/******************************************************************************* * This file is part of SWIFT. * Copyright (c) 2016 James Willis (james.s.willis@durham.ac.uk) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program. If not, see . * ******************************************************************************/ /* Config parameters. */ #include "../config.h" #include "swift.h" #include "active.h" /* This object's header. */ #include "runner_doiact_vec.h" #ifdef WITH_VECTORIZATION static const vector kernel_gamma2_vec = FILL_VEC(kernel_gamma2); /** * @brief Compute the vector remainder interactions from the secondary cache. * * @param int_cache (return) secondary #cache of interactions between two * particles. * @param icount Interaction count. * @param rhoSum (return) #vector holding the cumulative sum of the density * update on pi. * @param rho_dhSum (return) #vector holding the cumulative sum of the density * gradient update on pi. * @param wcountSum (return) #vector holding the cumulative sum of the wcount * update on pi. * @param wcount_dhSum (return) #vector holding the cumulative sum of the wcount * gradient update on pi. * @param div_vSum (return) #vector holding the cumulative sum of the divergence * update on pi. * @param curlvxSum (return) #vector holding the cumulative sum of the curl of * vx update on pi. * @param curlvySum (return) #vector holding the cumulative sum of the curl of * vy update on pi. * @param curlvzSum (return) #vector holding the cumulative sum of the curl of * vz update on pi. * @param v_hi_inv #vector of 1/h for pi. * @param v_vix #vector of x velocity of pi. * @param v_viy #vector of y velocity of pi. * @param v_viz #vector of z velocity of pi. * @param icount_align (return) Interaction count after the remainder * interactions have been performed, should be a multiple of the vector length. */ __attribute__((always_inline)) INLINE static void calcRemInteractions( struct c2_cache *const int_cache, const int icount, vector *rhoSum, vector *rho_dhSum, vector *wcountSum, vector *wcount_dhSum, vector *div_vSum, vector *curlvxSum, vector *curlvySum, vector *curlvzSum, vector v_hi_inv, vector v_vix, vector v_viy, vector v_viz, int *icount_align) { mask_t int_mask, int_mask2; /* Work out the number of remainder interactions and pad secondary cache. */ *icount_align = icount; int rem = icount % (NUM_VEC_PROC * VEC_SIZE); if (rem != 0) { int pad = (NUM_VEC_PROC * VEC_SIZE) - rem; *icount_align += pad; /* Initialise masks to true. */ vec_init_mask(int_mask); vec_init_mask(int_mask2); /* Pad secondary cache so that there are no contributions in the interaction * function. */ for (int i = icount; i < *icount_align; i++) { int_cache->mq[i] = 0.f; int_cache->r2q[i] = 1.f; int_cache->dxq[i] = 0.f; int_cache->dyq[i] = 0.f; int_cache->dzq[i] = 0.f; int_cache->vxq[i] = 0.f; int_cache->vyq[i] = 0.f; int_cache->vzq[i] = 0.f; } /* Zero parts of mask that represent the padded values.*/ if (pad < VEC_SIZE) { vec_pad_mask(int_mask2, pad); } else { vec_pad_mask(int_mask, VEC_SIZE - rem); vec_zero_mask(int_mask2); } /* Perform remainder interaction and remove remainder from aligned * interaction count. */ *icount_align = icount - rem; runner_iact_nonsym_2_vec_density( &int_cache->r2q[*icount_align], &int_cache->dxq[*icount_align], &int_cache->dyq[*icount_align], &int_cache->dzq[*icount_align], v_hi_inv, v_vix, v_viy, v_viz, &int_cache->vxq[*icount_align], &int_cache->vyq[*icount_align], &int_cache->vzq[*icount_align], &int_cache->mq[*icount_align], rhoSum, rho_dhSum, wcountSum, wcount_dhSum, div_vSum, curlvxSum, curlvySum, curlvzSum, int_mask, int_mask2, 1); } } /** * @brief Left-packs the values needed by an interaction into the secondary * cache (Supports AVX, AVX2 and AVX512 instruction sets). * * @param mask Contains which particles need to interact. * @param pjd Index of the particle to store into. * @param v_r2 #vector of the separation between two particles squared. * @param v_dx #vector of the x separation between two particles. * @param v_dy #vector of the y separation between two particles. * @param v_dz #vector of the z separation between two particles. * @param v_mj #vector of the mass of particle pj. * @param v_vjx #vector of x velocity of pj. * @param v_vjy #vector of y velocity of pj. * @param v_vjz #vector of z velocity of pj. * @param cell_cache #cache of all particles in the cell. * @param int_cache (return) secondary #cache of interactions between two * particles. * @param icount Interaction count. * @param rhoSum #vector holding the cumulative sum of the density update on pi. * @param rho_dhSum #vector holding the cumulative sum of the density gradient * update on pi. * @param wcountSum #vector holding the cumulative sum of the wcount update on * pi. * @param wcount_dhSum #vector holding the cumulative sum of the wcount gradient * update on pi. * @param div_vSum #vector holding the cumulative sum of the divergence update * on pi. * @param curlvxSum #vector holding the cumulative sum of the curl of vx update * on pi. * @param curlvySum #vector holding the cumulative sum of the curl of vy update * on pi. * @param curlvzSum #vector holding the cumulative sum of the curl of vz update * on pi. * @param v_hi_inv #vector of 1/h for pi. * @param v_vix #vector of x velocity of pi. * @param v_viy #vector of y velocity of pi. * @param v_viz #vector of z velocity of pi. */ __attribute__((always_inline)) INLINE static void storeInteractions( const int mask, const int pjd, vector *v_r2, vector *v_dx, vector *v_dy, vector *v_dz, const struct cache *const cell_cache, struct c2_cache *const int_cache, int *icount, vector *rhoSum, vector *rho_dhSum, vector *wcountSum, vector *wcount_dhSum, vector *div_vSum, vector *curlvxSum, vector *curlvySum, vector *curlvzSum, vector v_hi_inv, vector v_vix, vector v_viy, vector v_viz) { /* Left-pack values needed into the secondary cache using the interaction mask. */ #if defined(HAVE_AVX2) || defined(HAVE_AVX512_F) mask_t packed_mask; VEC_FORM_PACKED_MASK(mask, packed_mask); VEC_LEFT_PACK(v_r2->v, packed_mask, &int_cache->r2q[*icount]); VEC_LEFT_PACK(v_dx->v, packed_mask, &int_cache->dxq[*icount]); VEC_LEFT_PACK(v_dy->v, packed_mask, &int_cache->dyq[*icount]); VEC_LEFT_PACK(v_dz->v, packed_mask, &int_cache->dzq[*icount]); VEC_LEFT_PACK(vec_load(&cell_cache->m[pjd]), packed_mask, &int_cache->mq[*icount]); VEC_LEFT_PACK(vec_load(&cell_cache->vx[pjd]), packed_mask, &int_cache->vxq[*icount]); VEC_LEFT_PACK(vec_load(&cell_cache->vy[pjd]), packed_mask, &int_cache->vyq[*icount]); VEC_LEFT_PACK(vec_load(&cell_cache->vz[pjd]), packed_mask, &int_cache->vzq[*icount]); /* Increment interaction count by number of bits set in mask. */ (*icount) += __builtin_popcount(mask); #else /* Quicker to do it serially in AVX rather than use intrinsics. */ for (int bit_index = 0; bit_index < VEC_SIZE; bit_index++) { if (mask & (1 << bit_index)) { /* Add this interaction to the queue. */ int_cache->r2q[*icount] = v_r2->f[bit_index]; int_cache->dxq[*icount] = v_dx->f[bit_index]; int_cache->dyq[*icount] = v_dy->f[bit_index]; int_cache->dzq[*icount] = v_dz->f[bit_index]; int_cache->mq[*icount] = cell_cache->m[pjd + bit_index]; int_cache->vxq[*icount] = cell_cache->vx[pjd + bit_index]; int_cache->vyq[*icount] = cell_cache->vy[pjd + bit_index]; int_cache->vzq[*icount] = cell_cache->vz[pjd + bit_index]; (*icount)++; } } #endif /* defined(HAVE_AVX2) || defined(HAVE_AVX512_F) */ /* Flush the c2 cache if it has reached capacity. */ if (*icount >= (C2_CACHE_SIZE - (NUM_VEC_PROC * VEC_SIZE))) { int icount_align = *icount; /* Peform remainder interactions. */ calcRemInteractions(int_cache, *icount, rhoSum, rho_dhSum, wcountSum, wcount_dhSum, div_vSum, curlvxSum, curlvySum, curlvzSum, v_hi_inv, v_vix, v_viy, v_viz, &icount_align); mask_t int_mask, int_mask2; vec_init_mask(int_mask); vec_init_mask(int_mask2); /* Perform interactions. */ for (int pjd = 0; pjd < icount_align; pjd += (NUM_VEC_PROC * VEC_SIZE)) { runner_iact_nonsym_2_vec_density( &int_cache->r2q[pjd], &int_cache->dxq[pjd], &int_cache->dyq[pjd], &int_cache->dzq[pjd], v_hi_inv, v_vix, v_viy, v_viz, &int_cache->vxq[pjd], &int_cache->vyq[pjd], &int_cache->vzq[pjd], &int_cache->mq[pjd], rhoSum, rho_dhSum, wcountSum, wcount_dhSum, div_vSum, curlvxSum, curlvySum, curlvzSum, int_mask, int_mask2, 0); } /* Reset interaction count. */ *icount = 0; } } /** * @brief Compute the vector remainder interactions from the secondary cache. * * @param int_cache (return) secondary #cache of interactions between two * particles. * @param icount Interaction count. * @param rhoSum (return) #vector holding the cumulative sum of the density * update on pi. * @param rho_dhSum (return) #vector holding the cumulative sum of the density * gradient update on pi. * @param wcountSum (return) #vector holding the cumulative sum of the wcount * update on pi. * @param wcount_dhSum (return) #vector holding the cumulative sum of the wcount * gradient update on pi. * @param div_vSum (return) #vector holding the cumulative sum of the divergence * update on pi. * @param curlvxSum (return) #vector holding the cumulative sum of the curl of * vx update on pi. * @param curlvySum (return) #vector holding the cumulative sum of the curl of * vy update on pi. * @param curlvzSum (return) #vector holding the cumulative sum of the curl of * vz update on pi. * @param v_hi_inv #vector of 1/h for pi. * @param v_vix #vector of x velocity of pi. * @param v_viy #vector of y velocity of pi. * @param v_viz #vector of z velocity of pi. * @param icount_align (return) Interaction count after the remainder * interactions have been performed, should be a multiple of the vector length. */ __attribute__((always_inline)) INLINE static void calcRemForceInteractions( struct c2_cache *const int_cache, const int icount, vector *a_hydro_xSum, vector *a_hydro_ySum, vector *a_hydro_zSum, vector *h_dtSum, vector *v_sigSum, vector *entropy_dtSum, vector *v_hi_inv, vector *v_vix, vector *v_viy, vector *v_viz, vector *v_rhoi, vector *v_grad_hi, vector *v_pOrhoi2, vector *v_balsara_i, vector *v_ci, int *icount_align, int num_vec_proc) { mask_t int_mask, int_mask2; /* Work out the number of remainder interactions and pad secondary cache. */ *icount_align = icount; int rem = icount % (num_vec_proc * VEC_SIZE); if (rem != 0) { int pad = (num_vec_proc * VEC_SIZE) - rem; *icount_align += pad; /* Initialise masks to true. */ vec_init_mask(int_mask); vec_init_mask(int_mask2); /* Pad secondary cache so that there are no contributions in the interaction * function. */ for (int i = icount; i < *icount_align; i++) { int_cache->mq[i] = 0.f; int_cache->r2q[i] = 1.f; int_cache->dxq[i] = 0.f; int_cache->dyq[i] = 0.f; int_cache->dzq[i] = 0.f; int_cache->vxq[i] = 0.f; int_cache->vyq[i] = 0.f; int_cache->vzq[i] = 0.f; int_cache->rhoq[i] = 1.f; int_cache->grad_hq[i] = 1.f; int_cache->pOrho2q[i] = 1.f; int_cache->balsaraq[i] = 1.f; int_cache->soundspeedq[i] = 1.f; int_cache->h_invq[i] = 1.f; } /* Zero parts of mask that represent the padded values.*/ if (pad < VEC_SIZE) { vec_pad_mask(int_mask2, pad); } else { vec_pad_mask(int_mask, VEC_SIZE - rem); vec_zero_mask(int_mask2); } /* Perform remainder interaction and remove remainder from aligned * interaction count. */ *icount_align = icount - rem; runner_iact_nonsym_2_vec_force( &int_cache->r2q[*icount_align], &int_cache->dxq[*icount_align], &int_cache->dyq[*icount_align], &int_cache->dzq[*icount_align], v_vix, v_viy, v_viz, v_rhoi, v_grad_hi, v_pOrhoi2, v_balsara_i, v_ci, &int_cache->vxq[*icount_align], &int_cache->vyq[*icount_align], &int_cache->vzq[*icount_align], &int_cache->rhoq[*icount_align], &int_cache->grad_hq[*icount_align], &int_cache->pOrho2q[*icount_align], &int_cache->balsaraq[*icount_align], &int_cache->soundspeedq[*icount_align], &int_cache->mq[*icount_align], v_hi_inv, &int_cache->h_invq[*icount_align], a_hydro_xSum, a_hydro_ySum, a_hydro_zSum, h_dtSum, v_sigSum, entropy_dtSum, int_mask, int_mask2, 1); } } /** * @brief Left-packs the values needed by an interaction into the secondary * cache (Supports AVX, AVX2 and AVX512 instruction sets). * * @param mask Contains which particles need to interact. * @param pjd Index of the particle to store into. * @param v_r2 #vector of the separation between two particles squared. * @param v_dx #vector of the x separation between two particles. * @param v_dy #vector of the y separation between two particles. * @param v_dz #vector of the z separation between two particles. * @param v_mj #vector of the mass of particle pj. * @param v_vjx #vector of x velocity of pj. * @param v_vjy #vector of y velocity of pj. * @param v_vjz #vector of z velocity of pj. * @param cell_cache #cache of all particles in the cell. * @param int_cache (return) secondary #cache of interactions between two * particles. * @param icount Interaction count. * @param rhoSum #vector holding the cumulative sum of the density update on pi. * @param rho_dhSum #vector holding the cumulative sum of the density gradient * update on pi. * @param wcountSum #vector holding the cumulative sum of the wcount update on * pi. * @param wcount_dhSum #vector holding the cumulative sum of the wcount gradient * update on pi. * @param div_vSum #vector holding the cumulative sum of the divergence update * on pi. * @param curlvxSum #vector holding the cumulative sum of the curl of vx update * on pi. * @param curlvySum #vector holding the cumulative sum of the curl of vy update * on pi. * @param curlvzSum #vector holding the cumulative sum of the curl of vz update * on pi. * @param v_hi_inv #vector of 1/h for pi. * @param v_vix #vector of x velocity of pi. * @param v_viy #vector of y velocity of pi. * @param v_viz #vector of z velocity of pi. */ __attribute__((always_inline)) INLINE static void storeForceInteractions( const int mask, const int pjd, vector *v_r2, vector *v_dx, vector *v_dy, vector *v_dz, const struct cache *const cell_cache, struct c2_cache *const int_cache, int *icount, vector *a_hydro_xSum, vector *a_hydro_ySum, vector *a_hydro_zSum, vector *h_dtSum, vector *v_sigSum, vector *entropy_dtSum, vector *v_hi_inv, vector *v_vix, vector *v_viy, vector *v_viz, vector *v_rhoi, vector *v_grad_hi, vector *v_pOrhoi2, vector *v_balsara_i, vector *v_ci) { /* Left-pack values needed into the secondary cache using the interaction mask. */ #if defined(HAVE_AVX2) || defined(HAVE_AVX512_F) /* Invert hj. */ vector v_hj, v_hj_inv; v_hj.v = vec_load(&cell_cache->h[pjd]); v_hj_inv = vec_reciprocal(v_hj); mask_t packed_mask; VEC_FORM_PACKED_MASK(mask, packed_mask); VEC_LEFT_PACK(v_r2->v, packed_mask, &int_cache->r2q[*icount]); VEC_LEFT_PACK(v_dx->v, packed_mask, &int_cache->dxq[*icount]); VEC_LEFT_PACK(v_dy->v, packed_mask, &int_cache->dyq[*icount]); VEC_LEFT_PACK(v_dz->v, packed_mask, &int_cache->dzq[*icount]); VEC_LEFT_PACK(vec_load(&cell_cache->m[pjd]), packed_mask, &int_cache->mq[*icount]); VEC_LEFT_PACK(vec_load(&cell_cache->vx[pjd]), packed_mask, &int_cache->vxq[*icount]); VEC_LEFT_PACK(vec_load(&cell_cache->vy[pjd]), packed_mask, &int_cache->vyq[*icount]); VEC_LEFT_PACK(vec_load(&cell_cache->vz[pjd]), packed_mask, &int_cache->vzq[*icount]); VEC_LEFT_PACK(vec_load(&cell_cache->rho[pjd]), packed_mask, &int_cache->rhoq[*icount]); VEC_LEFT_PACK(vec_load(&cell_cache->grad_h[pjd]), packed_mask, &int_cache->grad_hq[*icount]); VEC_LEFT_PACK(vec_load(&cell_cache->pOrho2[pjd]), packed_mask, &int_cache->pOrho2q[*icount]); VEC_LEFT_PACK(vec_load(&cell_cache->balsara[pjd]), packed_mask, &int_cache->balsaraq[*icount]); VEC_LEFT_PACK(vec_load(&cell_cache->soundspeed[pjd]), packed_mask, &int_cache->soundspeedq[*icount]); VEC_LEFT_PACK(v_hj_inv.v, packed_mask, &int_cache->h_invq[*icount]); /* Increment interaction count by number of bits set in mask. */ (*icount) += __builtin_popcount(mask); #else /* Quicker to do it serially in AVX rather than use intrinsics. */ for (int bit_index = 0; bit_index < VEC_SIZE; bit_index++) { if (mask & (1 << bit_index)) { /* Add this interaction to the queue. */ int_cache->r2q[*icount] = v_r2->f[bit_index]; int_cache->dxq[*icount] = v_dx->f[bit_index]; int_cache->dyq[*icount] = v_dy->f[bit_index]; int_cache->dzq[*icount] = v_dz->f[bit_index]; int_cache->mq[*icount] = cell_cache->m[pjd + bit_index]; int_cache->vxq[*icount] = cell_cache->vx[pjd + bit_index]; int_cache->vyq[*icount] = cell_cache->vy[pjd + bit_index]; int_cache->vzq[*icount] = cell_cache->vz[pjd + bit_index]; int_cache->rhoq[*icount] = cell_cache->rho[pjd + bit_index]; int_cache->grad_hq[*icount] = cell_cache->grad_h[pjd + bit_index]; int_cache->pOrho2q[*icount] = cell_cache->pOrho2[pjd + bit_index]; int_cache->balsaraq[*icount] = cell_cache->balsara[pjd + bit_index]; int_cache->soundspeedq[*icount] = cell_cache->soundspeed[pjd + bit_index]; int_cache->h_invq[*icount] = 1.f / cell_cache->h[pjd + bit_index]; (*icount)++; } } #endif /* defined(HAVE_AVX2) || defined(HAVE_AVX512_F) */ /* Flush the c2 cache if it has reached capacity. */ if (*icount >= (C2_CACHE_SIZE - (2 * VEC_SIZE))) { int icount_align = *icount; /* Peform remainder interactions. */ calcRemForceInteractions(int_cache, *icount, a_hydro_xSum, a_hydro_ySum, a_hydro_zSum, h_dtSum, v_sigSum, entropy_dtSum, v_hi_inv, v_vix, v_viy, v_viz, v_rhoi, v_grad_hi, v_pOrhoi2, v_balsara_i, v_ci, &icount_align, 2); /* Initialise masks to true in case remainder interactions have been * performed. */ mask_t int_mask, int_mask2; vec_init_mask(int_mask); vec_init_mask(int_mask2); /* Perform interactions. */ for (int pjd = 0; pjd < icount_align; pjd += (2 * VEC_SIZE)) { runner_iact_nonsym_2_vec_force( &int_cache->r2q[pjd], &int_cache->dxq[pjd], &int_cache->dyq[pjd], &int_cache->dzq[pjd], v_vix, v_viy, v_viz, v_rhoi, v_grad_hi, v_pOrhoi2, v_balsara_i, v_ci, &int_cache->vxq[pjd], &int_cache->vyq[pjd], &int_cache->vzq[pjd], &int_cache->rhoq[pjd], &int_cache->grad_hq[pjd], &int_cache->pOrho2q[pjd], &int_cache->balsaraq[pjd], &int_cache->soundspeedq[pjd], &int_cache->mq[pjd], v_hi_inv, &int_cache->h_invq[pjd], a_hydro_xSum, a_hydro_ySum, a_hydro_zSum, h_dtSum, v_sigSum, entropy_dtSum, int_mask, int_mask2, 0); } /* Reset interaction count. */ *icount = 0; } } /* @brief Populates the arrays max_di and max_dj with the maximum distances of * particles into their neighbouring cells. Also finds the first pi that * interacts with any particle in cj and the last pj that interacts with any * particle in ci. * @param ci #cell pointer to ci * @param cj #cell pointer to cj * @param sort_i #entry array for particle distance in ci * @param sort_j #entry array for particle distance in cj * @param ci_cache #cache for cell ci * @param cj_cache #cache for cell cj * @param dx_max maximum particle movement allowed in cell * @param rshift cutoff shift * @param max_di array to hold the maximum distances of pi particles into cell * cj * @param max_dj array to hold the maximum distances of pj particles into cell * cj * @param init_pi first pi to interact with a pj particle * @param init_pj last pj to interact with a pi particle */ __attribute__((always_inline)) INLINE static void populate_max_d_no_cache( const struct cell *ci, const struct cell *cj, const struct entry *restrict sort_i, const struct entry *restrict sort_j, const float dx_max, const float rshift, const double hi_max, const double hj_max, const double di_max, const double dj_min, float *max_di, float *max_dj, int *init_pi, int *init_pj, const struct engine *e) { struct part *restrict parts_i = ci->parts; struct part *restrict parts_j = cj->parts; struct part *p = &parts_i[sort_i[0].i]; float h, d; int first_pi = 0, last_pj = cj->count - 1; /* Find the first active particle in ci to interact with any particle in cj. */ /* Populate max_di with distances. */ int active_id = ci->count - 1; for (int k = ci->count - 1; k >= 0; k--) { p = &parts_i[sort_i[k].i]; h = p->h; d = sort_i[k].d + dx_max; max_di[k] = d + h * kernel_gamma - rshift; /* If the particle is out of range set the index to * the last active particle within range. */ if (d + hi_max < dj_min) { first_pi = active_id; break; } else { if (part_is_active(p, e)) active_id = k; } } /* Find the maximum distance of pi particles into cj.*/ for (int k = first_pi + 1; k < ci->count; k++) { max_di[k] = fmaxf(max_di[k - 1], max_di[k]); } /* Find the last particle in cj to interact with any particle in ci. */ /* Populate max_dj with distances. */ active_id = 0; for (int k = 0; k < cj->count; k++) { p = &parts_j[sort_j[k].i]; h = p->h; d = sort_j[k].d - dx_max; max_dj[k] = d - h * kernel_gamma - rshift; /* If the particle is out of range set the index to * the last active particle within range. */ if (d - hj_max > di_max) { last_pj = active_id; break; } else { if (part_is_active(p, e)) active_id = k; } } /* Find the maximum distance of pj particles into ci.*/ for (int k = 1; k <= last_pj; k++) { max_dj[k] = fmaxf(max_dj[k - 1], max_dj[k]); } *init_pi = first_pi; *init_pj = last_pj; } #endif /* WITH_VECTORIZATION */ /** * @brief Compute the cell self-interaction (non-symmetric) using vector * intrinsics with one particle pi at a time. * * @param r The #runner. * @param c The #cell. */ __attribute__((always_inline)) INLINE void runner_doself1_density_vec( struct runner *r, struct cell *restrict c) { #ifdef WITH_VECTORIZATION const struct engine *e = r->e; struct part *restrict pi; int count_align; int num_vec_proc = NUM_VEC_PROC; struct part *restrict parts = c->parts; const int count = c->count; vector v_hi, v_vix, v_viy, v_viz, v_hig2, v_r2; TIMER_TIC if (!cell_is_active(c, e)) return; if (!cell_are_part_drifted(c, e)) error("Interacting undrifted cell."); /* Get the particle cache from the runner and re-allocate * the cache if it is not big enough for the cell. */ struct cache *restrict cell_cache = &r->ci_cache; if (cell_cache->count < count) { cache_init(cell_cache, count); } /* Read the particles from the cell and store them locally in the cache. */ cache_read_particles(c, cell_cache); /* Create secondary cache to store particle interactions. */ struct c2_cache int_cache; int icount = 0, icount_align = 0; /* Loop over the particles in the cell. */ for (int pid = 0; pid < count; pid++) { /* Get a pointer to the ith particle. */ pi = &parts[pid]; /* Is the ith particle active? */ if (!part_is_active(pi, e)) continue; vector pix, piy, piz; const float hi = cell_cache->h[pid]; /* Fill particle pi vectors. */ pix.v = vec_set1(cell_cache->x[pid]); piy.v = vec_set1(cell_cache->y[pid]); piz.v = vec_set1(cell_cache->z[pid]); v_hi.v = vec_set1(hi); v_vix.v = vec_set1(cell_cache->vx[pid]); v_viy.v = vec_set1(cell_cache->vy[pid]); v_viz.v = vec_set1(cell_cache->vz[pid]); const float hig2 = hi * hi * kernel_gamma2; v_hig2.v = vec_set1(hig2); /* Reset cumulative sums of update vectors. */ vector rhoSum, rho_dhSum, wcountSum, wcount_dhSum, div_vSum, curlvxSum, curlvySum, curlvzSum; /* Get the inverse of hi. */ vector v_hi_inv; v_hi_inv = vec_reciprocal(v_hi); rhoSum.v = vec_setzero(); rho_dhSum.v = vec_setzero(); wcountSum.v = vec_setzero(); wcount_dhSum.v = vec_setzero(); div_vSum.v = vec_setzero(); curlvxSum.v = vec_setzero(); curlvySum.v = vec_setzero(); curlvzSum.v = vec_setzero(); /* Pad cache if there is a serial remainder. */ count_align = count; int rem = count % (num_vec_proc * VEC_SIZE); if (rem != 0) { int pad = (num_vec_proc * VEC_SIZE) - rem; count_align += pad; /* Set positions to the same as particle pi so when the r2 > 0 mask is * applied these extra contributions are masked out.*/ for (int i = count; i < count_align; i++) { cell_cache->x[i] = pix.f[0]; cell_cache->y[i] = piy.f[0]; cell_cache->z[i] = piz.f[0]; } } vector pjx, pjy, pjz; vector pjx2, pjy2, pjz2; /* Find all of particle pi's interacions and store needed values in the * secondary cache.*/ for (int pjd = 0; pjd < count_align; pjd += (num_vec_proc * VEC_SIZE)) { /* Load 2 sets of vectors from the particle cache. */ pjx.v = vec_load(&cell_cache->x[pjd]); pjy.v = vec_load(&cell_cache->y[pjd]); pjz.v = vec_load(&cell_cache->z[pjd]); pjx2.v = vec_load(&cell_cache->x[pjd + VEC_SIZE]); pjy2.v = vec_load(&cell_cache->y[pjd + VEC_SIZE]); pjz2.v = vec_load(&cell_cache->z[pjd + VEC_SIZE]); /* Compute the pairwise distance. */ vector v_dx_tmp, v_dy_tmp, v_dz_tmp; vector v_dx_tmp2, v_dy_tmp2, v_dz_tmp2, v_r2_2; v_dx_tmp.v = vec_sub(pix.v, pjx.v); v_dx_tmp2.v = vec_sub(pix.v, pjx2.v); v_dy_tmp.v = vec_sub(piy.v, pjy.v); v_dy_tmp2.v = vec_sub(piy.v, pjy2.v); v_dz_tmp.v = vec_sub(piz.v, pjz.v); v_dz_tmp2.v = vec_sub(piz.v, pjz2.v); v_r2.v = vec_mul(v_dx_tmp.v, v_dx_tmp.v); v_r2_2.v = vec_mul(v_dx_tmp2.v, v_dx_tmp2.v); v_r2.v = vec_fma(v_dy_tmp.v, v_dy_tmp.v, v_r2.v); v_r2_2.v = vec_fma(v_dy_tmp2.v, v_dy_tmp2.v, v_r2_2.v); v_r2.v = vec_fma(v_dz_tmp.v, v_dz_tmp.v, v_r2.v); v_r2_2.v = vec_fma(v_dz_tmp2.v, v_dz_tmp2.v, v_r2_2.v); /* Form a mask from r2 < hig2 and r2 > 0.*/ mask_t v_doi_mask, v_doi_mask_self_check, v_doi_mask2, v_doi_mask2_self_check; int doi_mask, doi_mask_self_check, doi_mask2, doi_mask2_self_check; /* Form r2 > 0 mask and r2 < hig2 mask. */ vec_create_mask(v_doi_mask_self_check, vec_cmp_gt(v_r2.v, vec_setzero())); vec_create_mask(v_doi_mask, vec_cmp_lt(v_r2.v, v_hig2.v)); /* Form r2 > 0 mask and r2 < hig2 mask. */ vec_create_mask(v_doi_mask2_self_check, vec_cmp_gt(v_r2_2.v, vec_setzero())); vec_create_mask(v_doi_mask2, vec_cmp_lt(v_r2_2.v, v_hig2.v)); /* Form integer masks. */ doi_mask_self_check = vec_form_int_mask(v_doi_mask_self_check); doi_mask = vec_form_int_mask(v_doi_mask); doi_mask2_self_check = vec_form_int_mask(v_doi_mask2_self_check); doi_mask2 = vec_form_int_mask(v_doi_mask2); /* Combine the two masks. */ doi_mask = doi_mask & doi_mask_self_check; doi_mask2 = doi_mask2 & doi_mask2_self_check; /* If there are any interactions left pack interaction values into c2 * cache. */ if (doi_mask) { storeInteractions(doi_mask, pjd, &v_r2, &v_dx_tmp, &v_dy_tmp, &v_dz_tmp, cell_cache, &int_cache, &icount, &rhoSum, &rho_dhSum, &wcountSum, &wcount_dhSum, &div_vSum, &curlvxSum, &curlvySum, &curlvzSum, v_hi_inv, v_vix, v_viy, v_viz); } if (doi_mask2) { storeInteractions(doi_mask2, pjd + VEC_SIZE, &v_r2_2, &v_dx_tmp2, &v_dy_tmp2, &v_dz_tmp2, cell_cache, &int_cache, &icount, &rhoSum, &rho_dhSum, &wcountSum, &wcount_dhSum, &div_vSum, &curlvxSum, &curlvySum, &curlvzSum, v_hi_inv, v_vix, v_viy, v_viz); } } /* Perform padded vector remainder interactions if any are present. */ calcRemInteractions(&int_cache, icount, &rhoSum, &rho_dhSum, &wcountSum, &wcount_dhSum, &div_vSum, &curlvxSum, &curlvySum, &curlvzSum, v_hi_inv, v_vix, v_viy, v_viz, &icount_align); /* Initialise masks to true in case remainder interactions have been * performed. */ mask_t int_mask, int_mask2; vec_init_mask(int_mask); vec_init_mask(int_mask2); /* Perform interaction with 2 vectors. */ for (int pjd = 0; pjd < icount_align; pjd += (num_vec_proc * VEC_SIZE)) { runner_iact_nonsym_2_vec_density( &int_cache.r2q[pjd], &int_cache.dxq[pjd], &int_cache.dyq[pjd], &int_cache.dzq[pjd], v_hi_inv, v_vix, v_viy, v_viz, &int_cache.vxq[pjd], &int_cache.vyq[pjd], &int_cache.vzq[pjd], &int_cache.mq[pjd], &rhoSum, &rho_dhSum, &wcountSum, &wcount_dhSum, &div_vSum, &curlvxSum, &curlvySum, &curlvzSum, int_mask, int_mask2, 0); } /* Perform horizontal adds on vector sums and store result in particle pi. */ VEC_HADD(rhoSum, pi->rho); VEC_HADD(rho_dhSum, pi->density.rho_dh); VEC_HADD(wcountSum, pi->density.wcount); VEC_HADD(wcount_dhSum, pi->density.wcount_dh); VEC_HADD(div_vSum, pi->density.div_v); VEC_HADD(curlvxSum, pi->density.rot_v[0]); VEC_HADD(curlvySum, pi->density.rot_v[1]); VEC_HADD(curlvzSum, pi->density.rot_v[2]); /* Reset interaction count. */ icount = 0; } /* loop over all particles. */ TIMER_TOC(timer_doself_density); #endif /* WITH_VECTORIZATION */ } /** * @brief Compute the cell self-interaction (non-symmetric) using vector * intrinsics with one particle pi at a time. * * @param r The #runner. * @param c The #cell. */ __attribute__((always_inline)) INLINE void runner_doself2_force_vec( struct runner *r, struct cell *restrict c) { #ifdef WITH_VECTORIZATION const struct engine *e = r->e; struct part *restrict pi; int count_align; const int num_vec_proc = 1; struct part *restrict parts = c->parts; const int count = c->count; vector v_hi, v_vix, v_viy, v_viz, v_hig2, v_r2; vector v_rhoi, v_grad_hi, v_pOrhoi2, v_balsara_i, v_ci; TIMER_TIC if (!cell_is_active(c, e)) return; if (!cell_are_part_drifted(c, e)) error("Interacting undrifted cell."); /* Get the particle cache from the runner and re-allocate * the cache if it is not big enough for the cell. */ struct cache *restrict cell_cache = &r->ci_cache; if (cell_cache->count < count) { cache_init(cell_cache, count); } /* Read the particles from the cell and store them locally in the cache. */ cache_read_particles(c, cell_cache); #ifdef SWIFT_DEBUG_CHECKS for (int i = 0; i < count; i++) { pi = &c->parts[i]; /* Check that particles have been drifted to the current time */ if (pi->ti_drift != e->ti_current) error("Particle pi not drifted to current time"); } } #endif /* Create secondary cache to store particle interactions. */ struct c2_cache int_cache; int icount = 0, icount_align = 0; /* Loop over the particles in the cell. */ for (int pid = 0; pid < count; pid++) { /* Get a pointer to the ith particle. */ pi = &parts[pid]; /* Is the ith particle active? */ if (!part_is_active(pi, e)) continue; vector pix, piy, piz; const float hi = cell_cache->h[pid]; /* Fill particle pi vectors. */ pix.v = vec_set1(cell_cache->x[pid]); piy.v = vec_set1(cell_cache->y[pid]); piz.v = vec_set1(cell_cache->z[pid]); v_hi.v = vec_set1(hi); v_vix.v = vec_set1(cell_cache->vx[pid]); v_viy.v = vec_set1(cell_cache->vy[pid]); v_viz.v = vec_set1(cell_cache->vz[pid]); v_rhoi.v = vec_set1(cell_cache->rho[pid]); v_grad_hi.v = vec_set1(cell_cache->grad_h[pid]); v_pOrhoi2.v = vec_set1(cell_cache->pOrho2[pid]); v_balsara_i.v = vec_set1(cell_cache->balsara[pid]); v_ci.v = vec_set1(cell_cache->soundspeed[pid]); const float hig2 = hi * hi * kernel_gamma2; v_hig2.v = vec_set1(hig2); /* Reset cumulative sums of update vectors. */ vector a_hydro_xSum, a_hydro_ySum, a_hydro_zSum, h_dtSum, v_sigSum, entropy_dtSum; /* Get the inverse of hi. */ vector v_hi_inv; v_hi_inv = vec_reciprocal(v_hi); a_hydro_xSum.v = vec_setzero(); a_hydro_ySum.v = vec_setzero(); a_hydro_zSum.v = vec_setzero(); h_dtSum.v = vec_setzero(); v_sigSum.v = vec_set1(pi->force.v_sig); entropy_dtSum.v = vec_setzero(); /* Pad cache if there is a serial remainder. */ count_align = count; int rem = count % (num_vec_proc * VEC_SIZE); if (rem != 0) { int pad = (num_vec_proc * VEC_SIZE) - rem; count_align += pad; /* Set positions to the same as particle pi so when the r2 > 0 mask is * applied these extra contributions are masked out.*/ for (int i = count; i < count_align; i++) { cell_cache->x[i] = pix.f[0]; cell_cache->y[i] = piy.f[0]; cell_cache->z[i] = piz.f[0]; cell_cache->h[i] = 1.f; } } vector pjx, pjy, pjz, hj, hjg2; /* Find all of particle pi's interacions and store needed values in the * secondary cache.*/ for (int pjd = 0; pjd < count_align; pjd += (num_vec_proc * VEC_SIZE)) { /* Load 2 sets of vectors from the particle cache. */ pjx.v = vec_load(&cell_cache->x[pjd]); pjy.v = vec_load(&cell_cache->y[pjd]); pjz.v = vec_load(&cell_cache->z[pjd]); hj.v = vec_load(&cell_cache->h[pjd]); hjg2.v = vec_mul(vec_mul(hj.v, hj.v), kernel_gamma2_vec.v); /* Compute the pairwise distance. */ vector v_dx_tmp, v_dy_tmp, v_dz_tmp; v_dx_tmp.v = vec_sub(pix.v, pjx.v); v_dy_tmp.v = vec_sub(piy.v, pjy.v); v_dz_tmp.v = vec_sub(piz.v, pjz.v); v_r2.v = vec_mul(v_dx_tmp.v, v_dx_tmp.v); v_r2.v = vec_fma(v_dy_tmp.v, v_dy_tmp.v, v_r2.v); v_r2.v = vec_fma(v_dz_tmp.v, v_dz_tmp.v, v_r2.v); /* Form r2 > 0 mask, r2 < hig2 mask and r2 < hjg2 mask. */ mask_t v_doi_mask, v_doi_mask_self_check; int doi_mask, doi_mask_self_check; /* Form r2 > 0 mask.*/ vec_create_mask(v_doi_mask_self_check, vec_cmp_gt(v_r2.v, vec_setzero())); /* Form a mask from r2 < hig2 mask and r2 < hjg2 mask. */ vector v_h2; v_h2.v = vec_fmax(v_hig2.v, hjg2.v); vec_create_mask(v_doi_mask, vec_cmp_lt(v_r2.v, v_h2.v)); /* Form integer masks. */ doi_mask_self_check = vec_form_int_mask(v_doi_mask_self_check); doi_mask = vec_form_int_mask(v_doi_mask); /* Combine all 3 masks. */ doi_mask = doi_mask & doi_mask_self_check; /* If there are any interactions left pack interaction values into c2 * cache. */ if (doi_mask) { storeForceInteractions( doi_mask, pjd, &v_r2, &v_dx_tmp, &v_dy_tmp, &v_dz_tmp, cell_cache, &int_cache, &icount, &a_hydro_xSum, &a_hydro_ySum, &a_hydro_zSum, &h_dtSum, &v_sigSum, &entropy_dtSum, &v_hi_inv, &v_vix, &v_viy, &v_viz, &v_rhoi, &v_grad_hi, &v_pOrhoi2, &v_balsara_i, &v_ci); } } /* Loop over all other particles. */ /* Perform padded vector remainder interactions if any are present. */ calcRemForceInteractions( &int_cache, icount, &a_hydro_xSum, &a_hydro_ySum, &a_hydro_zSum, &h_dtSum, &v_sigSum, &entropy_dtSum, &v_hi_inv, &v_vix, &v_viy, &v_viz, &v_rhoi, &v_grad_hi, &v_pOrhoi2, &v_balsara_i, &v_ci, &icount_align, 2); /* Initialise masks to true in case remainder interactions have been * performed. */ mask_t int_mask, int_mask2; vec_init_mask(int_mask); vec_init_mask(int_mask2); /* Perform interaction with 2 vectors. */ for (int pjd = 0; pjd < icount_align; pjd += (2 * VEC_SIZE)) { runner_iact_nonsym_2_vec_force( &int_cache.r2q[pjd], &int_cache.dxq[pjd], &int_cache.dyq[pjd], &int_cache.dzq[pjd], &v_vix, &v_viy, &v_viz, &v_rhoi, &v_grad_hi, &v_pOrhoi2, &v_balsara_i, &v_ci, &int_cache.vxq[pjd], &int_cache.vyq[pjd], &int_cache.vzq[pjd], &int_cache.rhoq[pjd], &int_cache.grad_hq[pjd], &int_cache.pOrho2q[pjd], &int_cache.balsaraq[pjd], &int_cache.soundspeedq[pjd], &int_cache.mq[pjd], &v_hi_inv, &int_cache.h_invq[pjd], &a_hydro_xSum, &a_hydro_ySum, &a_hydro_zSum, &h_dtSum, &v_sigSum, &entropy_dtSum, int_mask, int_mask2, 0); } VEC_HADD(a_hydro_xSum, pi->a_hydro[0]); VEC_HADD(a_hydro_ySum, pi->a_hydro[1]); VEC_HADD(a_hydro_zSum, pi->a_hydro[2]); VEC_HADD(h_dtSum, pi->force.h_dt); VEC_HMAX(v_sigSum, pi->force.v_sig); VEC_HADD(entropy_dtSum, pi->entropy_dt); /* Reset interaction count. */ icount = 0; } /* loop over all particles. */ TIMER_TOC(timer_doself_force); #endif /* WITH_VECTORIZATION */ } /** * @brief Compute the density interactions between a cell pair (non-symmetric) * using vector intrinsics. * * @param r The #runner. * @param ci The first #cell. * @param cj The second #cell. */ void runner_dopair1_density_vec(struct runner *r, struct cell *ci, struct cell *cj) { #ifdef WITH_VECTORIZATION const struct engine *restrict e = r->e; vector v_hi, v_vix, v_viy, v_viz, v_hig2; TIMER_TIC; /* Anything to do here? */ if (!cell_is_active(ci, e) && !cell_is_active(cj, e)) return; if (!cell_are_part_drifted(ci, e) || !cell_are_part_drifted(cj, e)) error("Interacting undrifted cells."); /* Get the sort ID. */ double shift[3] = {0.0, 0.0, 0.0}; const int sid = space_getsid(e->s, &ci, &cj, shift); /* Have the cells been sorted? */ if (!(ci->sorted & (1 << sid)) || ci->dx_max_sort > space_maxreldx * ci->dmin) runner_do_sort(r, ci, (1 << sid), 1); if (!(cj->sorted & (1 << sid)) || cj->dx_max_sort > space_maxreldx * cj->dmin) runner_do_sort(r, cj, (1 << sid), 1); /* Get the cutoff shift. */ double rshift = 0.0; for (int k = 0; k < 3; k++) rshift += shift[k] * runner_shift[sid][k]; /* Pick-out the sorted lists. */ const struct entry *restrict sort_i = &ci->sort[sid * (ci->count + 1)]; const struct entry *restrict sort_j = &cj->sort[sid * (cj->count + 1)]; #ifdef SWIFT_DEBUG_CHECKS /* Check that the dx_max_sort values in the cell are indeed an upper bound on particle movement. */ for (int pid = 0; pid < ci->count; pid++) { const struct part *p = &ci->parts[sort_i[pid].i]; const float d = p->x[0] * runner_shift[sid][0] + p->x[1] * runner_shift[sid][1] + p->x[2] * runner_shift[sid][2]; if (fabsf(d - sort_i[pid].d) - ci->dx_max_sort > 1.0e-6 * max(fabsf(d), ci->dx_max_sort)) error("particle shift diff exceeds dx_max_sort."); } for (int pjd = 0; pjd < cj->count; pjd++) { const struct part *p = &cj->parts[sort_j[pjd].i]; const float d = p->x[0] * runner_shift[sid][0] + p->x[1] * runner_shift[sid][1] + p->x[2] * runner_shift[sid][2]; if (fabsf(d - sort_j[pjd].d) - cj->dx_max_sort > 1.0e-6 * max(fabsf(d), cj->dx_max_sort)) error("particle shift diff exceeds dx_max_sort."); } #endif /* SWIFT_DEBUG_CHECKS */ /* Get some other useful values. */ const int count_i = ci->count; const int count_j = cj->count; const double hi_max = ci->h_max * kernel_gamma - rshift; const double hj_max = cj->h_max * kernel_gamma; struct part *restrict parts_i = ci->parts; struct part *restrict parts_j = cj->parts; const double di_max = sort_i[count_i - 1].d - rshift; const double dj_min = sort_j[0].d; const float dx_max = (ci->dx_max_sort + cj->dx_max_sort); /* Check if any particles are active and return if there are not. */ int numActive = 0; for (int pid = count_i - 1; pid >= 0 && sort_i[pid].d + hi_max + dx_max > dj_min; pid--) { struct part *restrict pi = &parts_i[sort_i[pid].i]; if (part_is_active(pi, e)) { numActive++; break; } } if (!numActive) { for (int pjd = 0; pjd < count_j && sort_j[pjd].d - hj_max - dx_max < di_max; pjd++) { struct part *restrict pj = &parts_j[sort_j[pjd].i]; if (part_is_active(pj, e)) { numActive++; break; } } } if (numActive == 0) return; /* Get both particle caches from the runner and re-allocate * them if they are not big enough for the cells. */ struct cache *restrict ci_cache = &r->ci_cache; struct cache *restrict cj_cache = &r->cj_cache; if (ci_cache->count < count_i) { cache_init(ci_cache, count_i); } if (cj_cache->count < count_j) { cache_init(cj_cache, count_j); } int first_pi, last_pj; float *max_di __attribute__((aligned(sizeof(float) * VEC_SIZE))); float *max_dj __attribute__((aligned(sizeof(float) * VEC_SIZE))); max_di = r->ci_cache.max_d; max_dj = r->cj_cache.max_d; /* Find particles maximum distance into cj, max_di[] and ci, max_dj[]. */ /* Also find the first pi that interacts with any particle in cj and the last * pj that interacts with any particle in ci. */ populate_max_d_no_cache(ci, cj, sort_i, sort_j, dx_max, rshift, hi_max, hj_max, di_max, dj_min, max_di, max_dj, &first_pi, &last_pj, e); /* Find the maximum index into cj that is required by a particle in ci. */ /* Find the maximum index into ci that is required by a particle in cj. */ float di, dj; int max_ind_j = count_j - 1; int max_ind_i = 0; dj = sort_j[max_ind_j].d; while (max_ind_j > 0 && max_di[count_i - 1] < dj) { max_ind_j--; dj = sort_j[max_ind_j].d; } di = sort_i[max_ind_i].d; while (max_ind_i < count_i - 1 && max_dj[0] > di) { max_ind_i++; di = sort_i[max_ind_i].d; } /* Limits of the outer loops. */ int first_pi_loop = first_pi; int last_pj_loop = last_pj; /* Take the max/min of both values calculated to work out how many particles * to read into the cache. */ last_pj = max(last_pj, max_ind_j); first_pi = min(first_pi, max_ind_i); /* Read the needed particles into the two caches. */ int first_pi_align = first_pi; int last_pj_align = last_pj; cache_read_two_partial_cells_sorted(ci, cj, ci_cache, cj_cache, sort_i, sort_j, shift, &first_pi_align, &last_pj_align, 1); /* Get the number of particles read into the ci cache. */ int ci_cache_count = count_i - first_pi_align; if (cell_is_active(ci, e)) { /* Loop over the parts in ci. */ for (int pid = count_i - 1; pid >= first_pi_loop && max_ind_j >= 0; pid--) { /* Get a hold of the ith part in ci. */ struct part *restrict pi = &parts_i[sort_i[pid].i]; if (!part_is_active(pi, e)) continue; /* Determine the exit iteration of the interaction loop. */ dj = sort_j[max_ind_j].d; while (max_ind_j > 0 && max_di[pid] < dj) { max_ind_j--; dj = sort_j[max_ind_j].d; } int exit_iteration = max_ind_j + 1; /* Set the cache index. */ int ci_cache_idx = pid - first_pi_align; const float hi = ci_cache->h[ci_cache_idx]; const float hig2 = hi * hi * kernel_gamma2; vector pix, piy, piz; /* Fill particle pi vectors. */ pix.v = vec_set1(ci_cache->x[ci_cache_idx]); piy.v = vec_set1(ci_cache->y[ci_cache_idx]); piz.v = vec_set1(ci_cache->z[ci_cache_idx]); v_hi.v = vec_set1(hi); v_vix.v = vec_set1(ci_cache->vx[ci_cache_idx]); v_viy.v = vec_set1(ci_cache->vy[ci_cache_idx]); v_viz.v = vec_set1(ci_cache->vz[ci_cache_idx]); v_hig2.v = vec_set1(hig2); /* Reset cumulative sums of update vectors. */ vector