From f55069e8e38bd77fe2155a44e794e45f774d3927 Mon Sep 17 00:00:00 2001 From: Matthieu Schaller <matthieu.schaller@durham.ac.uk> Date: Tue, 21 Apr 2015 18:15:30 +0100 Subject: [PATCH] Explicit version of the FMM equations. First part: multipoles. --- examples/theory/multipoles.tex | 240 ++++------------------------ examples/theory/multipoles_old.tex | 245 +++++++++++++++++++++++++++++ 2 files changed, 274 insertions(+), 211 deletions(-) create mode 100644 examples/theory/multipoles_old.tex diff --git a/examples/theory/multipoles.tex b/examples/theory/multipoles.tex index 0ae9db4..54cafb8 100644 --- a/examples/theory/multipoles.tex +++ b/examples/theory/multipoles.tex @@ -10,7 +10,8 @@ \newcommand{\acc}{\mathbf{a}} \newcommand{\muu}{\boldsymbol{\mu}} -\title{Multipole expansion} +\title{FMM and B-H equations up to quadrupole terms} +\author{Matthieu Schaller} \begin{document} @@ -18,228 +19,45 @@ Bold quantities are vectors. The indices $\alpha,\beta$ run over the directions $x,y,z$. -For a set of particles at position $\p{i}=(x_i, y_i, z_i)$ with mass $m_i$, we can construct the total mass of the set -$M$ and its centre of mass $\muu=(\mu_x, \mu_y, \mu_z)$: +\section{Construction of multi-poles} -\begin{equation} - M = \sum_{i=1}^N m_i, \qquad \muu = \frac{1}{M} \sum_{i=1}^N m_i\p{i}. -\end{equation} - -For each particle, we can define $r_i= \sqrt{(x_i-\mu_x)^2 + (y_i-\mu_y)^2 + (z_i-\mu_z)^2}$, the distance to the -centre of mass.\\ -The quadrupole moment $\overline{\overline{Q}}$ of this mass distribution is then written as - -\begin{eqnarray} - Q_{xx} &=& \sum_i m_i \left( 3(x_i-\mu_x)^2 - r_i^2\right) \\ - Q_{xy} &=& \sum_i m_i 3(x_i-\mu_x)(y_i-\mu_y) \\ - Q_{xz} &=& \sum_i m_i 3(x_i-\mu_x)(z_i-\mu_z) \\ - ~& & \nonumber\\ - Q_{yx} &=& \sum_i m_i 3(y_i-\mu_y)(x_i-\mu_x) \\ - Q_{yy} &=& \sum_i m_i \left( 3(y_i-\mu_y)^2 - r_i^2\right) \\ - Q_{yz} &=& \sum_i m_i 3(y_i-\mu_y)(z_i-\mu_z) \\ - ~& &\nonumber\\ - Q_{zx} &=& \sum_i m_i 3(z_i-\mu_z)(x_i-\mu_x) \\ - Q_{zy} &=& \sum_i m_i 3(z_i-\mu_z)(y_i-\mu_y) \\ - Q_{zz} &=& \sum_i m_i \left( 3(z_i-\mu_z)^2 - r_i^2\right) -\end{eqnarray} -Note that this matrix is symmetric and traceless ($Q_{xx}+Q_{yy}+Q_{zz}=0$), so only $5$ components need to be -computed. \\ - -\pagebreak - -The potential created by this distribution of mass on a point at position $\rr=(r_x,r_y,r_z)$ from the centre of mass -$\muu$ is then: +For a set of particles $A$ at position $\p{i}=(x_i, y_i, z_i)$ with mass $m_i$, +we can construct the total mass of the set +$M_A$ and its centre of mass $\muu_A=(\mu_{A,x}, \mu_{A,y}, \mu_{A,z})$: \begin{equation} - \phi(\rr) = -\frac{G}{|\rr|}M + \frac{1}{2}\frac{G}{|\rr|^5}\sum_{\alpha,\beta} r_\alpha r_\beta Q_{\alpha\beta} + M_A = \sum_{i\in A} m_i, \qquad \muu_A = \frac{1}{M_A} \sum_{i \in A} +m_i\p{i}. \end{equation} -Taking the gradient of this expression to get the acceleration, we obtain: +The multi-poles can then be computed around the centre of mass $\muu_A$. We use +Dehnen's notation. +Monopole: \begin{equation} - -\nabla_\gamma\phi(\rr)= -\frac{GM}{|\rr|^3} r_\gamma + -\frac{1}{2}G\sum_{\alpha,\beta}\left(\frac{\delta_{\alpha\gamma}r_\beta}{|\rr|^5} + -\frac{\delta_{\gamma\beta}r_\alpha}{|\rr|^5} -5\frac{r_\alpha r_\beta r_\gamma}{|\rr|^7}\right)Q_{\alpha\beta} +M_{(0,0,0)} = M_A \end{equation} -Writing this explicitly for each coordinate (using the symmetry of $\overline{\overline{Q}}$), we get: - +Dipole: \begin{eqnarray} - a_x &=& -\frac{Gr_x}{|\rr|^3}M + \frac{1}{2} \frac{G}{|\rr|^5}\left[2r_x Q_{xx} + 2r_yQ_{xy} + 2r_z Q_{xz}\right] - -\frac{5}{2} \frac{G r_x}{|\rr|^7} \Xi, \\ - a_y &=& -\frac{Gr_y}{|\rr|^3}M + \frac{1}{2} \frac{G}{|\rr|^5}\left[2r_x Q_{yx} + 2r_yQ_{yy} + 2r_z Q_{yz}\right] - -\frac{5}{2} \frac{G r_y}{|\rr|^7} \Xi, \\ - a_z &=& -\frac{Gr_z}{|\rr|^3}M + \frac{1}{2} \frac{G}{|\rr|^5}\left[2r_x Q_{zx} + 2r_yQ_{zy} + 2r_z Q_{zz}\right] - -\frac{5}{2} \frac{G r_z}{|\rr|^7} \Xi, \\ +M_{(1,0,0)} &=& 0\\ +M_{(0,1,0)} &=& 0\\ +M_{(0,0,1)} &=& 0 \end{eqnarray} -with the common coefficient $\Xi$ defined as: - -\begin{equation*} - \Xi = \rr\cdot(\overline{\overline{Q}}\cdot \rr) = r_x^2Q_{xx} + r_y^2Q_{yy} + r_z^2Q_{zz} + 2r_xr_yQ_{xy} + -2r_xr_zQ_{xz} + 2r_yr_zQ_{yz} -\end{equation*} - +Quadrupole: +\begin{eqnarray} +M_{(2,0,0)} &=& I_{xx}~= \sum_{i\in A}m_i ( p_{i,x}-\mu_{A,x})^2\\ +M_{(0,2,0)} &=& I_{yy}~= \sum_{i\in A}m_i ( p_{i,y}-\mu_{A,y})^2\\ +M_{(0,0,2)} &=& I_{zz}~= \sum_{i\in A}m_i ( p_{i,z}-\mu_{A,z})^2\\ +M_{(1,1,0)} &=& I_{xy}~= \sum_{i\in A}m_i ( p_{i,x}-\mu_{A,x})( +p_{i,y}-\mu_{A,y})\\ +M_{(0,1,1)} &=& I_{yz}~= \sum_{i\in A}m_i ( p_{i,y}-\mu_{A,y})( +p_{i,z}-\mu_{A,z})\\ +M_{(1,0,1)} &=& I_{xz}~= \sum_{i\in A}m_i ( p_{i,x}-\mu_{A,x})( +p_{i,z}-\mu_{A,z} +\end{eqnarray} -% -% Let's consider the gravitational acceleration $\acc=(a_x,a_y,a_z)$ that a set of point masses at position -% $\p{i}=(p_{i,x}, p_{i,y}, p_{i,z})$ with masses $m_i$ generate at position $\rr=(r_x, r_y, r_z)$: -% -% \begin{equation} -% \acc(\rr) = \sum_i \frac{Gm_i}{|\rr - \p{i}|^3}(\rr - \p{i}) -% \end{equation} -% -% This expression can split in one expression for each of the three spatial coordinates $u=x,y,z$: -% -% \begin{equation} -% a_u (\rr) = \sum_i \frac{m_i G}{|\rr-\p{i}|^3} ( r_u - p_{i,u}) = \sum_i m_i f_u(\rr - \p{i}), -% \end{equation} -% -% with -% -% \begin{equation} -% f_u (\vv) = \frac{G}{|\vv|^3} v_u. -% \end{equation} -% -% We define two quantities to simplify the notations: the total mass $M$ of the set of point masses and the centre of -% mass $\muu=(\mu_x, \mu_y, \mu_z)$ of this set: -% -% \begin{equation} -% M = \sum_{i=1}^N m_i, \qquad \muu = \frac{1}{M} \sum_{i=1}^N m_i\p{i}. -% \end{equation} -% -% -% We can now expand the functions $f_u$ around the vector linking the particle to the centre of mass $\rr-\muu$: -% -% \begin{eqnarray} -% a_u(\rr) &\approx& \sum_i m_i f_u(\rr - \muu) \\ -% & & + \sum_i m_i (\p{i}-\muu) \cdot \nabla f_u(\rr - \muu)\\ -% & & + \frac{1}{2}\sum_i m_i (\p{i}-\muu)\cdot \nabla^2 f_u(\rr-\muu)\cdot (\p{i} - \muu). -% \end{eqnarray} -% -% The first order term is identically zero and can hence be dropped. Re-arranging some of the terms, introducing the -% vector $\dd=\rr-\muu=(d_x,d_y,d_z)$ and using the fact that the Hessian matrix of $f_u$ is symmetric, we get: -% \begin{eqnarray} -% a_u(\rr) &=& Mf_u(\dd) \\ -% & & + \frac{1}{2} \sum_i m_i \p{i}\cdot \nabla^2f_u(\dd)\cdot \p{i} \\ -% & & + \frac{1}{2} M \muu\cdot \nabla^2f_u(\dd)\cdot \muu \\ -% & & - \sum_i m_i \p{i}\cdot \nabla^2f_u(\dd)\cdot \muu \\ -% &=& Mf_u(\dd) \\ -% & & + \frac{1}{2} \sum_i m_i \p{i}\cdot \nabla^2f_u(\dd)\cdot \p{i} \\ -% & &- \frac{1}{2} M \muu\cdot \nabla^2f_u(\dd)\cdot \muu -% \end{eqnarray} -% -% The gradient of $f_u$ reads -% \begin{equation} -% \nabla f_u(\dd) = \frac{-3Gd_u}{|\dd|^5}\dd + \frac{G}{|\dd|^3}\hat{\mathbf{e}}_u, -% \end{equation} -% -% with $\hat{\mathbf{e}}_u$ a unit vector along the $u$-axis. The different components of the Hessian matrix then read: -% -% \begin{eqnarray} -% \nabla^2f_u(\dd)_{uu} &=& \frac{15Gd_u^3}{|\dd|^7} - \frac{9Gd_u}{|\dd|^5} \\ -% \nabla^2f_u(\dd)_{uv} &=& \frac{15Gd_u^2d_v}{|\dd|^7} - \frac{3Gd_v}{|\dd|^5}\\ -% \nabla^2f_u(\dd)_{vv} &=& \frac{15Gd_u^2d_v}{|\dd|^7} - \frac{3Gd_u}{|\dd|^5} \\ -% \nabla^2f_u(\dd)_{vw} &=& \frac{15Gd_ud_vd_w}{|\dd|^7} -% \end{eqnarray} -% -% Keeping only the $xx$ term of the Hessian matrix in the Taylor expansion and introducing $\sigma_{xx}^2 = -% \sum_im_ip_{i,x}^2$, we get for the accelerations: -% -% \begin{equation} -% a_u(\rr) = Mf_u(\rr-\muu) + \frac{1}{2}(\sigma_{xx}^2 - M\mu_x^2)\nabla^2f_u(\dd)_{vv}, -% \end{equation} -% -% with both $v=u$ or $v\neq u$. Expanding this coordinate by coordinate, we get: -% -% \begin{eqnarray} -% a_x(\rr) &=& M\frac{G}{|\dd|^3} d_x + \frac{1}{2}\left(\sigma_{xx}^2 - M\mu_x^2\right)\left(\frac{15Gd_x^3}{|\dd|^7} - -% \frac{9Gd_x}{|\dd|^5}\right)\\ -% a_y(\rr) &=& M\frac{G}{|\dd|^3} d_y + \frac{1}{2}\left(\sigma_{xx}^2 - -% M\mu_x^2\right)\left(\frac{15Gd_xd_y^2}{|\dd|^7}- -% \frac{3Gd_x}{|\dd|^5}\right) \\ -% a_z(\rr) &=& M\frac{G}{|\dd|^3} d_z + \frac{1}{2}\left(\sigma_{xx}^2 - -% M\mu_x^2\right)\left(\frac{15Gd_xd_z^2}{|\dd|^7}- -% \frac{3Gd_x}{|\dd|^5}\right) -% \end{eqnarray} -% -% The quantities $M$, $\muu$ and $\sigma_{xx}^2$ can be constructed on-the-fly by adding particles to the previous total. - -%------------------------------------------------------------------------------------------------- +\section{Recursive construction of the quadrupoles} -% \begin{equation} -% \phi(\rr) = - \sum_{i=1}^N \frac{Gm_i}{|\rr - \p{i}|} = - \sum_{i=1}^N m_i f(\rr - \p{i}), -% \end{equation} -% -% with the function $f(\rr)=G/|\rr|$. The gradient and Hessian matrix of $f$ read: -% -% \begin{equation} -% \nabla f(\rr) = \frac{G}{|\rr|^3}\rr, \quad \nabla^2 f(\rr) = G\left( -% \begin{array}{ccc} -% \frac{3r_x^2}{|\rr|^5} - \frac{1}{|\rr|^3} & \frac{3r_xr_y}{|\rr|^5} & \frac{3r_xr_z}{|\rr|^5} \\ -% \frac{3r_yr_x}{|\rr|^5} & \frac{3r_y^2}{|\rr|^5} - \frac{1}{|\rr|^3} & \frac{3r_yr_z}{|\rr|^5} \\ -% \frac{3r_zr_x}{|\rr|^5} &\frac{3r_zr_y}{|\rr|^5}&\frac{3r_z^2}{|\rr|^5} - \frac{1}{|\rr|^3} \\ -% \end{array} -% \right) -% \end{equation} -% -% -% -% We define two quantities to simplify the notations: the total mass $M$ of the set of point masses and the centre of -% mass $\muu=(\mu_x, \mu_y, \mu_z)$ of this set: -% -% \begin{equation} -% M = \sum_{i=1}^N m_i, \qquad \muu = \frac{1}{M} \sum_{i=1}^N m_i\p{i} -% \end{equation} -% -% Expanding the potential around $\muu$, we find -% -% \begin{equation} -% \phi(\rr) \approx -\sum_{i=1}^N m_i f(\rr - \muu) - \sum_{i=1}^N \frac{m_i}{2} (\p{i} - \muu) \cdot \nabla^2 -% f(\rr - \muu) \cdot (\p{i} - \muu) -% \end{equation} -% -% Note that the first order term, the ``dipole'', is identically zero and not shown here. Re-arranging the terms, we -% get: -% -% \begin{equation} -% \phi(\rr) \approx -Mf(\rr - \muu) - \frac{1}{2}\sum_{i=1}^N m_i \p{i}\cdot \nabla^2 -% f(\rr - \muu) \cdot \p{i} + \frac{M}{2} \muu\cdot \nabla^2 -% f(\rr - \muu) \cdot \muu \nonumber -% \end{equation} -% -% -% Let's now assume that on average $|x_{i,x} - \mu_x| \gg |x_{i,y} - \mu_y| \approx |x_{i,z} - \mu_z|$, then the only -% term in the matrix that needs to be computed is $\nabla^2 f(\rr-\muu)_{xx}$. The expression then reduces to -% -% \begin{equation} -% \phi(\rr) \approx -Mf(\rr - \muu) - \frac{1}{2}\sum_{i=1}^N m_i x_{i,x}^2 \nabla^2f(\rr - \muu)_{xx} + -% \frac{M}{2} \mu_x^2 \nabla^2f(\rr - \muu)_{xx} -% \end{equation} -% -% We can introduce the quantity $d=\sum_{i=1}^N m_i x_{i,x}^2$ to simplify the expression even more: -% -% \begin{equation} -% \phi(\rr) \approx -Mf(\rr - \muu) - \left(\frac{d}{2} - \frac{M\mu_x^2}{2}\right) \nabla^2f(\rr - \muu)_{xx} -% \end{equation} -% -% Using the definition of $f$, we get: -% -% \begin{equation} -% \phi(\rr) \approx -\frac{GM}{|\rr - \muu|} - G\left(\frac{d}{2} - \frac{M\mu_x^2}{2}\right) \left( -% \frac{3(r_x-\mu_x)^2}{|\rr-\muu|^5} - \frac{1}{|\rr-\muu|^3}\right). -% \end{equation} -% -% The acceleration created by the set of particles on a test particle at position $\rr$ is then -% -% \begin{eqnarray} -% \mathbf{a}(\rr)&=& -\nabla\phi(\rr) \nonumber \\ -% &\approx& - \frac{GM}{|\rr - \muu|^3}(\rr-\muu) \nonumber \\ -% & &- G\left(\frac{d}{2} - \frac{M\mu_x^2}{2}\right)\left(\frac{15(r_x-\mu_x)^2}{|\rr-\muu|^7} - -% \frac{1}{|\rr-\muu|^5}\right) (\rr -\muu) \nonumber \\ -% & & + G\left(\frac{d}{2} - \frac{M\mu_x^2}{2}\right) \frac{6(r_x-\mu_x)^2}{|\rr-\muu|^7} \mathbf{e}_x, -% \end{eqnarray} -% -% where $\mathbf{e}_x$ is a unit vector along the x-axis. The quantities $M$, $\muu$ and $d$ can be constructed -% on-the-fly by adding particles to the previous total. \end{document} diff --git a/examples/theory/multipoles_old.tex b/examples/theory/multipoles_old.tex new file mode 100644 index 0000000..0ae9db4 --- /dev/null +++ b/examples/theory/multipoles_old.tex @@ -0,0 +1,245 @@ +\documentclass[a4paper,10pt]{article} +\usepackage[utf8]{inputenc} +\usepackage{amsmath} +\usepackage{amssymb} + +\newcommand{\rr}{\mathbf{r}} +\newcommand{\dd}{\mathbf{d}} +\newcommand{\vv}{\mathbf{v}} +\newcommand{\p}[1]{\mathbf{p}_#1} +\newcommand{\acc}{\mathbf{a}} +\newcommand{\muu}{\boldsymbol{\mu}} + +\title{Multipole expansion} + +\begin{document} + +\maketitle + +Bold quantities are vectors. The indices $\alpha,\beta$ run over the directions $x,y,z$. + +For a set of particles at position $\p{i}=(x_i, y_i, z_i)$ with mass $m_i$, we can construct the total mass of the set +$M$ and its centre of mass $\muu=(\mu_x, \mu_y, \mu_z)$: + +\begin{equation} + M = \sum_{i=1}^N m_i, \qquad \muu = \frac{1}{M} \sum_{i=1}^N m_i\p{i}. +\end{equation} + +For each particle, we can define $r_i= \sqrt{(x_i-\mu_x)^2 + (y_i-\mu_y)^2 + (z_i-\mu_z)^2}$, the distance to the +centre of mass.\\ +The quadrupole moment $\overline{\overline{Q}}$ of this mass distribution is then written as + +\begin{eqnarray} + Q_{xx} &=& \sum_i m_i \left( 3(x_i-\mu_x)^2 - r_i^2\right) \\ + Q_{xy} &=& \sum_i m_i 3(x_i-\mu_x)(y_i-\mu_y) \\ + Q_{xz} &=& \sum_i m_i 3(x_i-\mu_x)(z_i-\mu_z) \\ + ~& & \nonumber\\ + Q_{yx} &=& \sum_i m_i 3(y_i-\mu_y)(x_i-\mu_x) \\ + Q_{yy} &=& \sum_i m_i \left( 3(y_i-\mu_y)^2 - r_i^2\right) \\ + Q_{yz} &=& \sum_i m_i 3(y_i-\mu_y)(z_i-\mu_z) \\ + ~& &\nonumber\\ + Q_{zx} &=& \sum_i m_i 3(z_i-\mu_z)(x_i-\mu_x) \\ + Q_{zy} &=& \sum_i m_i 3(z_i-\mu_z)(y_i-\mu_y) \\ + Q_{zz} &=& \sum_i m_i \left( 3(z_i-\mu_z)^2 - r_i^2\right) +\end{eqnarray} +Note that this matrix is symmetric and traceless ($Q_{xx}+Q_{yy}+Q_{zz}=0$), so only $5$ components need to be +computed. \\ + +\pagebreak + +The potential created by this distribution of mass on a point at position $\rr=(r_x,r_y,r_z)$ from the centre of mass +$\muu$ is then: + +\begin{equation} + \phi(\rr) = -\frac{G}{|\rr|}M + \frac{1}{2}\frac{G}{|\rr|^5}\sum_{\alpha,\beta} r_\alpha r_\beta Q_{\alpha\beta} +\end{equation} + +Taking the gradient of this expression to get the acceleration, we obtain: + +\begin{equation} + -\nabla_\gamma\phi(\rr)= -\frac{GM}{|\rr|^3} r_\gamma + +\frac{1}{2}G\sum_{\alpha,\beta}\left(\frac{\delta_{\alpha\gamma}r_\beta}{|\rr|^5} + +\frac{\delta_{\gamma\beta}r_\alpha}{|\rr|^5} -5\frac{r_\alpha r_\beta r_\gamma}{|\rr|^7}\right)Q_{\alpha\beta} +\end{equation} + +Writing this explicitly for each coordinate (using the symmetry of $\overline{\overline{Q}}$), we get: + +\begin{eqnarray} + a_x &=& -\frac{Gr_x}{|\rr|^3}M + \frac{1}{2} \frac{G}{|\rr|^5}\left[2r_x Q_{xx} + 2r_yQ_{xy} + 2r_z Q_{xz}\right] - +\frac{5}{2} \frac{G r_x}{|\rr|^7} \Xi, \\ + a_y &=& -\frac{Gr_y}{|\rr|^3}M + \frac{1}{2} \frac{G}{|\rr|^5}\left[2r_x Q_{yx} + 2r_yQ_{yy} + 2r_z Q_{yz}\right] - +\frac{5}{2} \frac{G r_y}{|\rr|^7} \Xi, \\ + a_z &=& -\frac{Gr_z}{|\rr|^3}M + \frac{1}{2} \frac{G}{|\rr|^5}\left[2r_x Q_{zx} + 2r_yQ_{zy} + 2r_z Q_{zz}\right] - +\frac{5}{2} \frac{G r_z}{|\rr|^7} \Xi, \\ +\end{eqnarray} +with the common coefficient $\Xi$ defined as: + +\begin{equation*} + \Xi = \rr\cdot(\overline{\overline{Q}}\cdot \rr) = r_x^2Q_{xx} + r_y^2Q_{yy} + r_z^2Q_{zz} + 2r_xr_yQ_{xy} + +2r_xr_zQ_{xz} + 2r_yr_zQ_{yz} +\end{equation*} + + + +% +% Let's consider the gravitational acceleration $\acc=(a_x,a_y,a_z)$ that a set of point masses at position +% $\p{i}=(p_{i,x}, p_{i,y}, p_{i,z})$ with masses $m_i$ generate at position $\rr=(r_x, r_y, r_z)$: +% +% \begin{equation} +% \acc(\rr) = \sum_i \frac{Gm_i}{|\rr - \p{i}|^3}(\rr - \p{i}) +% \end{equation} +% +% This expression can split in one expression for each of the three spatial coordinates $u=x,y,z$: +% +% \begin{equation} +% a_u (\rr) = \sum_i \frac{m_i G}{|\rr-\p{i}|^3} ( r_u - p_{i,u}) = \sum_i m_i f_u(\rr - \p{i}), +% \end{equation} +% +% with +% +% \begin{equation} +% f_u (\vv) = \frac{G}{|\vv|^3} v_u. +% \end{equation} +% +% We define two quantities to simplify the notations: the total mass $M$ of the set of point masses and the centre of +% mass $\muu=(\mu_x, \mu_y, \mu_z)$ of this set: +% +% \begin{equation} +% M = \sum_{i=1}^N m_i, \qquad \muu = \frac{1}{M} \sum_{i=1}^N m_i\p{i}. +% \end{equation} +% +% +% We can now expand the functions $f_u$ around the vector linking the particle to the centre of mass $\rr-\muu$: +% +% \begin{eqnarray} +% a_u(\rr) &\approx& \sum_i m_i f_u(\rr - \muu) \\ +% & & + \sum_i m_i (\p{i}-\muu) \cdot \nabla f_u(\rr - \muu)\\ +% & & + \frac{1}{2}\sum_i m_i (\p{i}-\muu)\cdot \nabla^2 f_u(\rr-\muu)\cdot (\p{i} - \muu). +% \end{eqnarray} +% +% The first order term is identically zero and can hence be dropped. Re-arranging some of the terms, introducing the +% vector $\dd=\rr-\muu=(d_x,d_y,d_z)$ and using the fact that the Hessian matrix of $f_u$ is symmetric, we get: +% \begin{eqnarray} +% a_u(\rr) &=& Mf_u(\dd) \\ +% & & + \frac{1}{2} \sum_i m_i \p{i}\cdot \nabla^2f_u(\dd)\cdot \p{i} \\ +% & & + \frac{1}{2} M \muu\cdot \nabla^2f_u(\dd)\cdot \muu \\ +% & & - \sum_i m_i \p{i}\cdot \nabla^2f_u(\dd)\cdot \muu \\ +% &=& Mf_u(\dd) \\ +% & & + \frac{1}{2} \sum_i m_i \p{i}\cdot \nabla^2f_u(\dd)\cdot \p{i} \\ +% & &- \frac{1}{2} M \muu\cdot \nabla^2f_u(\dd)\cdot \muu +% \end{eqnarray} +% +% The gradient of $f_u$ reads +% \begin{equation} +% \nabla f_u(\dd) = \frac{-3Gd_u}{|\dd|^5}\dd + \frac{G}{|\dd|^3}\hat{\mathbf{e}}_u, +% \end{equation} +% +% with $\hat{\mathbf{e}}_u$ a unit vector along the $u$-axis. The different components of the Hessian matrix then read: +% +% \begin{eqnarray} +% \nabla^2f_u(\dd)_{uu} &=& \frac{15Gd_u^3}{|\dd|^7} - \frac{9Gd_u}{|\dd|^5} \\ +% \nabla^2f_u(\dd)_{uv} &=& \frac{15Gd_u^2d_v}{|\dd|^7} - \frac{3Gd_v}{|\dd|^5}\\ +% \nabla^2f_u(\dd)_{vv} &=& \frac{15Gd_u^2d_v}{|\dd|^7} - \frac{3Gd_u}{|\dd|^5} \\ +% \nabla^2f_u(\dd)_{vw} &=& \frac{15Gd_ud_vd_w}{|\dd|^7} +% \end{eqnarray} +% +% Keeping only the $xx$ term of the Hessian matrix in the Taylor expansion and introducing $\sigma_{xx}^2 = +% \sum_im_ip_{i,x}^2$, we get for the accelerations: +% +% \begin{equation} +% a_u(\rr) = Mf_u(\rr-\muu) + \frac{1}{2}(\sigma_{xx}^2 - M\mu_x^2)\nabla^2f_u(\dd)_{vv}, +% \end{equation} +% +% with both $v=u$ or $v\neq u$. Expanding this coordinate by coordinate, we get: +% +% \begin{eqnarray} +% a_x(\rr) &=& M\frac{G}{|\dd|^3} d_x + \frac{1}{2}\left(\sigma_{xx}^2 - M\mu_x^2\right)\left(\frac{15Gd_x^3}{|\dd|^7} - +% \frac{9Gd_x}{|\dd|^5}\right)\\ +% a_y(\rr) &=& M\frac{G}{|\dd|^3} d_y + \frac{1}{2}\left(\sigma_{xx}^2 - +% M\mu_x^2\right)\left(\frac{15Gd_xd_y^2}{|\dd|^7}- +% \frac{3Gd_x}{|\dd|^5}\right) \\ +% a_z(\rr) &=& M\frac{G}{|\dd|^3} d_z + \frac{1}{2}\left(\sigma_{xx}^2 - +% M\mu_x^2\right)\left(\frac{15Gd_xd_z^2}{|\dd|^7}- +% \frac{3Gd_x}{|\dd|^5}\right) +% \end{eqnarray} +% +% The quantities $M$, $\muu$ and $\sigma_{xx}^2$ can be constructed on-the-fly by adding particles to the previous total. + +%------------------------------------------------------------------------------------------------- + +% \begin{equation} +% \phi(\rr) = - \sum_{i=1}^N \frac{Gm_i}{|\rr - \p{i}|} = - \sum_{i=1}^N m_i f(\rr - \p{i}), +% \end{equation} +% +% with the function $f(\rr)=G/|\rr|$. The gradient and Hessian matrix of $f$ read: +% +% \begin{equation} +% \nabla f(\rr) = \frac{G}{|\rr|^3}\rr, \quad \nabla^2 f(\rr) = G\left( +% \begin{array}{ccc} +% \frac{3r_x^2}{|\rr|^5} - \frac{1}{|\rr|^3} & \frac{3r_xr_y}{|\rr|^5} & \frac{3r_xr_z}{|\rr|^5} \\ +% \frac{3r_yr_x}{|\rr|^5} & \frac{3r_y^2}{|\rr|^5} - \frac{1}{|\rr|^3} & \frac{3r_yr_z}{|\rr|^5} \\ +% \frac{3r_zr_x}{|\rr|^5} &\frac{3r_zr_y}{|\rr|^5}&\frac{3r_z^2}{|\rr|^5} - \frac{1}{|\rr|^3} \\ +% \end{array} +% \right) +% \end{equation} +% +% +% +% We define two quantities to simplify the notations: the total mass $M$ of the set of point masses and the centre of +% mass $\muu=(\mu_x, \mu_y, \mu_z)$ of this set: +% +% \begin{equation} +% M = \sum_{i=1}^N m_i, \qquad \muu = \frac{1}{M} \sum_{i=1}^N m_i\p{i} +% \end{equation} +% +% Expanding the potential around $\muu$, we find +% +% \begin{equation} +% \phi(\rr) \approx -\sum_{i=1}^N m_i f(\rr - \muu) - \sum_{i=1}^N \frac{m_i}{2} (\p{i} - \muu) \cdot \nabla^2 +% f(\rr - \muu) \cdot (\p{i} - \muu) +% \end{equation} +% +% Note that the first order term, the ``dipole'', is identically zero and not shown here. Re-arranging the terms, we +% get: +% +% \begin{equation} +% \phi(\rr) \approx -Mf(\rr - \muu) - \frac{1}{2}\sum_{i=1}^N m_i \p{i}\cdot \nabla^2 +% f(\rr - \muu) \cdot \p{i} + \frac{M}{2} \muu\cdot \nabla^2 +% f(\rr - \muu) \cdot \muu \nonumber +% \end{equation} +% +% +% Let's now assume that on average $|x_{i,x} - \mu_x| \gg |x_{i,y} - \mu_y| \approx |x_{i,z} - \mu_z|$, then the only +% term in the matrix that needs to be computed is $\nabla^2 f(\rr-\muu)_{xx}$. The expression then reduces to +% +% \begin{equation} +% \phi(\rr) \approx -Mf(\rr - \muu) - \frac{1}{2}\sum_{i=1}^N m_i x_{i,x}^2 \nabla^2f(\rr - \muu)_{xx} + +% \frac{M}{2} \mu_x^2 \nabla^2f(\rr - \muu)_{xx} +% \end{equation} +% +% We can introduce the quantity $d=\sum_{i=1}^N m_i x_{i,x}^2$ to simplify the expression even more: +% +% \begin{equation} +% \phi(\rr) \approx -Mf(\rr - \muu) - \left(\frac{d}{2} - \frac{M\mu_x^2}{2}\right) \nabla^2f(\rr - \muu)_{xx} +% \end{equation} +% +% Using the definition of $f$, we get: +% +% \begin{equation} +% \phi(\rr) \approx -\frac{GM}{|\rr - \muu|} - G\left(\frac{d}{2} - \frac{M\mu_x^2}{2}\right) \left( +% \frac{3(r_x-\mu_x)^2}{|\rr-\muu|^5} - \frac{1}{|\rr-\muu|^3}\right). +% \end{equation} +% +% The acceleration created by the set of particles on a test particle at position $\rr$ is then +% +% \begin{eqnarray} +% \mathbf{a}(\rr)&=& -\nabla\phi(\rr) \nonumber \\ +% &\approx& - \frac{GM}{|\rr - \muu|^3}(\rr-\muu) \nonumber \\ +% & &- G\left(\frac{d}{2} - \frac{M\mu_x^2}{2}\right)\left(\frac{15(r_x-\mu_x)^2}{|\rr-\muu|^7} - +% \frac{1}{|\rr-\muu|^5}\right) (\rr -\muu) \nonumber \\ +% & & + G\left(\frac{d}{2} - \frac{M\mu_x^2}{2}\right) \frac{6(r_x-\mu_x)^2}{|\rr-\muu|^7} \mathbf{e}_x, +% \end{eqnarray} +% +% where $\mathbf{e}_x$ is a unit vector along the x-axis. The quantities $M$, $\muu$ and $d$ can be constructed +% on-the-fly by adding particles to the previous total. +\end{document} -- GitLab