- a/examples/theory/multipoles.tex +++ b/examples/theory/multipoles.tex @@ -83,17 +83,19 @@ Keeping only the $xx$ term of the Hessian matrix in the Taylor expansion and int \sum_im_ip_{i,x}^2$, we get for the accelerations: \begin{equation} - a_u(\rr) = Mf_u(\rr-\muu) + \frac{1}{2}(\sigma_{xx}^2 - M\mu_x)\nabla^2f_u(\dd)_{vv}, + a_u(\rr) = Mf_u(\rr-\muu) + \frac{1}{2}(\sigma_{xx}^2 - M\mu_x^2)\nabla^2f_u(\dd)_{vv}, \end{equation} with both $v=u$ or $v\neq u$. Expanding this coordinate by coordinate, we get: \begin{eqnarray} - a_x(\rr) &=& M\frac{G}{|\dd|^3} d_x + \frac{1}{2}\left(\sigma_{xx}^2 - M\mu_x\right)\left(\frac{15Gd_x^3}{|\dd|^7} - + a_x(\rr) &=& M\frac{G}{|\dd|^3} d_x + \frac{1}{2}\left(\sigma_{xx}^2 - M\mu_x^2\right)\left(\frac{15Gd_x^3}{|\dd|^7} - \frac{9Gd_x}{|\dd|^5}\right)\\ - a_y(\rr) &=& M\frac{G}{|\dd|^3} d_y + \frac{1}{2}\left(\sigma_{xx}^2 - M\mu_x\right)\left(\frac{15Gd_xd_y^2}{|\dd|^7}- + a_y(\rr) &=& M\frac{G}{|\dd|^3} d_y + \frac{1}{2}\left(\sigma_{xx}^2 - +M\mu_x^2\right)\left(\frac{15Gd_xd_y^2}{|\dd|^7}- \frac{3Gd_x}{|\dd|^5}\right) \\ - a_z(\rr) &=& M\frac{G}{|\dd|^3} d_z + \frac{1}{2}\left(\sigma_{xx}^2 - M\mu_x\right)\left(\frac{15Gd_xd_z^2}{|\dd|^7}- + a_z(\rr) &=& M\frac{G}{|\dd|^3} d_z + \frac{1}{2}\left(\sigma_{xx}^2 - +M\mu_x^2\right)\left(\frac{15Gd_xd_z^2}{|\dd|^7}- \frac{3Gd_x}{|\dd|^5}\right) \end{eqnarray}