-
Peter W. Draper authoredPeter W. Draper authored
swiftmpirdmastepsim.c 15.33 KiB
/*******************************************************************************
* This file is part of SWIFT.
* Copyright (c) 2020 Peter W. Draper
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
// Simple approach, use the window as a message board, capable of receiving a
// single message per ranks at a time, so needs to be larger than the largest
// message, and we need one per of these per rank.
//
// So we poll all ranks waiting for a push update unlocks its board, we then
// check for the tag and size, which need to match one of the expected
// messages, at which point we copy that away and release the board.
//
// On the send side we work synchronously, sending a message at a time
// waiting for our board to be unlocked by the receiver.
#include <limits.h>
#include <mpi.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "atomic.h"
#include "clocks.h"
#include "error.h"
#include "mpiuse.h"
/* Our rank for all to see. */
int myrank = -1;
/* Number of ranks. */
static int nr_ranks;
/* Flags for controlling access. */
static int LOCKED = -2;
static int UNLOCKED = -3;
/* Size of a block of memory. MESSAGE_SIZE needs to be a multiple of this as
* as we need to align in memory. */
#define BLOCKTYPE size_t
#define MPI_BLOCKTYPE MPI_AINT
static const int BYTESINBLOCK = sizeof(BLOCKTYPE);
/* Size of message header in blocks. The flag, size and tag. */
static const size_t HEADER_SIZE = 3;
/* Size of a message board in blocks, we have one of these per rank per
* communicator (i.e. per window). */
static size_t MESSAGE_SIZE = 0;
/* Are we verbose. */
static int verbose = 0;
/* Set a data pattern and check we get this back, slow... */
static int datacheck = 0;
/* Integer types of send and recv tasks, must match log. */
static const int task_type_send = 22;
static const int task_type_recv = 23;
/* Global communicators for each of the subtypes. */
#define task_subtype_count 22 // Just some upper limit on subtype.
static MPI_Comm subtypeMPI_comms[task_subtype_count];
/* And the windows for one-sided communications. */
static MPI_Win mpi_window[task_subtype_count];
static BLOCKTYPE *mpi_ptr[task_subtype_count];
/* The local send queue. */
static struct mpiuse_log_entry **volatile send_queue;
static int volatile nr_send = 0;
static int volatile todo_send = 0;
/* The local receive queue. */
static struct mpiuse_log_entry **volatile recv_queue;
static int volatile nr_recv = 0;
static int volatile todo_recv = 0;
/**
* @brief Convert a byte count into a number of blocks, rounds up.
*
* @param nr_bytes the number of bytes.
*
* @result the number of blocks needed.
*/
static int toblocks(BLOCKTYPE nr_bytes) {
return (nr_bytes + (BYTESINBLOCK - 1)) / BYTESINBLOCK;
}
/**
* @brief Convert a block count into a number of bytes.
*
* @param nr_block the number of blocks.
*
* @result the number of bytes.
*/
static BLOCKTYPE tobytes(int nr_blocks) { return (nr_blocks * BYTESINBLOCK); }
/**
* @brief fill a data area with our rank.
*
* @param size size of data in bytes.
* @param data the data to fill.
*/
static void datacheck_fill(BLOCKTYPE size, BLOCKTYPE *data) {
for (BLOCKTYPE i = 0; i < size; i++) {
data[i] = myrank;
}
}
/**
* @brief test a filled data area for a value.
*
* @param size size of data in bytes.
* @param data the data to check.
* @param rank the value to, i.e. original rank.
*
* @result 1 on success, 0 otherwise.
*/
static int datacheck_test(BLOCKTYPE size, BLOCKTYPE *data, int rank) {
for (size_t i = 0; i < size; i++) {
if (data[i] != rank) {
message("see %zd expected %d @ %zd", data[i], rank, i);
return 0;
}
}
return 1;
}
/**
* @brief Send thread, sends messages to other ranks one-by-one.
*
* Messages are all considered in order, regardless of the subtype.
*/
static void *send_thread(void *arg) {
message("%d: send thread starts with %d messages", *((int *)arg), nr_send);
ticks starttics = getticks();
for (int k = 0; k < nr_send; k++) {
struct mpiuse_log_entry *log = send_queue[k];
/* Data has the actual data and room for the header. */
BLOCKTYPE datasize = toblocks(log->size) + HEADER_SIZE;
BLOCKTYPE *dataptr = calloc(datasize, BYTESINBLOCK);
log->data = dataptr;
/* Fill data with pattern. */
if (datacheck) datacheck_fill(toblocks(log->size),
&dataptr[HEADER_SIZE]);
/* First element is marked as LOCKED, so only we can update. */
dataptr[0] = LOCKED;
dataptr[1] = log->size;
dataptr[2] = log->tag;
/* And send data to other rank. */
int ret = MPI_Accumulate(dataptr, datasize, MPI_BLOCKTYPE, log->otherrank,
MESSAGE_SIZE * myrank, datasize, MPI_BLOCKTYPE,
MPI_REPLACE, mpi_window[log->subtype]);
if (ret != MPI_SUCCESS)
error("Failed to accumulate data: %d", ret);
/* Now we change the last element to UNLOCKED so that the remote end can
* find out that the data has arrived. */
BLOCKTYPE newval[1];
BLOCKTYPE oldval[1];
newval[0] = UNLOCKED;
oldval[0] = 0;
MPI_Compare_and_swap(&newval[0], dataptr, &oldval[0], MPI_BLOCKTYPE,
log->otherrank, MESSAGE_SIZE * myrank,
mpi_window[log->subtype]);
MPI_Win_flush(log->otherrank, mpi_window[log->subtype]);
// if (oldval[0] == dataptr[0]) {
// message("sent a message to %d/%d (%zd:%zd:%zd @ %zd)", log->otherrank,
// log->subtype, dataptr[0], oldval[0], newval[0],
// MESSAGE_SIZE * myrank);
//} else {
// message("failed to send a message to %d/%d (%zd:%zd:%zd) @ %zd",
// log->otherrank, log->subtype, dataptr[0], oldval[0], newval[0],
// MESSAGE_SIZE * myrank);
//}
/* Wait for completion, this is when remote flips back to LOCKED. We poll
* on a get, as the local window is only used for receiving. Use an Rget
* so we can use MPI_Test to get some local progression. */
newval[0] = UNLOCKED;
while (newval[0] != LOCKED) {
// MPI_Win_flush(log->otherrank, mpi_window[log->subtype]);
MPI_Request request;
MPI_Rget(&newval[0], 1, MPI_BLOCKTYPE, log->otherrank,
MESSAGE_SIZE * myrank, 1, MPI_BLOCKTYPE,
mpi_window[log->subtype], &request);
int flag = 0;
while (flag == 0) {
MPI_Test(&request, &flag, MPI_STATUS_IGNORE);
}
}
//message("sent and received... %d/%d/%d", k, nr_send,
// ((char *)log->data)[0]);
/* Ready the next send. */
}
message("took %.3f %s.", clocks_from_ticks(getticks() - starttics),
clocks_getunit());
return NULL;
}
/**
* @brief Recv thread, checks for messages in the window from other ranks.
*/
static void *recv_thread(void *arg) {
message("%d: recv thread starts", *((int *)arg));
ticks starttics = getticks();
/* Global statistics. */
int lncalls = 0;
double lsum = 0.0;
ticks lmint = INT_MAX;
ticks lmaxt = 0;
/* No. of receives to process. */
todo_recv = nr_recv;
/* We loop while new requests are being send and we still have messages
* to receive. */
while (todo_recv > 0) {
for (int n = 0; n < nr_ranks; n++) {
if (todo_recv <= 0) break;
if (n == myrank) continue;
for (int j = 0; j < task_subtype_count; j++) {
if (todo_recv <= 0) break;
//MPI_Win_flush(n, mpi_window[j]); // XXX emergency measure
BLOCKTYPE *dataptr = &mpi_ptr[j][n * MESSAGE_SIZE];
BLOCKTYPE lockval = dataptr[0];
if (lockval == UNLOCKED) {
/* We have a message waiting to be handled, find the log. */
int found = 0;
for (int k = 0; k < nr_recv; k++) {
struct mpiuse_log_entry *log = recv_queue[k];
if (log != NULL && !log->done && log->otherrank == n &&
log->subtype == j &&
log->size == dataptr[1] && log->tag == dataptr[2]) {
found = 1;
//message("We have a ready message %d/%d at %zd: lockval %zd",
// log->rank, log->subtype, n * MESSAGE_SIZE,
// lockval);
/* Check data sent data is unchanged and received data is as
* expected. */
if (datacheck &&
!datacheck_test(toblocks(log->size),
&dataptr[HEADER_SIZE], n)) {
message("Data mismatch on completion");
}
/* Done, clean up. */
log->done = 1;
free(log->data);
atomic_dec(&todo_recv);
/* Now ready for next message. */
dataptr[0] = LOCKED;
break;
}
}
if (!found) {
error("Failed to find a matching receive");
}
/* Need to allow for some MPI progession. Since we make no
* MPI calls. Should not be needed if using a progression thread? */
int flag = 0;
MPI_Iprobe(MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &flag,
MPI_STATUS_IGNORE);
}
}
}
}
message("took %.3f %s.", clocks_from_ticks(getticks() - starttics),
clocks_getunit());
/* Thread exits. */
return NULL;
}
/**
* @brief Comparison function for tags.
*/
static int cmp_logs(const void *p1, const void *p2) {
struct mpiuse_log_entry *l1 = *(struct mpiuse_log_entry **)p1;
struct mpiuse_log_entry *l2 = *(struct mpiuse_log_entry **)p2;
if (l1->tag > l2->tag) return 1;
if (l1->tag < l2->tag) return -1;
return 0;
}
/**
* @brief Pick out the relevant logging data for our rank.
*/
static size_t pick_logs() {
size_t nlogs = mpiuse_nr_logs();
size_t maxsize = 0;
/* Duplicate of logs. */
send_queue = (struct mpiuse_log_entry **)calloc(
nlogs, sizeof(struct mpiuse_log_entry *));
nr_send = 0;
recv_queue = (struct mpiuse_log_entry **)calloc(
nlogs, sizeof(struct mpiuse_log_entry *));
nr_recv = 0;
for (int k = 0; k < nlogs; k++) {
struct mpiuse_log_entry *log = mpiuse_get_log(k);
if (log->activation) {
if (log->rank == myrank) {
log->done = 0;
log->data = NULL;
if (log->type == task_type_send) {
send_queue[nr_send] = log;
nr_send++;
} else if (log->type == task_type_recv) {
recv_queue[nr_recv] = log;
nr_recv++;
} else {
error("task type '%d' is not a known send or recv task", log->type);
}
}
/* Across all ranks. */
if (log->size > maxsize) maxsize = log->size;
}
}
/* Sort into increasing tag. */
qsort(recv_queue, nr_recv, sizeof(struct mpiuse_log_entry *), cmp_logs);
qsort(send_queue, nr_send, sizeof(struct mpiuse_log_entry *), cmp_logs);
if (verbose)
message("maxsize = %zd, nr_send = %d, nr_recv = %d", maxsize, nr_send,
nr_recv);
return maxsize;
}
/**
* @brief usage help.
*/
static void usage(char *argv[]) {
fprintf(stderr, "Usage: %s [-vf] SWIFT_mpiuse-log-file.dat logfile.dat\n",
argv[0]);
fprintf(stderr, " options: -v verbose\n");
fflush(stderr);
}
/**
* @brief main function.
*/
int main(int argc, char *argv[]) {
/* Initiate MPI. */
int prov = 0;
int res = MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &prov);
if (res != MPI_SUCCESS)
error("Call to MPI_Init_thread failed with error %i.", res);
res = MPI_Comm_size(MPI_COMM_WORLD, &nr_ranks);
if (res != MPI_SUCCESS) error("MPI_Comm_size failed with error %i.", res);
res = MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
if (res != MPI_SUCCESS)
error("Call to MPI_Comm_rank failed with error %i.", res);
/* Handle the command-line, we expect a mpiuse data file to read and various
* options. */
int opt;
while ((opt = getopt(argc, argv, "vd")) != -1) {
switch (opt) {
case 'd':
datacheck = 1;
break;
case 'v':
verbose = 1;
break;
default:
if (myrank == 0) usage(argv);
return 1;
}
}
if (optind >= argc - 1) {
if (myrank == 0) usage(argv);
return 1;
}
char *infile = argv[optind];
char *logfile = argv[optind + 1];
/* Now we read the SWIFT MPI logger output that defines the communcations
* we will undertake and the time differences between injections into the
* queues. Note this has all ranks for a single steps, SWIFT outputs one MPI
* log per rank per step, so you need to combine all ranks from a step. */
mpiuse_log_restore(infile);
int nranks = mpiuse_nr_ranks();
/* This should match the expected size. */
if (nr_ranks != nranks)
error("The number of MPI ranks %d does not match the expected value %d",
nranks, nr_ranks);
/* Extract the send and recv messages for our rank. */
size_t maxsize = pick_logs();
/* Size of a message board. Needs to align on size_t. */
MESSAGE_SIZE = toblocks(maxsize) + HEADER_SIZE;
/* Now for the one-sided setup... We need a buffer with space largest
* message, plus one of these per rank. */
for (int i = 0; i < task_subtype_count; i++) {
MPI_Comm_dup(MPI_COMM_WORLD, &subtypeMPI_comms[i]);
MPI_Win_allocate(tobytes(MESSAGE_SIZE * nr_ranks), BYTESINBLOCK,
MPI_INFO_NULL, subtypeMPI_comms[i], &mpi_ptr[i],
&mpi_window[i]);
/* Assert a shared lock with all the other processes on this window. */
MPI_Win_lock_all(0, mpi_window[i]);
}
message("Windows allocated");
/* Time to start time. Try to make it synchronous across the ranks. */
MPI_Barrier(MPI_COMM_WORLD);
clocks_set_cpufreq(0);
if (myrank == 0) {
message("Start of MPI tests");
message("==================");
if (verbose) {
if (datacheck)
message("checking data pattern on send and recv completion");
}
}
/* Make two threads, one for send and one for receiving. */
pthread_t sendthread;
if (pthread_create(&sendthread, NULL, &send_thread, &myrank) != 0)
error("Failed to create send thread.");
pthread_t recvthread;
if (pthread_create(&recvthread, NULL, &recv_thread, &myrank) != 0)
error("Failed to create recv thread.");
/* Wait until all threads have exited and all message exchanges have
* completed. */
pthread_join(sendthread, NULL);
pthread_join(recvthread, NULL);
/* Free the window locks. */
for (int i = 0; i < task_subtype_count; i++) {
MPI_Win_unlock_all(mpi_window[i]);
MPI_Win_free(&mpi_window[i]);
}
/* Dump the updated MPI logs. */
MPI_Barrier(MPI_COMM_WORLD);
fflush(stdout);
if (myrank == 0) message("Dumping updated log");
mpiuse_dump_logs(nranks, logfile);
/* Shutdown MPI. */
res = MPI_Finalize();
if (res != MPI_SUCCESS)
error("call to MPI_Finalize failed with error %i.", res);
if (myrank == 0) message("Bye");
return 0;
}