Skip to content
Snippets Groups Projects
Commit 648057ed authored by Matthieu Schaller's avatar Matthieu Schaller
Browse files

Written the correct equations of the multipole in the tex file.

parent df2b266b
No related branches found
No related tags found
No related merge requests found
......@@ -16,90 +16,156 @@
\maketitle
Bold quantities are vectors. The indices $u,v,w$ run over the directions $x,y,z$.
Bold quantities are vectors. The indices $\alpha,\beta$ run over the directions $x,y,z$.
Let's consider the gravitational acceleration $\acc=(a_x,a_y,a_z)$ that a set of point masses at position
$\p{i}=(p_{i,x}, p_{i,y}, p_{i,z})$ with masses $m_i$ generate at position $\rr=(r_x, r_y, r_z)$:
For a set of particles at position $\p{i}=(x_i, y_i, z_i)$ with mass $m_i$, we can construct the total mass of the set
$M$ and its centre of mass $\muu=(\mu_x, \mu_y, \mu_z)$:
\begin{equation}
\acc(\rr) = \sum_i \frac{Gm_i}{|\rr - \p{i}|^3}(\rr - \p{i})
M = \sum_{i=1}^N m_i, \qquad \muu = \frac{1}{M} \sum_{i=1}^N m_i\p{i}.
\end{equation}
This expression can split in one expression for each of the three spatial coordinates $u=x,y,z$:
\begin{equation}
a_u (\rr) = \sum_i \frac{m_i G}{|\rr-\p{i}|^3} ( r_u - p_{i,u}) = \sum_i m_i f_u(\rr - \p{i}),
\end{equation}
For each particle, we can define $r_i= \sqrt{(x_i-\mu_x)^2 + (y_i-\mu_y)^2 + (z_i-\mu_z)^2}$, the distance to the
centre of mass.\\
The quadrupole moment $\overline{\overline{Q}}$ of this mass distribution is then written as
with
\begin{eqnarray}
Q_{11} &=& \sum_i m_i \left( 3(x_i-\mu_x)^2 - r_i^2\right) \\
Q_{12} &=& \sum_i m_i 3(x_i-\mu_x)(y_i-\mu_y) \\
Q_{13} &=& \sum_i m_i 3(x_i-\mu_x)(z_i-\mu_z) \\
~& & \nonumber\\
Q_{21} &=& \sum_i m_i 3(y_i-\mu_y)(x_i-\mu_x) \\
Q_{22} &=& \sum_i m_i \left( 3(y_i-\mu_y)^2 - r_i^2\right) \\
Q_{23} &=& \sum_i m_i 3(y_i-\mu_y)(z_i-\mu_z) \\
~& &\nonumber\\
Q_{31} &=& \sum_i m_i 3(z_i-\mu_z)(x_i-\mu_x) \\
Q_{32} &=& \sum_i m_i 3(z_i-\mu_z)(y_i-\mu_y) \\
Q_{33} &=& \sum_i m_i \left( 3(z_i-\mu_z)^2 - r_i^2\right)
\end{eqnarray}
Note that this matrix is symmetric and traceless ($Q_{11}+Q_{22}+Q_{33}=0$), so only $5$ components need to be
computed. \\
\begin{equation}
f_u (\vv) = \frac{G}{|\vv|^3} v_u.
\end{equation}
\pagebreak
We define two quantities to simplify the notations: the total mass $M$ of the set of point masses and the centre of
mass $\muu=(\mu_x, \mu_y, \mu_z)$ of this set:
The potential created by this distribution of mass on a point at position $\rr=(r_x,r_y,r_z)$ from the centre of mass
$\muu$ is then:
\begin{equation}
M = \sum_{i=1}^N m_i, \qquad \muu = \frac{1}{M} \sum_{i=1}^N m_i\p{i}.
\phi(\rr) = -\frac{G}{|\rr|}M + \frac{1}{2}\frac{G}{|\rr|^5}\sum_{\alpha,\beta} r_\alpha r_\beta Q_{\alpha\beta}
\end{equation}
Taking the gradient of this expression to get the acceleration, we obtain:
We can now expand the functions $f_u$ around the vector linking the particle to the centre of mass $\rr-\muu$:
\begin{eqnarray}
a_u(\rr) &\approx& \sum_i m_i f_u(\rr - \muu) \\
& & + \sum_i m_i (\p{i}-\muu) \cdot \nabla f_u(\rr - \muu)\\
& & + \frac{1}{2}\sum_i m_i (\p{i}-\muu)\cdot \nabla^2 f_u(\rr-\muu)\cdot (\p{i} - \muu).
\end{eqnarray}
The first order term is identically zero and can hence be dropped. Re-arranging some of the terms, introducing the
vector $\dd=\rr-\muu=(d_x,d_y,d_z)$ and using the fact that the Hessian matrix of $f_u$ is symmetric, we get:
\begin{eqnarray}
a_u(\rr) &=& Mf_u(\dd) \\
& & + \frac{1}{2} \sum_i m_i \p{i}\cdot \nabla^2f_u(\dd)\cdot \p{i} \\
& & + \frac{1}{2} M \muu\cdot \nabla^2f_u(\dd)\cdot \muu \\
& & - \sum_i m_i \p{i}\cdot \nabla^2f_u(\dd)\cdot \muu \\
&=& Mf_u(\dd) \\
& & + \frac{1}{2} \sum_i m_i \p{i}\cdot \nabla^2f_u(\dd)\cdot \p{i} \\
& &- \frac{1}{2} M \muu\cdot \nabla^2f_u(\dd)\cdot \muu
\end{eqnarray}
The gradient of $f_u$ reads
\begin{equation}
\nabla f_u(\dd) = \frac{-3Gd_u}{|\dd|^5}\dd + \frac{G}{|\dd|^3}\hat{\mathbf{e}}_u,
-\nabla_\gamma\phi(\rr)= -\frac{GM}{|\rr|^3} r_\gamma +
\frac{1}{2}G\sum_{\alpha,\beta}\left(\frac{\delta_{\alpha\gamma}r_\beta}{|\rr|^5} +
\frac{\delta_{\gamma\beta}r_\alpha}{|\rr|^5} -5\frac{r_\alpha r_\beta r_\gamma}{|\rr|^7}\right)Q_{\alpha\beta}
\end{equation}
with $\hat{\mathbf{e}}_u$ a unit vector along the $u$-axis. The different components of the Hessian matrix then read:
Writing this explicitly for each coordinate (using the symmetry of $\overline{\overline{Q}}$), we get:
\begin{eqnarray}
\nabla^2f_u(\dd)_{uu} &=& \frac{15Gd_u^3}{|\dd|^7} - \frac{9Gd_u}{|\dd|^5} \\
\nabla^2f_u(\dd)_{uv} &=& \frac{15Gd_u^2d_v}{|\dd|^7} - \frac{3Gd_v}{|\dd|^5}\\
\nabla^2f_u(\dd)_{vv} &=& \frac{15Gd_u^2d_v}{|\dd|^7} - \frac{3Gd_u}{|\dd|^5} \\
\nabla^2f_u(\dd)_{vw} &=& \frac{15Gd_ud_vd_w}{|\dd|^7}
a_x &=& -\frac{Gr_x}{|\rr|^3}M + \frac{1}{2} \frac{G}{|\rr|^5}\left[2r_x Q_{11} + 2r_yQ_{12} + 2r_z Q_{13}\right] -
\frac{5}{2} \frac{G r_x}{|\rr|^7} \Xi, \\
a_y &=& -\frac{Gr_y}{|\rr|^3}M + \frac{1}{2} \frac{G}{|\rr|^5}\left[2r_x Q_{21} + 2r_yQ_{22} + 2r_z Q_{23}\right] -
\frac{5}{2} \frac{G r_y}{|\rr|^7} \Xi, \\
a_y &=& -\frac{Gr_z}{|\rr|^3}M + \frac{1}{2} \frac{G}{|\rr|^5}\left[2r_x Q_{31} + 2r_yQ_{32} + 2r_z Q_{33}\right] -
\frac{5}{2} \frac{G r_z}{|\rr|^7} \Xi, \\
\end{eqnarray}
with the common coefficient $\Xi$ defined as:
Keeping only the $xx$ term of the Hessian matrix in the Taylor expansion and introducing $\sigma_{xx}^2 =
\sum_im_ip_{i,x}^2$, we get for the accelerations:
\begin{equation*}
\Xi = \rr\cdot(\overline{\overline{Q}}\cdot \rr) = r_x^2Q_{11} + r_y^2Q_{22} + r_z^2Q_{33} + 2r_xr_yQ_{12} +
2r_xr_zQ_{13} + 2r_yr_zQ_{23}
\end{equation*}
\begin{equation}
a_u(\rr) = Mf_u(\rr-\muu) + \frac{1}{2}(\sigma_{xx}^2 - M\mu_x^2)\nabla^2f_u(\dd)_{vv},
\end{equation}
with both $v=u$ or $v\neq u$. Expanding this coordinate by coordinate, we get:
\begin{eqnarray}
a_x(\rr) &=& M\frac{G}{|\dd|^3} d_x + \frac{1}{2}\left(\sigma_{xx}^2 - M\mu_x^2\right)\left(\frac{15Gd_x^3}{|\dd|^7} -
\frac{9Gd_x}{|\dd|^5}\right)\\
a_y(\rr) &=& M\frac{G}{|\dd|^3} d_y + \frac{1}{2}\left(\sigma_{xx}^2 -
M\mu_x^2\right)\left(\frac{15Gd_xd_y^2}{|\dd|^7}-
\frac{3Gd_x}{|\dd|^5}\right) \\
a_z(\rr) &=& M\frac{G}{|\dd|^3} d_z + \frac{1}{2}\left(\sigma_{xx}^2 -
M\mu_x^2\right)\left(\frac{15Gd_xd_z^2}{|\dd|^7}-
\frac{3Gd_x}{|\dd|^5}\right)
\end{eqnarray}
%
% Let's consider the gravitational acceleration $\acc=(a_x,a_y,a_z)$ that a set of point masses at position
% $\p{i}=(p_{i,x}, p_{i,y}, p_{i,z})$ with masses $m_i$ generate at position $\rr=(r_x, r_y, r_z)$:
%
% \begin{equation}
% \acc(\rr) = \sum_i \frac{Gm_i}{|\rr - \p{i}|^3}(\rr - \p{i})
% \end{equation}
%
% This expression can split in one expression for each of the three spatial coordinates $u=x,y,z$:
%
% \begin{equation}
% a_u (\rr) = \sum_i \frac{m_i G}{|\rr-\p{i}|^3} ( r_u - p_{i,u}) = \sum_i m_i f_u(\rr - \p{i}),
% \end{equation}
%
% with
%
% \begin{equation}
% f_u (\vv) = \frac{G}{|\vv|^3} v_u.
% \end{equation}
%
% We define two quantities to simplify the notations: the total mass $M$ of the set of point masses and the centre of
% mass $\muu=(\mu_x, \mu_y, \mu_z)$ of this set:
%
% \begin{equation}
% M = \sum_{i=1}^N m_i, \qquad \muu = \frac{1}{M} \sum_{i=1}^N m_i\p{i}.
% \end{equation}
%
%
% We can now expand the functions $f_u$ around the vector linking the particle to the centre of mass $\rr-\muu$:
%
% \begin{eqnarray}
% a_u(\rr) &\approx& \sum_i m_i f_u(\rr - \muu) \\
% & & + \sum_i m_i (\p{i}-\muu) \cdot \nabla f_u(\rr - \muu)\\
% & & + \frac{1}{2}\sum_i m_i (\p{i}-\muu)\cdot \nabla^2 f_u(\rr-\muu)\cdot (\p{i} - \muu).
