Skip to content
Snippets Groups Projects
Commit 91ec8035 authored by Matthieu Schaller's avatar Matthieu Schaller
Browse files

Simplified notation in the multipole expansion theory file.

parent ca916c92
No related branches found
No related tags found
No related merge requests found
......@@ -30,19 +30,19 @@ centre of mass.\\
The quadrupole moment $\overline{\overline{Q}}$ of this mass distribution is then written as
\begin{eqnarray}
Q_{11} &=& \sum_i m_i \left( 3(x_i-\mu_x)^2 - r_i^2\right) \\
Q_{12} &=& \sum_i m_i 3(x_i-\mu_x)(y_i-\mu_y) \\
Q_{13} &=& \sum_i m_i 3(x_i-\mu_x)(z_i-\mu_z) \\
Q_{xx} &=& \sum_i m_i \left( 3(x_i-\mu_x)^2 - r_i^2\right) \\
Q_{xy} &=& \sum_i m_i 3(x_i-\mu_x)(y_i-\mu_y) \\
Q_{xz} &=& \sum_i m_i 3(x_i-\mu_x)(z_i-\mu_z) \\
~& & \nonumber\\
Q_{21} &=& \sum_i m_i 3(y_i-\mu_y)(x_i-\mu_x) \\
Q_{22} &=& \sum_i m_i \left( 3(y_i-\mu_y)^2 - r_i^2\right) \\
Q_{23} &=& \sum_i m_i 3(y_i-\mu_y)(z_i-\mu_z) \\
Q_{yx} &=& \sum_i m_i 3(y_i-\mu_y)(x_i-\mu_x) \\
Q_{yy} &=& \sum_i m_i \left( 3(y_i-\mu_y)^2 - r_i^2\right) \\
Q_{yz} &=& \sum_i m_i 3(y_i-\mu_y)(z_i-\mu_z) \\
~& &\nonumber\\
Q_{31} &=& \sum_i m_i 3(z_i-\mu_z)(x_i-\mu_x) \\
Q_{32} &=& \sum_i m_i 3(z_i-\mu_z)(y_i-\mu_y) \\
Q_{33} &=& \sum_i m_i \left( 3(z_i-\mu_z)^2 - r_i^2\right)
Q_{zx} &=& \sum_i m_i 3(z_i-\mu_z)(x_i-\mu_x) \\
Q_{zy} &=& \sum_i m_i 3(z_i-\mu_z)(y_i-\mu_y) \\
Q_{zz} &=& \sum_i m_i \left( 3(z_i-\mu_z)^2 - r_i^2\right)
\end{eqnarray}
Note that this matrix is symmetric and traceless ($Q_{11}+Q_{22}+Q_{33}=0$), so only $5$ components need to be
Note that this matrix is symmetric and traceless ($Q_{xx}+Q_{yy}+Q_{zz}=0$), so only $5$ components need to be
computed. \\
\pagebreak
......@@ -65,18 +65,18 @@ Taking the gradient of this expression to get the acceleration, we obtain:
Writing this explicitly for each coordinate (using the symmetry of $\overline{\overline{Q}}$), we get:
\begin{eqnarray}
a_x &=& -\frac{Gr_x}{|\rr|^3}M + \frac{1}{2} \frac{G}{|\rr|^5}\left[2r_x Q_{11} + 2r_yQ_{12} + 2r_z Q_{13}\right] -
a_x &=& -\frac{Gr_x}{|\rr|^3}M + \frac{1}{2} \frac{G}{|\rr|^5}\left[2r_x Q_{xx} + 2r_yQ_{xy} + 2r_z Q_{xz}\right] -
\frac{5}{2} \frac{G r_x}{|\rr|^7} \Xi, \\
a_y &=& -\frac{Gr_y}{|\rr|^3}M + \frac{1}{2} \frac{G}{|\rr|^5}\left[2r_x Q_{21} + 2r_yQ_{22} + 2r_z Q_{23}\right] -
a_y &=& -\frac{Gr_y}{|\rr|^3}M + \frac{1}{2} \frac{G}{|\rr|^5}\left[2r_x Q_{yx} + 2r_yQ_{yy} + 2r_z Q_{yz}\right] -
\frac{5}{2} \frac{G r_y}{|\rr|^7} \Xi, \\
a_y &=& -\frac{Gr_z}{|\rr|^3}M + \frac{1}{2} \frac{G}{|\rr|^5}\left[2r_x Q_{31} + 2r_yQ_{32} + 2r_z Q_{33}\right] -
a_y &=& -\frac{Gr_z}{|\rr|^3}M + \frac{1}{2} \frac{G}{|\rr|^5}\left[2r_x Q_{zx} + 2r_yQ_{zy} + 2r_z Q_{zz}\right] -
\frac{5}{2} \frac{G r_z}{|\rr|^7} \Xi, \\
\end{eqnarray}
with the common coefficient $\Xi$ defined as:
\begin{equation*}
\Xi = \rr\cdot(\overline{\overline{Q}}\cdot \rr) = r_x^2Q_{11} + r_y^2Q_{22} + r_z^2Q_{33} + 2r_xr_yQ_{12} +
2r_xr_zQ_{13} + 2r_yr_zQ_{23}
\Xi = \rr\cdot(\overline{\overline{Q}}\cdot \rr) = r_x^2Q_{xx} + r_y^2Q_{yy} + r_z^2Q_{zz} + 2r_xr_yQ_{xy} +
2r_xr_zQ_{xz} + 2r_yr_zQ_{yz}
\end{equation*}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment