-
Pedro Gonnet authoredPedro Gonnet authored
test_qr_ompss.c 17.21 KiB
/*******************************************************************************
* This file is part of QuickSched.
* Coypright (c) 2013 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* *****************************************************************************/
/* Config parameters. */
#include "../config.h"
/* Standard includes. */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <math.h>
#include <omp.h>
/* LAPACKE header. */
#include <lapacke.h>
#include <cblas.h>
/* Local includes. */
#include "cycle.h"
/* Error macro. */
#define error(s, ...) \
{ \
fprintf(stderr, "%s:%s():%i: " s "\n", __FILE__, __FUNCTION__, __LINE__, \
##__VA_ARGS__); \
abort(); \
}
/* Message macro. */
#define message(s, ...) \
{ \
printf("%s: " s "\n", __FUNCTION__, ##__VA_ARGS__); \
fflush(stdout); \
}
/* Stuff to collect task data. */
struct timer {
int threadID, type;
ticks tic, toc;
};
struct timer* timers;
int nr_timers = 0;
double* columnToTile(double* columnMatrix, int size, int m, int n,
int tilesize) {
double* TileMatrix;
TileMatrix = malloc(sizeof(double) * size);
if (TileMatrix == NULL) error("failed to allocate TileMatrix");
int i, j, k, l;
for (i = 0; i < n; i++) {
for (j = 0; j < m; j++) {
double* tileStart =
&columnMatrix[i * m * tilesize * tilesize + j * tilesize];
double* tilePos =
&TileMatrix[i * m * tilesize * tilesize + j * tilesize * tilesize];
for (k = 0; k < tilesize; k++) {
tileStart = &columnMatrix[i * m * tilesize * tilesize +
k * m * tilesize + j * tilesize];
for (l = 0; l < tilesize; l++) {
tilePos[k * tilesize + l] = tileStart[l];
}
}
}
}
return TileMatrix;
}
double* tileToColumn(double* tileMatrix, int size, int m, int n, int tilesize) {
double* ColumnMatrix;
ColumnMatrix = (double*)malloc(sizeof(double) * size);
if (ColumnMatrix == NULL) error("failed to allocate ColumnMatrix");
int i, j, k, l;
for (i = 0; i < n; i++) {
for (j = 0; j < m; j++) {
/* Tile on ith column is at i*m*32*32.*/
/* Tile on jth is at j*32*32 */
double* tile =
&tileMatrix[i * m * tilesize * tilesize + j * tilesize * tilesize];
/* Column starts at same position as tile. */
/* Row j*32.*/
double* tilePos =
&ColumnMatrix[i * m * tilesize * tilesize + j * tilesize];
for (k = 0; k < tilesize; k++) {
for (l = 0; l < tilesize; l++) {
tilePos[l] = tile[l];
}
/* Next 32 elements are the position of the tile in the next column.*/
tile = &tile[tilesize];
/* Move to the j*32th position in the next column. */
tilePos = &tilePos[tilesize * m];
}
}
}
return ColumnMatrix;
}
/* Routines for the tiled QR decomposition.*/
/**
*
* @brief Computes the QR decomposition of a tile.
*
* @param cornerTile A pointer to the tile for which the decomposition is
* computed.
* @param tilesize The number of elements on a row/column of the tile.
* @param tauMatrix A pointer to the tau Matrix.
* @param k The value of k for the QR decomposition
* @param tauNum The number of tau values stored for each row of the matrix
* (this is equal to the number of tiles on each column).
*
*
*/
#pragma omp task inout(cornerTile[0]) out(tauMatrix[0])
void DGEQRF(double* restrict cornerTile, int tileSize,
double* restrict tauMatrix, int k, int tauNum) {
int i, j, n;
double norm = 0.0, sign, u1, tau, z;
double w[tileSize];
/* Timer stuff. */
int ind = __sync_fetch_and_add( &nr_timers , 1 );
timers[ind].threadID = omp_get_thread_num();
timers[ind].type = 0;
timers[ind].tic = getticks();
/*Find the householder vector for each row. */
for (i = 0; i < tileSize; i++) {
norm = 0.0;
/*Fill w with the vector.*/
for (j = i; j < tileSize; j++) {
/* ith row is i*tileSize, only want elements on diagonal or below.*/
w[j] = cornerTile[i * tileSize + j];
/*Find the norm as well */
norm = norm + w[j] * w[j];
}
if (w[i] >= 0.0)
sign = -1;
else
sign = 1;
norm = sqrt(norm);
u1 = w[i] - sign * norm;
if (u1 != 0.0) {
for (j = i + 1; j < tileSize; j++) w[j] = w[j] / u1;
} else {
for (j = i + 1; j < tileSize; j++) w[j] = 0.0;
}
if (norm != 0.0)
tau = -sign * u1 / norm;
else
tau = 0.0;
/*Store the below diagonal vector */
for (j = i + 1; j < tileSize; j++) {
cornerTile[i * tileSize + j] = w[j];
}
cornerTile[i * tileSize + i] = sign * norm;
w[i] = 1.0;
/* Apply the householder transformation to the rest of the tile, for
* everything to the right of the diagonal. */
for (j = i + 1; j < tileSize; j++) {
/*Compute w'*A_j*/
z = cornerTile[j * tileSize + i];
for (n = i + 1; n < tileSize; n++) {
z = z + cornerTile[j * tileSize + n] * w[n];
}
/* Tile(m,n) = Tile(m,n) - tau*w[n]* w'A_j */
for (n = i; n < tileSize; n++) {
cornerTile[j * tileSize + n] =
cornerTile[j * tileSize + n] - tau * w[n] * z;
}
}
/* Store tau. We're on k*tileSize+ith row. kth column.*/
tauMatrix[(k * tileSize + i) * tauNum + k] = tau;
}
timers[ind].toc = getticks();
}
/**
*
* @brief Applies the householder factorisation of the corner to the row tile.
*
* @param cornerTile A pointer to the tile for which the householder is stored.
* @param rowTiles The tile to which the householder is applied.
* @param tilesize The number of elements on a row/column of the tile.
* @param tauMatrix A pointer to the tau Matrix.
* @param jj The value of j for the QR decomposition.
* @param kk The value of k for the QR decomposition.
* @param tauNum The number of tau values stored for each row of the matrix
* (this is equal to the number of tiles on each column).
*
*
*/
#pragma omp task in(cornerTile[0]) inout(rowTile[0]) in(tauMatrix[0])
void DLARFT(double* restrict cornerTile, double* restrict rowTile, int tileSize,
int jj, int kk, double* restrict tauMatrix, int tauNum) {
int i, j, n;
double z = 0.0;
double w[tileSize];
/* Timer stuff. */
int ind = __sync_fetch_and_add( &nr_timers , 1 );
timers[ind].threadID = omp_get_thread_num();
timers[ind].type = 1;
timers[ind].tic = getticks();
/* For each row in the corner Tile*/
for (i = 0; i < tileSize; i++) {
/*Get w for row i */
for (j = i; j < tileSize; j++) {
w[j] = cornerTile[i * tileSize + j];
}
w[i] = 1.0;
/* Apply to the row Tile */
for (j = 0; j < tileSize; j++) {
z = 0.0;
/* Below Diagonal!*/
/*Compute w'*A_j*/
for (n = i; n < tileSize; n++) {
z = z + w[n] * rowTile[j * tileSize + n];
}
for (n = i; n < tileSize; n++) {
rowTile[j * tileSize + n] =
rowTile[j * tileSize + n] -
tauMatrix[(kk * tileSize + i) * tauNum + kk] * w[n] * z;
}
}
}
timers[ind].toc = getticks();
}
/**
*
* @brief Applies the householder factorisation of the corner to the row tile.
*
* @param cornerTile The corner tile for this value of k.
* @param columnTile The tile for which householders are computed.
* @param tilesize The number of elements on a row/column of the tile.
* @param tauMatrix A pointer to the tau Matrix.
* @param ii The value of i for the QR decomposition.
* @param kk The value of k for the QR decomposition.
* @param tauNum The number of tau values stored for each row of the matrix
* (this is equal to the number of tiles on each column).
*
*
*/
#pragma omp task inout(cornerTile[0]) inout(columnTile[0]) out(tauMatrix[0])
void DTSQRF(double* restrict cornerTile, double* restrict columnTile,
int tilesize, int ii, int kk, double* restrict tauMatrix,
int tauNum) {
int i, j, n;
double norm = 0.0, sign, u1, tau, z;
double w[2*tilesize];
/* Timer stuff. */
int ind = __sync_fetch_and_add( &nr_timers , 1 );
timers[ind].threadID = omp_get_thread_num();
timers[ind].type = 2;
timers[ind].tic = getticks();
/* For each column compute the householder vector. */
for (i = 0; i < tilesize; i++) {
norm = 0.0;
w[i] = cornerTile[i * tilesize + i];
norm = norm + w[i] * w[i];
for (j = i + 1; j < tilesize; j++) {
w[j] = 0.0;
}
for (j = 0; j < tilesize; j++) {
w[tilesize + j] = columnTile[i * tilesize + j];
norm = norm + w[tilesize + j] * w[tilesize + j];
}
norm = sqrt(norm);
if (w[i] >= 0.0)
sign = -1;
else
sign = 1;
u1 = w[i] - sign * norm;
if (u1 != 0.0) {
for (j = i + 1; j < 2 * tilesize; j++) {
w[j] = w[j] / u1;
}
} else {
for (j = i + 1; j < 2 * tilesize; j++) w[j] = 0.0;
}
if (norm != 0)
tau = -sign * u1 / norm;
else
tau = 0.0;
/* Apply to each row to the right.*/
for (j = i; j < tilesize; j++) {
/* Find w'*A_j, w is 0s except for first value with upper tile.*/
z = 1.0 * cornerTile[j * tilesize + i];
for (n = 0; n < tilesize; n++) {
z = z + w[tilesize + n] * columnTile[j * tilesize + n];
}
/* Apply to upper tile.*/
cornerTile[j * tilesize + i] =
cornerTile[j * tilesize + i] - tau * 1.0 * z;
for (n = i + 1; n < tilesize; n++) {
cornerTile[j * tilesize + n] =
cornerTile[j * tilesize + n] - tau * w[n] * z;
}
/* Apply to lower tile.*/
for (n = 0; n < tilesize; n++) {
columnTile[j * tilesize + n] =
columnTile[j * tilesize + n] - tau * w[tilesize + n] * z;
}
}
/* Store w*/
for (j = 0; j < tilesize; j++) {
columnTile[i * tilesize + j] = w[tilesize + j];
}
tauMatrix[(kk * tilesize + i) * tauNum + ii] = tau;
}
timers[ind].toc = getticks();
}
/**
*
* @brief Applies the householder factorisation of the corner to the row tile.
*
* @param cornerTile A pointer to the tile to have the householder applied.
* @param columnTile The tile in which the householders are stored.
* @param rowTile The upper tile to have the householders applied.
* @param tilesize The number of elements on a row/column of the tile.
* @param tauMatrix A pointer to the tau Matrix.
* @param ii The value of i for the QR decomposition.
* @param jj The value of j for the QR decomposition.
* @param kk The value of k for the QR decomposition.
* @param tauNum The number of tau values stored for each row of the matrix
* (this is equal to the number of tiles on each column).
*
*
*/
#pragma omp task inout(cornerTile[0]) in(columnTile[0]) inout(rowTile[0]) in(tauMatrix[0])
void DSSRFT(double* restrict cornerTile, double* restrict columnTile,
double* restrict rowTile, int tilesize, int ii, int jj, int kk,
double* restrict tauMatrix, int tauNum) {
int i, j, n;
double z;
double w[2*tilesize];
/* Timer stuff. */
int ind = __sync_fetch_and_add( &nr_timers , 1 );
timers[ind].threadID = omp_get_thread_num();
timers[ind].type = 3;
timers[ind].tic = getticks();
for (i = 0; i < tilesize; i++) {
for (j = 0; j < i; j++) w[j] = 0.0;
w[i] = 1.0;
for (j = i + 1; j < tilesize; j++) w[j] = 0.0;
for (j = 0; j < tilesize; j++)
w[j + tilesize] = columnTile[i * tilesize + j];
/* Apply householder vector (w) to the tiles.*/
for (j = 0; j < tilesize; j++) {
z = 0.0;
/* Compute w' * A_j */
for (n = 0; n < tilesize; n++) {
z += w[n] * rowTile[j * tilesize + n];
z += w[n + tilesize] * cornerTile[j * tilesize + n];
}
for (n = 0; n < tilesize; n++) {
rowTile[j * tilesize + n] =
rowTile[j * tilesize + n] -
tauMatrix[(kk * tilesize + i) * tauNum + ii] * w[n] * z;
cornerTile[j * tilesize + n] =
cornerTile[j * tilesize + n] -
tauMatrix[(kk * tilesize + i) * tauNum + ii] * w[tilesize + n] * z;
}
}
}
timers[ind].toc = getticks();
}
/**
* @brief Computed a tiled QR factorization using QuickSched.
*
* @param m Number of tile rows.
* @param n Number of tile columns.
* @param nr_threads Number of threads to use.
*/
void test_qr(int m, int n, int K, int nr_threads, int runs) {
int k, j, i, r;
double* A, *A_orig, *tau;
ticks tic, toc_run, tot_run = 0;
double tid[ m * n ];
/* Allocate and fill the original matrix. */
if ((A = (double*)malloc(sizeof(double)* m* n* K* K)) == NULL ||
(tau = (double*)malloc(sizeof(double)* m* n* K)) == NULL ||
(A_orig = (double*)malloc(sizeof(double) * m * n * K * K)) == NULL)
error("Failed to allocate matrices.");
for (k = 0; k < m * n * K * K; k++)
A_orig[k] = 2 * ((double)rand()) / RAND_MAX - 1.0;
memcpy(A, A_orig, sizeof(double) * m * n * K * K);
bzero(tau, sizeof(double) * m * n * K);
/* Dump A_orig. */
/* message( "A_orig = [" );
for ( k = 0 ; k < m*K ; k++ ) {
for ( j = 0 ; j < n*K ; j++ )
printf( "%.3f " , A_orig[ j*m*K + k ] );
printf( "\n" );
}
printf( "];\n" ); */
/* Loop over the number of runs. */
for (r = 0; r < runs; r++) {
/* Start the clock. */
tic = getticks();
nr_timers = 0;
/* Launch the tasks. */
for (k = 0; k < m && k < n; k++) {
/* Add kth corner task. */
// #pragma omp task inout( tid[ k*m + k ] )
DGEQRF(&A[(k * m + k) * K * K], K, tau, k, m);
/* Add column tasks on kth row. */
for (j = k + 1; j < n; j++) {
// #pragma omp task inout( tid[ j*m + k ] ) in( tid[ k*m + k ] )
DLARFT(&A[(k * m + k) * K * K], &A[(j * m + k) * K * K], K, j, k, tau,
m);
}
/* For each following row... */
for (i = k + 1; i < m; i++) {
/* Add the row taks for the kth column. */
// #pragma omp task inout( tid[ k*m + i ] ) in( tid[ k*m + k ] )
DTSQRF(&A[(k * m + k) * K * K], &A[(k * m + i) * K * K], K, i, k, tau,
m);
/* Add the inner tasks. */
for (j = k + 1; j < n; j++) {
// #pragma omp task inout( tid[ j*m + i ] ) in( tid[ k*m + i ] , tid[
// j*m + k ] )
DSSRFT(&A[(j * m + i) * K * K], &A[(k * m + i) * K * K],
&A[(j * m + k) * K * K], K, i, j, k, tau, m);
}
}
} /* build the tasks. */
/* Collect timers. */
#pragma omp taskwait
toc_run = getticks();
message("%ith run took %lli ticks...", r, toc_run - tic);
tot_run += toc_run - tic;
}
/* Dump the costs. */
message("costs: run=%lli ticks.", tot_run / runs);
/* Dump the tasks. */
/* for ( k = 0 ; k < nr_timers ; k++ )
printf( "%i %i %lli %lli\n" , timers[k].threadID , timers[k].type ,
timers[k].tic , timers[k].toc ); */
}
/**
* @brief Main function.
*/
int main(int argc, char* argv[]) {
int c, nr_threads;
int M = 4, N = 4, runs = 1, K = 32;
/* Get the number of threads. */
#pragma omp parallel shared(nr_threads)
{
if (omp_get_thread_num() == 0) nr_threads = omp_get_num_threads();
}
/* Parse the options */
while ((c = getopt(argc, argv, "m:n:k:r:t:")) != -1) switch (c) {
case 'm':
if (sscanf(optarg, "%d", &M) != 1) error("Error parsing dimension M.");
break;
case 'n':
if (sscanf(optarg, "%d", &N) != 1) error("Error parsing dimension M.");
break;
case 'k':
if (sscanf(optarg, "%d", &K) != 1) error("Error parsing tile size.");
break;
case 'r':
if (sscanf(optarg, "%d", &runs) != 1)
error("Error parsing number of runs.");
break;
case 't':
if (sscanf(optarg, "%d", &nr_threads) != 1)
error("Error parsing number of threads.");
omp_set_num_threads(nr_threads);
break;
case '?':
fprintf(stderr, "Usage: %s [-t nr_threads] [-m M] [-n N] [-k K]\n",
argv[0]);
fprintf(stderr, "Computes the tiled QR decomposition of an MxN tiled\n"
"matrix using nr_threads threads.\n");
exit(EXIT_FAILURE);
}
/* Dump arguments. */
message("Computing the tiled QR decomposition of a %ix%i matrix using %i "
"threads (%i runs).",
K * M, K * N, nr_threads, runs);
/* Initialize the timers. */
if ((timers = (struct timer*)malloc(sizeof(struct timer) * M * M * N)) ==
NULL)
error("Failed to allocate timers.");
test_qr(M, N, K, nr_threads, runs);
}