/*******************************************************************************
* This file is part of SWIFT.
* Copyright (c) 2016 Matthieu Schaller (matthieu.schaller@durham.ac.uk)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see .
*
******************************************************************************/
#ifndef SWIFT_COOLING_GRACKLE_H
#define SWIFT_COOLING_GRACKLE_H
/**
* @file src/cooling/none/cooling.h
* @brief Empty infrastructure for the cases without cooling function
*/
/* Some standard headers. */
#include
#include
/* Local includes. */
#include "error.h"
#include "hydro.h"
#include "parser.h"
#include "part.h"
#include "physical_constants.h"
#include "units.h"
/* include the grackle wrapper */
#include "grackle_wrapper.h"
/*! This function computes the new entropy due to the cooling,
* between step t0 and t1.
*/
static INLINE double do_cooling_grackle(double energy, double density,
double dtime, double* ne, double Z,
double a_now) {
/*********************************************************************
call to the main chemistry solver
*********************************************************************/
if (wrap_do_cooling(density, &energy, dtime, Z, a_now) == 0) {
error("Error in do_cooling.\n");
return 0;
}
return energy;
}
/**
* @brief Apply the cooling function to a particle.
*
* We do nothing.
*
* @param phys_const The physical constants in internal units.
* @param us The internal system of units.
* @param cooling The #cooling_function_data used in the run.
* @param p Pointer to the particle data.
* @param dt The time-step of this particle.
*/
__attribute__((always_inline)) INLINE static void cooling_cool_part(
const struct phys_const* restrict phys_const,
const struct unit_system* restrict us,
const struct cooling_function_data* restrict cooling,
struct part* restrict p, struct xpart* restrict xp, float dt) {
/* Get current internal energy (dt=0) */
const float u_old = hydro_get_internal_energy(p);
/* Get current density */
const float rho = hydro_get_density(p);
/* Actual scaling fractor */
if (cooling->GrackleRedshift == -1) error("TODO time dependant redshift");
const float a_now = 1. / (1. + cooling->GrackleRedshift);
; /* must be chaged !!! */
double ne, Z;
Z = 0.02041; /* 0.02041 (= 1 Zsun in Grackle v2.0, but = 1.5761 Zsun in
Grackle v2.1) */
ne = 0.0;
/* mass fraction of eletron */ /* useless for GRACKLE_CHEMISTRY = 0 */
float u_new;
float delta_u;
u_new = do_cooling_grackle(u_old, rho, dt, &ne, Z, a_now);
// u_new = u_old * 0.99;
// if (u_new < 0)
// if (p->id==50356)
// printf("WARNING !!! ID=%llu u_old=%g u_new=%g rho=%g dt=%g ne=%g Z=%g
// a_now=%g\n",p->id,u_old,u_new,rho,dt,ne,Z,a_now);
delta_u = u_new - u_old;
/* record energy lost */
xp->cooling_data.radiated_energy += -delta_u * hydro_get_mass(p);
/* Update the internal energy */
hydro_set_internal_energy_dt(p, delta_u / dt);
}
/**
* @brief Computes the cooling time-step.
*
* We return FLT_MAX so as to impose no limit on the time-step.
*
* @param cooling The #cooling_function_data used in the run.
* @param phys_const The physical constants in internal units.
* @param us The internal system of units.
* @param p Pointer to the particle data.
*/
__attribute__((always_inline)) INLINE static float cooling_timestep(
const struct cooling_function_data* restrict cooling,
const struct phys_const* restrict phys_const,
const struct unit_system* restrict us, const struct part* restrict p) {
return FLT_MAX;
}
/**
* @brief Sets the cooling properties of the (x-)particles to a valid start
* state.
*
* @param p Pointer to the particle data.
* @param xp Pointer to the extended particle data.
*/
__attribute__((always_inline)) INLINE static void cooling_init_part(
const struct part* restrict p, struct xpart* restrict xp) {
xp->cooling_data.radiated_energy = 0.f;
}
/**
* @brief Returns the total radiated energy by this particle.
*
* @param xp The extended particle data
*/
__attribute__((always_inline)) INLINE static float cooling_get_radiated_energy(
const struct xpart* restrict xp) {
return xp->cooling_data.radiated_energy;
}
/**
* @brief Initialises the cooling properties.
*
* @param parameter_file The parsed parameter file.
* @param us The current internal system of units.
* @param phys_const The physical constants in internal units.
* @param cooling The cooling properties to initialize
*/
static INLINE void cooling_init_backend(
const struct swift_params* parameter_file, const struct unit_system* us,
const struct phys_const* phys_const,
struct cooling_function_data* cooling) {
double units_density, units_length, units_time;
int grackle_chemistry;
int UVbackground;
parser_get_param_string(parameter_file, "GrackleCooling:GrackleCloudyTable",
cooling->GrackleCloudyTable);
cooling->UVbackground =
parser_get_param_int(parameter_file, "GrackleCooling:UVbackground");
cooling->GrackleRedshift =
parser_get_param_double(parameter_file, "GrackleCooling:GrackleRedshift");
cooling->GrackleHSShieldingDensityThreshold = parser_get_param_double(
parameter_file, "GrackleCooling:GrackleHSShieldingDensityThreshold");
UVbackground = cooling->UVbackground;
grackle_chemistry = 0; /* forced to be zero : read table */
units_density = us->UnitMass_in_cgs / pow(us->UnitLength_in_cgs, 3);
units_length = us->UnitLength_in_cgs;
units_time = us->UnitTime_in_cgs;
#ifdef SWIFT_DEBUG_CHECKS
float threshold = cooling->GrackleHSShieldingDensityThreshold;
threshold /= phys_const->const_proton_mass;
threshold /= pow(us->UnitLength_in_cgs, 3);
message("***************************************");
message("initializing grackle cooling function");
message("");
message("CloudyTable = %s",
cooling->GrackleCloudyTable);
message("UVbackground = %d", UVbackground);
message("GrackleRedshift = %g", cooling->GrackleRedshift);
message("GrackleHSShieldingDensityThreshold = %g atom/cc", threshold);
#endif
if (wrap_init_cooling(cooling->GrackleCloudyTable, UVbackground,
units_density, units_length, units_time,
grackle_chemistry) != 1) {
error("Error in initialize_chemistry_data.");
}
#ifdef SWIFT_DEBUG_CHECKS
message("");
message("***************************************");
#endif
}
/**
* @brief Prints the properties of the cooling model to stdout.
*
* @param cooling The properties of the cooling function.
*/
static INLINE void cooling_print_backend(
const struct cooling_function_data* cooling) {
message("Cooling function is 'Grackle'.");
}
#endif /* SWIFT_COOLING_GRACKLE_H */