% \end{eqnarray}
%
% The first order term is identically zero and can hence be dropped. Re-arranging some of the terms, introducing the
% vector $\dd=\rr-\muu=(d_x,d_y,d_z)$ and using the fact that the Hessian matrix of $f_u$ is symmetric, we get:
% \begin{eqnarray}
% a_u(\rr) &=& Mf_u(\dd) \\
% & & + \frac{1}{2} \sum_i m_i \p{i}\cdot \nabla^2f_u(\dd)\cdot \p{i} \\
% & & + \frac{1}{2} M \muu\cdot \nabla^2f_u(\dd)\cdot \muu \\
% & & - \sum_i m_i \p{i}\cdot \nabla^2f_u(\dd)\cdot \muu \\
% &=& Mf_u(\dd) \\
% & & + \frac{1}{2} \sum_i m_i \p{i}\cdot \nabla^2f_u(\dd)\cdot \p{i} \\
% & &- \frac{1}{2} M \muu\cdot \nabla^2f_u(\dd)\cdot \muu
% \end{eqnarray}
%
% The gradient of $f_u$ reads
% \begin{equation}
% \nabla f_u(\dd) = \frac{-3Gd_u}{|\dd|^5}\dd + \frac{G}{|\dd|^3}\hat{\mathbf{e}}_u,
% \end{equation}
%
% with $\hat{\mathbf{e}}_u$ a unit vector along the $u$-axis. The different components of the Hessian matrix then read:
%
% \begin{eqnarray}
% \nabla^2f_u(\dd)_{uu} &=& \frac{15Gd_u^3}{|\dd|^7} - \frac{9Gd_u}{|\dd|^5} \\
% \nabla^2f_u(\dd)_{uv} &=& \frac{15Gd_u^2d_v}{|\dd|^7} - \frac{3Gd_v}{|\dd|^5}\\
% \nabla^2f_u(\dd)_{vv} &=& \frac{15Gd_u^2d_v}{|\dd|^7} - \frac{3Gd_u}{|\dd|^5} \\
% \nabla^2f_u(\dd)_{vw} &=& \frac{15Gd_ud_vd_w}{|\dd|^7}
% \end{eqnarray}
%
% Keeping only the $xx$ term of the Hessian matrix in the Taylor expansion and introducing $\sigma_{xx}^2 =
% \sum_im_ip_{i,x}^2$, we get for the accelerations:
%
% \begin{equation}
% a_u(\rr) = Mf_u(\rr-\muu) + \frac{1}{2}(\sigma_{xx}^2 - M\mu_x^2)\nabla^2f_u(\dd)_{vv},
% \end{equation}
%
% with both $v=u$ or $v\neq u$. Expanding this coordinate by coordinate, we get:
%
% \begin{eqnarray}
% a_x(\rr) &=& M\frac{G}{|\dd|^3} d_x + \frac{1}{2}\left(\sigma_{xx}^2 - M\mu_x^2\right)\left(\frac{15Gd_x^3}{|\dd|^7} -
% \frac{9Gd_x}{|\dd|^5}\right)\\
% a_y(\rr) &=& M\frac{G}{|\dd|^3} d_y + \frac{1}{2}\left(\sigma_{xx}^2 -
% M\mu_x^2\right)\left(\frac{15Gd_xd_y^2}{|\dd|^7}-
% \frac{3Gd_x}{|\dd|^5}\right) \\
% a_z(\rr) &=& M\frac{G}{|\dd|^3} d_z + \frac{1}{2}\left(\sigma_{xx}^2 -
% M\mu_x^2\right)\left(\frac{15Gd_xd_z^2}{|\dd|^7}-
% \frac{3Gd_x}{|\dd|^5}\right)
% \end{eqnarray}
%
% The quantities $M$, $\muu$ and $\sigma_{xx}^2$ can be constructed on-the-fly by adding particles to the previous total.
The quantities $M$, $\muu$ and $\sigma_{xx}^2$ can be constructed on-the-fly by adding particles to the previous total.
%-------------------------------------------------------------------------------------------------
% \begin{equation}
% \phi(\rr) = - \sum_{i=1}^N \frac{Gm_i}{|\rr - \p{i}|} = - \sum_{i=1}^N m_i f(\rr - \p{i}),
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment