Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Q
QuickSched
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Deploy
Releases
Model registry
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
SWIFT
QuickSched
Commits
b6c23ed1
Commit
b6c23ed1
authored
10 years ago
by
Matthieu Schaller
Browse files
Options
Downloads
Patches
Plain Diff
Back to a B-H implementation with loads of separated tasks, ready for FMM.
parent
f8d4ff50
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
examples/test_fmm.c
+158
-145
158 additions, 145 deletions
examples/test_fmm.c
with
158 additions
and
145 deletions
examples/test_fmm.c
+
158
−
145
View file @
b6c23ed1
...
...
@@ -38,7 +38,7 @@
/* Some local constants. */
#define cell_pool_grow 1000
#define cell_maxparts 100
#define task_limit 1e
8
#define task_limit 1e
10
#define const_G 1 // 6.6738e-8
#define dist_min 0.5
/* Used for legacy walk only */
#define dist_cutoff_ratio 1.5
...
...
@@ -362,15 +362,17 @@ void cell_split(struct cell *c, struct qsched *s) {
qsched_addunlock
(
s
,
progenitors
[
k
]
->
com_tid
,
c
->
com_tid
);
#endif
/* Otherwise, we're at a leaf, so create the cell's particle-cell task. */
}
else
{
struct
cell
*
data
[
2
]
=
{
root
,
c
};
int
tid
=
qsched_addtask
(
s
,
task_type_self_pc
,
task_flag_none
,
data
,
2
*
sizeof
(
struct
cell
*
),
1
);
qsched_addlock
(
s
,
tid
,
c
->
res
);
#ifdef COM_AS_TASK
qsched_addunlock
(
s
,
root
->
com_tid
,
tid
);
#endif
/* /\* Otherwise, we're at a leaf, so create the cell's particle-cell task. *\/ */
/* } else { */
/* struct cell *data[2] = {root, c}; */
/* int tid = qsched_addtask(s, task_type_self_pc, task_flag_none, data, */
/* 2 * sizeof(struct cell *), 1); */
/* qsched_addlock(s, tid, c->res); */
/* #ifdef COM_AS_TASK */
/* qsched_addunlock(s, root->com_tid, tid); */
/* #endif */
}
/* does the cell need to be split? */
/* Compute the cell's center of mass. */
...
...
@@ -390,7 +392,7 @@ void cell_split(struct cell *c, struct qsched *s) {
/**
* @brief Interacts all particles in ci with the monopole in cj
*/
static
inline
void
make_interact_pc
(
struct
part
_local
*
parts
,
int
count
,
static
inline
void
make_interact_pc
(
struct
part
*
parts
,
int
count
,
double
*
loc
,
struct
cell
*
cj
)
{
int
j
,
k
;
...
...
@@ -416,7 +418,7 @@ static inline void make_interact_pc(struct part_local *parts, int count,
#endif
/* Init the com's data. */
for
(
k
=
0
;
k
<
3
;
k
++
)
com
[
k
]
=
cj
->
new
.
com
[
k
]
-
loc
[
k
]
;
for
(
k
=
0
;
k
<
3
;
k
++
)
com
[
k
]
=
cj
->
new
.
com
[
k
];
mcom
=
cj
->
new
.
mass
;
/* Loop over every particle in leaf. */
...
...
@@ -488,148 +490,154 @@ static inline int are_neighbours(struct cell *ci, struct cell *cj) {
return
1
;
}
/*
*
* @brief Compute the interactions between all particles in a cell leaf
* and the center of mass of all the cells in a part of the tree
* described by ci and cj
*
* @param ci The #cell containing the particle
* @param cj The #cell containing the center of mass.
*/
static
inline
void
iact_pair_pc
(
struct
cell
*
ci
,
struct
cell
*
cj
,
struct
cell
*
leaf
,
struct
part_local
*
parts
,
int
count
,
double
*
loc
)
{
/*
/\** */
/*
* @brief Compute the interactions between all particles in a cell leaf
*/
/*
* and the center of mass of all the cells in a part of the tree
*/
/*
* described by ci and cj
*/
/* * */
/*
* @param ci The #cell containing the particle
*/
/*
* @param cj The #cell containing the center of mass.
*/
/* *\/
*/
/*
static inline void iact_pair_pc(struct cell *ci, struct cell *cj,
*/
/*
struct cell *leaf, struct part_local *parts,
*/
/*
int count, double *loc) {
*/
struct
cell
*
cp
,
*
cps
;
/*
struct cell *cp, *cps;
*/
#ifdef SANITY_CHECKS
/*
#ifdef SANITY_CHECKS
*/
/* Early abort? */
if
(
ci
->
count
==
0
||
cj
->
count
==
0
)
error
(
"Empty cell !"
);
/*
/
\
* Early abort?
*\/
*/
/*
if (ci->count == 0 || cj->count == 0) error("Empty cell !");
*/
/* Sanity check */
if
(
ci
==
cj
)
error
(
"The impossible has happened: pair interaction between a cell and "
"itself."
);
/*
/
\
* Sanity check
*\/
*/
/*
if (ci == cj)
*/
/*
error("The impossible has happened: pair interaction between a cell and "
*/
/*
"itself.");
*/
/* Sanity check */
if
(
!
is_inside
(
leaf
,
ci
))
error
(
"The impossible has happened: The leaf is not within ci"
);
/*
/
\
* Sanity check
*\/
*/
/*
if (!is_inside(leaf, ci))
*/
/*
error("The impossible has happened: The leaf is not within ci");
*/
/* Are the cells direct neighbours? */
if
(
!
are_neighbours
(
ci
,
cj
))
error
(
"Cells are not neighours"
);
/*
/
\
* Are the cells direct neighbours?
*\/
*/
/*
if (!are_neighbours(ci, cj)) error("Cells are not neighours");
*/
/* Are both cells split ? */
if
(
!
ci
->
split
||
!
cj
->
split
)
error
(
"One of the cells is not split !"
);
#endif
/*
/
\
* Are both cells split ?
*\/
*/
/*
if (!ci->split || !cj->split) error("One of the cells is not split !");
*/
/*
#endif
*/
/* Let's find in which subcell of ci the leaf is */
for
(
cp
=
ci
->
firstchild
;
cp
!=
ci
->
sibling
;
cp
=
cp
->
sibling
)
{
/*
/
\
* Let's find in which subcell of ci the leaf is
*\/
*/
/*
for (cp = ci->firstchild; cp != ci->sibling; cp = cp->sibling) {
*/
if
(
is_inside
(
leaf
,
cp
))
break
;
}
/*
if (is_inside(leaf, cp)) break;
*/
/* } */
if
(
are_neighbours_different_size
(
cp
,
cj
))
{
/*
if (are_neighbours_different_size(cp, cj)) {
*/
/* Now interact this subcell with all subcells of cj */
for
(
cps
=
cj
->
firstchild
;
cps
!=
cj
->
sibling
;
cps
=
cps
->
sibling
)
{
/*
/
\
* Now interact this subcell with all subcells of cj
*\/
*/
/*
for (cps = cj->firstchild; cps != cj->sibling; cps = cps->sibling) {
*/
/* Check whether we have to recurse or can directly jump to the multipole
* calculation */
if
(
are_neighbours
(
cp
,
cps
))
{
/*
/
\
* Check whether we have to recurse or can directly jump to the multipole
*/
/*
* calculation
*\/
*/
/*
if (are_neighbours(cp, cps)) {
*/
/* We only recurse if the children are split */
if
(
cp
->
split
&&
cps
->
split
)
{
iact_pair_pc
(
cp
,
cps
,
leaf
,
parts
,
count
,
loc
);
}
/*
/
\
* We only recurse if the children are split
*\/
*/
/*
if (cp->split && cps->split) {
*/
/*
iact_pair_pc(cp, cps, leaf, parts, count, loc);
*/
/*
}
*/
}
else
{
make_interact_pc
(
parts
,
count
,
loc
,
cps
);
}
}
}
else
{
/*
} else {
*/
/*
make_interact_pc(parts, count, loc, cps);
*/
/*
}
*/
/*
}
*/
/*
} else {
*/
/* If cp is not a neoghbour of cj, we can directly interact with the
* multipoles */
for
(
cps
=
cj
->
firstchild
;
cps
!=
cj
->
sibling
;
cps
=
cps
->
sibling
)
{
/*
/
\
* If cp is not a neoghbour of cj, we can directly interact with the
*/
/*
* multipoles
*\/
*/
/*
for (cps = cj->firstchild; cps != cj->sibling; cps = cps->sibling) {
*/
make_interact_pc
(
parts
,
count
,
loc
,
cps
);
}
}
}
/*
make_interact_pc(parts, count, loc, cps);
*/
/*
}
*/
/* } */
/* } */
/**
* @brief Compute the interactions between all particles in a leaf and
* and all the monopoles in the cell c
*
* @param c The #cell containing the monopoles
* @param leaf The #cell containing the particles
*/
static
inline
void
iact_self_pc
(
struct
cell
*
c
,
struct
cell
*
leaf
,
struct
part_local
*
parts
)
{
struct
cell
*
cp
,
*
cps
;
int
collect_part_data
=
0
;
#ifdef SANITY_CHECKS
/* Early abort? */
if
(
c
->
count
==
0
)
error
(
"Empty cell !"
);
/* /\** */
/* * @brief Compute the interactions between all particles in a leaf and */
/* * and all the monopoles in the cell c */
/* * */
/* * @param c The #cell containing the monopoles */
/* * @param leaf The #cell containing the particles */
/* *\/ */
/* static inline void iact_self_pc(struct cell *c, struct cell *leaf, */
/* struct part_local *parts) { */
if
(
!
c
->
split
)
error
(
"Cell is not split !"
);
/* struct cell *cp, *cps; */
/* int collect_part_data = 0; */
#endif
/* Get local copies of the particle data. */
if
(
parts
==
NULL
)
{
int
count
=
leaf
->
count
;
if
((
parts
=
(
struct
part_local
*
)
malloc
(
sizeof
(
struct
part_local
)
*
count
))
==
NULL
)
error
(
"Failed to allocate local parts."
);
for
(
int
k
=
0
;
k
<
count
;
k
++
)
{
for
(
int
j
=
0
;
j
<
3
;
j
++
)
{
parts
[
k
].
x
[
j
]
=
leaf
->
parts
[
k
].
x
[
j
]
-
leaf
->
loc
[
j
];
parts
[
k
].
a
[
j
]
=
0
.
0
f
;
}
parts
[
k
].
mass
=
leaf
->
parts
[
k
].
mass
;
}
collect_part_data
=
1
;
}
/* #ifdef SANITY_CHECKS */
/*
Find in which subcell of c the leaf is
*/
for
(
cp
=
c
->
firstchild
;
cp
!=
c
->
sibling
;
cp
=
cp
->
sibling
)
{
/*
/\* Early abort? *\/
*/
/* if (c->count == 0) error("Empty cell !"); */
/* Only recurse if the leaf is in this part of the tree */
if
(
is_inside
(
leaf
,
cp
))
break
;
}
/* if (!c->split) error("Cell is not split !"); */
if
(
cp
->
split
)
{
/* Recurse if the cell can be split */
iact_self_pc
(
cp
,
leaf
,
parts
);
/* Now, interact with every other subcell */
for
(
cps
=
c
->
firstchild
;
cps
!=
c
->
sibling
;
cps
=
cps
->
sibling
)
{
/* #endif */
/* Since cp and cps will be direct neighbours it is only worth recursing
*/
/* if the cells can both be split */
if
(
cp
!=
cps
&&
cps
->
split
)
iact_pair_pc
(
cp
,
cps
,
leaf
,
parts
,
leaf
->
count
,
leaf
->
loc
);
}
}
/* /\* Get local copies of the particle data. *\/ */
/* if (parts == NULL) { */
/* int count = leaf->count; */
/* if ((parts = */
/* (struct part_local *)malloc(sizeof(struct part_local) * count)) == */
/* NULL) */
/* error("Failed to allocate local parts."); */
/* for (int k = 0; k < count; k++) { */
/* for (int j = 0; j < 3; j++) { */
/* parts[k].x[j] = leaf->parts[k].x[j] - leaf->loc[j]; */
/* parts[k].a[j] = 0.0f; */
/* } */
/* parts[k].mass = leaf->parts[k].mass; */
/* } */
/* collect_part_data = 1; */
/* } */
/* /\* Find in which subcell of c the leaf is *\/ */
/* for (cp = c->firstchild; cp != c->sibling; cp = cp->sibling) { */
/* /\* Only recurse if the leaf is in this part of the tree *\/ */
/* if (is_inside(leaf, cp)) break; */
/* } */
/* if (cp->split) { */
/* /\* Recurse if the cell can be split *\/ */
/* iact_self_pc(cp, leaf, parts); */
/* /\* Now, interact with every other subcell *\/ */
/* for (cps = c->firstchild; cps != c->sibling; cps = cps->sibling) { */
/* /\* Since cp and cps will be direct neighbours it is only worth recursing */
/* *\/ */
/* /\* if the cells can both be split *\/ */
/* if (cp != cps && cps->split) */
/* iact_pair_pc(cp, cps, leaf, parts, leaf->count, leaf->loc); */
/* } */
/* } */
/* /\* Clean up local parts? *\/ */
/* if (collect_part_data) { */
/* for (int k = 0; k < leaf->count; k++) { */
/* for (int j = 0; j < 3; j++) leaf->parts[k].a[j] += parts[k].a[j]; */
/* } */
/* free(parts); */
/* } */
/* } */
static
inline
void
iact_pair_pc
(
struct
cell
*
ci
,
struct
cell
*
cj
)
{
make_interact_pc
(
ci
->
parts
,
ci
->
count
,
ci
->
loc
,
cj
);
/* Clean up local parts? */
if
(
collect_part_data
)
{
for
(
int
k
=
0
;
k
<
leaf
->
count
;
k
++
)
{
for
(
int
j
=
0
;
j
<
3
;
j
++
)
leaf
->
parts
[
k
].
a
[
j
]
+=
parts
[
k
].
a
[
j
];
}
free
(
parts
);
}
}
static
inline
void
iact_pair_direct
(
struct
cell
*
ci
,
struct
cell
*
cj
)
{
int
i
,
j
,
k
;
...
...
@@ -745,27 +753,32 @@ void iact_pair(struct cell *ci, struct cell *cj) {
error
(
"The impossible has happened: pair interaction between a cell and "
"itself."
);
#endif
/* Are the cells direct neighbours? */
if
(
are_neighbours
(
ci
,
cj
))
{
if
(
!
are_neighbours
(
ci
,
cj
))
error
(
"Non-neighbouring cells !"
);
/* Are both cells split ? */
if
(
ci
->
split
&&
cj
->
split
)
{
#endif
/* Let's split both cells and build all possible pairs */
for
(
cp
=
ci
->
firstchild
;
cp
!=
ci
->
sibling
;
cp
=
cp
->
sibling
)
{
for
(
cps
=
cj
->
firstchild
;
cps
!=
cj
->
sibling
;
cps
=
cps
->
sibling
)
{
/* If the cells are neighbours, recurse. */
if
(
are_neighbours
(
cp
,
cps
))
{
iact_pair
(
cp
,
cps
);
}
}
/* Are both cells split ? */
if
(
ci
->
split
&&
cj
->
split
)
{
/* Let's split both cells and build all possible pairs */
for
(
cp
=
ci
->
firstchild
;
cp
!=
ci
->
sibling
;
cp
=
cp
->
sibling
)
{
for
(
cps
=
cj
->
firstchild
;
cps
!=
cj
->
sibling
;
cps
=
cps
->
sibling
)
{
/* If the cells are neighbours, recurse. */
if
(
are_neighbours
(
cp
,
cps
))
{
iact_pair
(
cp
,
cps
);
}
else
{
/* Otherwise do cell-mulitpole interactions */
iact_pair_pc
(
cp
,
cps
);
iact_pair_pc
(
cps
,
cp
);
}
}
}
else
{
/* Otherwise, compute the interactions at this level directly. */
iact_pair_direct
(
ci
,
cj
);
}
}
else
{
/* Otherwise, compute the interactions at this level directly. */
iact_pair_direct
(
ci
,
cj
);
}
}
...
...
@@ -928,7 +941,7 @@ void create_tasks(struct qsched *s, struct cell *ci, struct cell *cj) {
}
else
{
/* Cells are direct neighbours */
/* Are both cells split ? */
/* Are both cells split
and we are above the task limit
? */
if
(
ci
->
split
&&
cj
->
split
&&
ci
->
count
>
task_limit
/
cj
->
count
)
{
/* Let's split both cells and build all possible pairs */
...
...
@@ -1241,7 +1254,7 @@ void test_bh(int N, int nr_threads, int runs, char *fileName) {
iact_pair
(
d
[
0
],
d
[
1
]);
break
;
case
task_type_self_pc
:
iact_self_pc
(
d
[
0
],
d
[
1
],
NULL
);
//
iact_self_pc(d[0], d[1], NULL);
break
;
case
task_type_com
:
comp_com
(
d
[
0
]);
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment