From 648057ed55b4bcc917be11ab6c169d51dad87fb2 Mon Sep 17 00:00:00 2001 From: Matthieu Schaller <matthieu.schaller@durham.ac.uk> Date: Thu, 11 Dec 2014 15:21:16 +0000 Subject: [PATCH] Written the correct equations of the multipole in the tex file. --- examples/theory/multipoles.tex | 186 ++++++++++++++++++++++----------- 1 file changed, 126 insertions(+), 60 deletions(-) diff --git a/examples/theory/multipoles.tex b/examples/theory/multipoles.tex index 0947a5d..276071d 100644 --- a/examples/theory/multipoles.tex +++ b/examples/theory/multipoles.tex @@ -16,90 +16,156 @@ \maketitle -Bold quantities are vectors. The indices $u,v,w$ run over the directions $x,y,z$. +Bold quantities are vectors. The indices $\alpha,\beta$ run over the directions $x,y,z$. -Let's consider the gravitational acceleration $\acc=(a_x,a_y,a_z)$ that a set of point masses at position -$\p{i}=(p_{i,x}, p_{i,y}, p_{i,z})$ with masses $m_i$ generate at position $\rr=(r_x, r_y, r_z)$: +For a set of particles at position $\p{i}=(x_i, y_i, z_i)$ with mass $m_i$, we can construct the total mass of the set +$M$ and its centre of mass $\muu=(\mu_x, \mu_y, \mu_z)$: \begin{equation} - \acc(\rr) = \sum_i \frac{Gm_i}{|\rr - \p{i}|^3}(\rr - \p{i}) + M = \sum_{i=1}^N m_i, \qquad \muu = \frac{1}{M} \sum_{i=1}^N m_i\p{i}. \end{equation} -This expression can split in one expression for each of the three spatial coordinates $u=x,y,z$: - -\begin{equation} - a_u (\rr) = \sum_i \frac{m_i G}{|\rr-\p{i}|^3} ( r_u - p_{i,u}) = \sum_i m_i f_u(\rr - \p{i}), -\end{equation} +For each particle, we can define $r_i= \sqrt{(x_i-\mu_x)^2 + (y_i-\mu_y)^2 + (z_i-\mu_z)^2}$, the distance to the +centre of mass.\\ +The quadrupole moment $\overline{\overline{Q}}$ of this mass distribution is then written as -with +\begin{eqnarray} + Q_{11} &=& \sum_i m_i \left( 3(x_i-\mu_x)^2 - r_i^2\right) \\ + Q_{12} &=& \sum_i m_i 3(x_i-\mu_x)(y_i-\mu_y) \\ + Q_{13} &=& \sum_i m_i 3(x_i-\mu_x)(z_i-\mu_z) \\ + ~& & \nonumber\\ + Q_{21} &=& \sum_i m_i 3(y_i-\mu_y)(x_i-\mu_x) \\ + Q_{22} &=& \sum_i m_i \left( 3(y_i-\mu_y)^2 - r_i^2\right) \\ + Q_{23} &=& \sum_i m_i 3(y_i-\mu_y)(z_i-\mu_z) \\ + ~& &\nonumber\\ + Q_{31} &=& \sum_i m_i 3(z_i-\mu_z)(x_i-\mu_x) \\ + Q_{32} &=& \sum_i m_i 3(z_i-\mu_z)(y_i-\mu_y) \\ + Q_{33} &=& \sum_i m_i \left( 3(z_i-\mu_z)^2 - r_i^2\right) +\end{eqnarray} +Note that this matrix is symmetric and traceless ($Q_{11}+Q_{22}+Q_{33}=0$), so only $5$ components need to be +computed. \\ -\begin{equation} - f_u (\vv) = \frac{G}{|\vv|^3} v_u. -\end{equation} +\pagebreak -We define two quantities to simplify the notations: the total mass $M$ of the set of point masses and the centre of -mass $\muu=(\mu_x, \mu_y, \mu_z)$ of this set: +The potential created by this distribution of mass on a point at position $\rr=(r_x,r_y,r_z)$ from the centre of mass +$\muu$ is then: \begin{equation} - M = \sum_{i=1}^N m_i, \qquad \muu = \frac{1}{M} \sum_{i=1}^N m_i\p{i}. + \phi(\rr) = -\frac{G}{|\rr|}M + \frac{1}{2}\frac{G}{|\rr|^5}\sum_{\alpha,\beta} r_\alpha r_\beta Q_{\alpha\beta} \end{equation} +Taking the gradient of this expression to get the acceleration, we obtain: -We can now expand the functions $f_u$ around the vector linking the particle to the centre of mass $\rr-\muu$: - -\begin{eqnarray} - a_u(\rr) &\approx& \sum_i m_i f_u(\rr - \muu) \\ - & & + \sum_i m_i (\p{i}-\muu) \cdot \nabla f_u(\rr - \muu)\\ - & & + \frac{1}{2}\sum_i m_i (\p{i}-\muu)\cdot \nabla^2 f_u(\rr-\muu)\cdot (\p{i} - \muu). -\end{eqnarray} - -The first order term is identically zero and can hence be dropped. Re-arranging some of the terms, introducing the -vector $\dd=\rr-\muu=(d_x,d_y,d_z)$ and using the fact that the Hessian matrix of $f_u$ is symmetric, we get: -\begin{eqnarray} - a_u(\rr) &=& Mf_u(\dd) \\ - & & + \frac{1}{2} \sum_i m_i \p{i}\cdot \nabla^2f_u(\dd)\cdot \p{i} \\ - & & + \frac{1}{2} M \muu\cdot \nabla^2f_u(\dd)\cdot \muu \\ - & & - \sum_i m_i \p{i}\cdot \nabla^2f_u(\dd)\cdot \muu \\ - &=& Mf_u(\dd) \\ - & & + \frac{1}{2} \sum_i m_i \p{i}\cdot \nabla^2f_u(\dd)\cdot \p{i} \\ - & &- \frac{1}{2} M \muu\cdot \nabla^2f_u(\dd)\cdot \muu -\end{eqnarray} - -The gradient of $f_u$ reads \begin{equation} - \nabla f_u(\dd) = \frac{-3Gd_u}{|\dd|^5}\dd + \frac{G}{|\dd|^3}\hat{\mathbf{e}}_u, + -\nabla_\gamma\phi(\rr)= -\frac{GM}{|\rr|^3} r_\gamma + +\frac{1}{2}G\sum_{\alpha,\beta}\left(\frac{\delta_{\alpha\gamma}r_\beta}{|\rr|^5} + +\frac{\delta_{\gamma\beta}r_\alpha}{|\rr|^5} -5\frac{r_\alpha r_\beta r_\gamma}{|\rr|^7}\right)Q_{\alpha\beta} \end{equation} -with $\hat{\mathbf{e}}_u$ a unit vector along the $u$-axis. The different components of the Hessian matrix then read: +Writing this explicitly for each coordinate (using the symmetry of $\overline{\overline{Q}}$), we get: \begin{eqnarray} - \nabla^2f_u(\dd)_{uu} &=& \frac{15Gd_u^3}{|\dd|^7} - \frac{9Gd_u}{|\dd|^5} \\ - \nabla^2f_u(\dd)_{uv} &=& \frac{15Gd_u^2d_v}{|\dd|^7} - \frac{3Gd_v}{|\dd|^5}\\ - \nabla^2f_u(\dd)_{vv} &=& \frac{15Gd_u^2d_v}{|\dd|^7} - \frac{3Gd_u}{|\dd|^5} \\ - \nabla^2f_u(\dd)_{vw} &=& \frac{15Gd_ud_vd_w}{|\dd|^7} + a_x &=& -\frac{Gr_x}{|\rr|^3}M + \frac{1}{2} \frac{G}{|\rr|^5}\left[2r_x Q_{11} + 2r_yQ_{12} + 2r_z Q_{13}\right] - +\frac{5}{2} \frac{G r_x}{|\rr|^7} \Xi, \\ + a_y &=& -\frac{Gr_y}{|\rr|^3}M + \frac{1}{2} \frac{G}{|\rr|^5}\left[2r_x Q_{21} + 2r_yQ_{22} + 2r_z Q_{23}\right] - +\frac{5}{2} \frac{G r_y}{|\rr|^7} \Xi, \\ + a_y &=& -\frac{Gr_z}{|\rr|^3}M + \frac{1}{2} \frac{G}{|\rr|^5}\left[2r_x Q_{31} + 2r_yQ_{32} + 2r_z Q_{33}\right] - +\frac{5}{2} \frac{G r_z}{|\rr|^7} \Xi, \\ \end{eqnarray} +with the common coefficient $\Xi$ defined as: -Keeping only the $xx$ term of the Hessian matrix in the Taylor expansion and introducing $\sigma_{xx}^2 = -\sum_im_ip_{i,x}^2$, we get for the accelerations: +\begin{equation*} + \Xi = \rr\cdot(\overline{\overline{Q}}\cdot \rr) = r_x^2Q_{11} + r_y^2Q_{22} + r_z^2Q_{33} + 2r_xr_yQ_{12} + +2r_xr_zQ_{13} + 2r_yr_zQ_{23} +\end{equation*} -\begin{equation} - a_u(\rr) = Mf_u(\rr-\muu) + \frac{1}{2}(\sigma_{xx}^2 - M\mu_x^2)\nabla^2f_u(\dd)_{vv}, -\end{equation} -with both $v=u$ or $v\neq u$. Expanding this coordinate by coordinate, we get: -\begin{eqnarray} - a_x(\rr) &=& M\frac{G}{|\dd|^3} d_x + \frac{1}{2}\left(\sigma_{xx}^2 - M\mu_x^2\right)\left(\frac{15Gd_x^3}{|\dd|^7} - -\frac{9Gd_x}{|\dd|^5}\right)\\ - a_y(\rr) &=& M\frac{G}{|\dd|^3} d_y + \frac{1}{2}\left(\sigma_{xx}^2 - -M\mu_x^2\right)\left(\frac{15Gd_xd_y^2}{|\dd|^7}- -\frac{3Gd_x}{|\dd|^5}\right) \\ - a_z(\rr) &=& M\frac{G}{|\dd|^3} d_z + \frac{1}{2}\left(\sigma_{xx}^2 - -M\mu_x^2\right)\left(\frac{15Gd_xd_z^2}{|\dd|^7}- -\frac{3Gd_x}{|\dd|^5}\right) -\end{eqnarray} +% +% Let's consider the gravitational acceleration $\acc=(a_x,a_y,a_z)$ that a set of point masses at position +% $\p{i}=(p_{i,x}, p_{i,y}, p_{i,z})$ with masses $m_i$ generate at position $\rr=(r_x, r_y, r_z)$: +% +% \begin{equation} +% \acc(\rr) = \sum_i \frac{Gm_i}{|\rr - \p{i}|^3}(\rr - \p{i}) +% \end{equation} +% +% This expression can split in one expression for each of the three spatial coordinates $u=x,y,z$: +% +% \begin{equation} +% a_u (\rr) = \sum_i \frac{m_i G}{|\rr-\p{i}|^3} ( r_u - p_{i,u}) = \sum_i m_i f_u(\rr - \p{i}), +% \end{equation} +% +% with +% +% \begin{equation} +% f_u (\vv) = \frac{G}{|\vv|^3} v_u. +% \end{equation} +% +% We define two quantities to simplify the notations: the total mass $M$ of the set of point masses and the centre of +% mass $\muu=(\mu_x, \mu_y, \mu_z)$ of this set: +% +% \begin{equation} +% M = \sum_{i=1}^N m_i, \qquad \muu = \frac{1}{M} \sum_{i=1}^N m_i\p{i}. +% \end{equation} +% +% +% We can now expand the functions $f_u$ around the vector linking the particle to the centre of mass $\rr-\muu$: +% +% \begin{eqnarray} +% a_u(\rr) &\approx& \sum_i m_i f_u(\rr - \muu) \\ +% & & + \sum_i m_i (\p{i}-\muu) \cdot \nabla f_u(\rr - \muu)\\ +% & & + \frac{1}{2}\sum_i m_i (\p{i}-\muu)\cdot \nabla^2 f_u(\rr-\muu)\cdot (\p{i} - \muu). +% \end{eqnarray} +% +% The first order term is identically zero and can hence be dropped. Re-arranging some of the terms, introducing the +% vector $\dd=\rr-\muu=(d_x,d_y,d_z)$ and using the fact that the Hessian matrix of $f_u$ is symmetric, we get: +% \begin{eqnarray} +% a_u(\rr) &=& Mf_u(\dd) \\ +% & & + \frac{1}{2} \sum_i m_i \p{i}\cdot \nabla^2f_u(\dd)\cdot \p{i} \\ +% & & + \frac{1}{2} M \muu\cdot \nabla^2f_u(\dd)\cdot \muu \\ +% & & - \sum_i m_i \p{i}\cdot \nabla^2f_u(\dd)\cdot \muu \\ +% &=& Mf_u(\dd) \\ +% & & + \frac{1}{2} \sum_i m_i \p{i}\cdot \nabla^2f_u(\dd)\cdot \p{i} \\ +% & &- \frac{1}{2} M \muu\cdot \nabla^2f_u(\dd)\cdot \muu +% \end{eqnarray} +% +% The gradient of $f_u$ reads +% \begin{equation} +% \nabla f_u(\dd) = \frac{-3Gd_u}{|\dd|^5}\dd + \frac{G}{|\dd|^3}\hat{\mathbf{e}}_u, +% \end{equation} +% +% with $\hat{\mathbf{e}}_u$ a unit vector along the $u$-axis. The different components of the Hessian matrix then read: +% +% \begin{eqnarray} +% \nabla^2f_u(\dd)_{uu} &=& \frac{15Gd_u^3}{|\dd|^7} - \frac{9Gd_u}{|\dd|^5} \\ +% \nabla^2f_u(\dd)_{uv} &=& \frac{15Gd_u^2d_v}{|\dd|^7} - \frac{3Gd_v}{|\dd|^5}\\ +% \nabla^2f_u(\dd)_{vv} &=& \frac{15Gd_u^2d_v}{|\dd|^7} - \frac{3Gd_u}{|\dd|^5} \\ +% \nabla^2f_u(\dd)_{vw} &=& \frac{15Gd_ud_vd_w}{|\dd|^7} +% \end{eqnarray} +% +% Keeping only the $xx$ term of the Hessian matrix in the Taylor expansion and introducing $\sigma_{xx}^2 = +% \sum_im_ip_{i,x}^2$, we get for the accelerations: +% +% \begin{equation} +% a_u(\rr) = Mf_u(\rr-\muu) + \frac{1}{2}(\sigma_{xx}^2 - M\mu_x^2)\nabla^2f_u(\dd)_{vv}, +% \end{equation} +% +% with both $v=u$ or $v\neq u$. Expanding this coordinate by coordinate, we get: +% +% \begin{eqnarray} +% a_x(\rr) &=& M\frac{G}{|\dd|^3} d_x + \frac{1}{2}\left(\sigma_{xx}^2 - M\mu_x^2\right)\left(\frac{15Gd_x^3}{|\dd|^7} - +% \frac{9Gd_x}{|\dd|^5}\right)\\ +% a_y(\rr) &=& M\frac{G}{|\dd|^3} d_y + \frac{1}{2}\left(\sigma_{xx}^2 - +% M\mu_x^2\right)\left(\frac{15Gd_xd_y^2}{|\dd|^7}- +% \frac{3Gd_x}{|\dd|^5}\right) \\ +% a_z(\rr) &=& M\frac{G}{|\dd|^3} d_z + \frac{1}{2}\left(\sigma_{xx}^2 - +% M\mu_x^2\right)\left(\frac{15Gd_xd_z^2}{|\dd|^7}- +% \frac{3Gd_x}{|\dd|^5}\right) +% \end{eqnarray} +% +% The quantities $M$, $\muu$ and $\sigma_{xx}^2$ can be constructed on-the-fly by adding particles to the previous total. -The quantities $M$, $\muu$ and $\sigma_{xx}^2$ can be constructed on-the-fly by adding particles to the previous total. +%------------------------------------------------------------------------------------------------- % \begin{equation} % \phi(\rr) = - \sum_{i=1}^N \frac{Gm_i}{|\rr - \p{i}|} = - \sum_{i=1}^N m_i f(\rr - \p{i}), -- GitLab