rhoSum, rho_dhSum, wcountSum, wcount_dhSum, div_vSum, curlvxSum, curlvySum, curlvzSum; /* Get the inverse of hi. */ vector v_hi_inv; v_hi_inv = vec_reciprocal(v_hi); rhoSum.v = vec_setzero(); rho_dhSum.v = vec_setzero(); wcountSum.v = vec_setzero(); wcount_dhSum.v = vec_setzero(); div_vSum.v = vec_setzero(); curlvxSum.v = vec_setzero(); curlvySum.v = vec_setzero(); curlvzSum.v = vec_setzero(); /* Pad the exit iteration if there is a serial remainder. */ int exit_iteration_align = exit_iteration; int rem = exit_iteration % VEC_SIZE; if (rem != 0) { int pad = VEC_SIZE - rem; if (exit_iteration_align + pad <= last_pj_align + 1) exit_iteration_align += pad; } vector pjx, pjy, pjz; /* Loop over the parts in cj. */ for (int pjd = 0; pjd < exit_iteration_align; pjd += VEC_SIZE) { /* Get the cache index to the jth particle. */ int cj_cache_idx = pjd; vector v_dx, v_dy, v_dz, v_r2; #ifdef SWIFT_DEBUG_CHECKS if (cj_cache_idx % VEC_SIZE != 0 || cj_cache_idx < 0) { error("Unaligned read!!! cj_cache_idx=%d", cj_cache_idx); } #endif /* Load 2 sets of vectors from the particle cache. */ pjx.v = vec_load(&cj_cache->x[cj_cache_idx]); pjy.v = vec_load(&cj_cache->y[cj_cache_idx]); pjz.v = vec_load(&cj_cache->z[cj_cache_idx]); /* Compute the pairwise distance. */ v_dx.v = vec_sub(pix.v, pjx.v); v_dy.v = vec_sub(piy.v, pjy.v); v_dz.v = vec_sub(piz.v, pjz.v); v_r2.v = vec_mul(v_dx.v, v_dx.v); v_r2.v = vec_fma(v_dy.v, v_dy.v, v_r2.v); v_r2.v = vec_fma(v_dz.v, v_dz.v, v_r2.v); mask_t v_doi_mask; int doi_mask; /* Form r2 < hig2 mask. */ vec_create_mask(v_doi_mask, vec_cmp_lt(v_r2.v, v_hig2.v)); /* Form integer mask. */ doi_mask = vec_form_int_mask(v_doi_mask); /* If there are any interactions perform them. */ if (doi_mask) runner_iact_nonsym_1_vec_density( &v_r2, &v_dx, &v_dy, &v_dz, v_hi_inv, v_vix, v_viy, v_viz, &cj_cache->vx[cj_cache_idx], &cj_cache->vy[cj_cache_idx], &cj_cache->vz[cj_cache_idx], &cj_cache->m[cj_cache_idx], &rhoSum, &rho_dhSum, &wcountSum, &wcount_dhSum, &div_vSum, &curlvxSum, &curlvySum, &curlvzSum, v_doi_mask); } /* loop over the parts in cj. */ /* Perform horizontal adds on vector sums and store result in particle pi. */ VEC_HADD(rhoSum, pi->rho); VEC_HADD(rho_dhSum, pi->density.rho_dh); VEC_HADD(wcountSum, pi->density.wcount); VEC_HADD(wcount_dhSum, pi->density.wcount_dh); VEC_HADD(div_vSum, pi->density.div_v); VEC_HADD(curlvxSum, pi->density.rot_v[0]); VEC_HADD(curlvySum, pi->density.rot_v[1]); VEC_HADD(curlvzSum, pi->density.rot_v[2]); } /* loop over the parts in ci. */ } if (cell_is_active(cj, e)) { /* Loop over the parts in cj. */ for (int pjd = 0; pjd <= last_pj_loop && max_ind_i < count_i; pjd++) { /* Get a hold of the jth part in cj. */ struct part *restrict pj = &parts_j[sort_j[pjd].i]; if (!part_is_active(pj, e)) continue; /* Determine the exit iteration of the interaction loop. */ di = sort_i[max_ind_i].d; while (max_ind_i < count_i - 1 && max_dj[pjd] > di) { max_ind_i++; di = sort_i[max_ind_i].d; } int exit_iteration = max_ind_i; /* Set the cache index. */ int cj_cache_idx = pjd; const float hj = cj_cache->h[cj_cache_idx]; const float hjg2 = hj * hj * kernel_gamma2; vector pjx, pjy, pjz; vector v_hj, v_vjx, v_vjy, v_vjz, v_hjg2; /* Fill particle pi vectors. */ pjx.v = vec_set1(cj_cache->x[cj_cache_idx]); pjy.v = vec_set1(cj_cache->y[cj_cache_idx]); pjz.v = vec_set1(cj_cache->z[cj_cache_idx]); v_hj.v = vec_set1(hj); v_vjx.v = vec_set1(cj_cache->vx[cj_cache_idx]); v_vjy.v = vec_set1(cj_cache->vy[cj_cache_idx]); v_vjz.v = vec_set1(cj_cache->vz[cj_cache_idx]); v_hjg2.v = vec_set1(hjg2); /* Reset cumulative sums of update vectors. */ vector rhoSum, rho_dhSum, wcountSum, wcount_dhSum, div_vSum, curlvxSum, curlvySum, curlvzSum; /* Get the inverse of hj. */ vector v_hj_inv; v_hj_inv = vec_reciprocal(v_hj); rhoSum.v = vec_setzero(); rho_dhSum.v = vec_setzero(); wcountSum.v = vec_setzero(); wcount_dhSum.v = vec_setzero(); div_vSum.v = vec_setzero(); curlvxSum.v = vec_setzero(); curlvySum.v = vec_setzero(); curlvzSum.v = vec_setzero(); vector pix, piy, piz; /* Convert exit iteration to cache indices. */ int exit_iteration_align = exit_iteration - first_pi_align; /* Pad the exit iteration align so cache reads are aligned. */ int rem = exit_iteration_align % VEC_SIZE; if (exit_iteration_align < VEC_SIZE) { exit_iteration_align = 0; } else exit_iteration_align -= rem; /* Loop over the parts in ci. */ for (int ci_cache_idx = exit_iteration_align; ci_cache_idx < ci_cache_count; ci_cache_idx += VEC_SIZE) { #ifdef SWIFT_DEBUG_CHECKS if (ci_cache_idx % VEC_SIZE != 0 || ci_cache_idx < 0) { error("Unaligned read!!! ci_cache_idx=%d", ci_cache_idx); } #endif vector v_dx, v_dy, v_dz, v_r2; /* Load 2 sets of vectors from the particle cache. */ pix.v = vec_load(&ci_cache->x[ci_cache_idx]); piy.v = vec_load(&ci_cache->y[ci_cache_idx]); piz.v = vec_load(&ci_cache->z[ci_cache_idx]); /* Compute the pairwise distance. */ v_dx.v = vec_sub(pjx.v, pix.v); v_dy.v = vec_sub(pjy.v, piy.v); v_dz.v = vec_sub(pjz.v, piz.v); v_r2.v = vec_mul(v_dx.v, v_dx.v); v_r2.v = vec_fma(v_dy.v, v_dy.v, v_r2.v); v_r2.v = vec_fma(v_dz.v, v_dz.v, v_r2.v); mask_t v_doj_mask; int doj_mask; /* Form r2 < hig2 mask. */ vec_create_mask(v_doj_mask, vec_cmp_lt(v_r2.v, v_hjg2.v)); /* Form integer mask. */ doj_mask = vec_form_int_mask(v_doj_mask); /* If there are any interactions perform them. */ if (doj_mask) runner_iact_nonsym_1_vec_density( &v_r2, &v_dx, &v_dy, &v_dz, v_hj_inv, v_vjx, v_vjy, v_vjz, &ci_cache->vx[ci_cache_idx], &ci_cache->vy[ci_cache_idx], &ci_cache->vz[ci_cache_idx], &ci_cache->m[ci_cache_idx], &rhoSum, &rho_dhSum, &wcountSum, &wcount_dhSum, &div_vSum, &curlvxSum, &curlvySum, &curlvzSum, v_doj_mask); } /* loop over the parts in ci. */ /* Perform horizontal adds on vector sums and store result in particle pj. */ VEC_HADD(rhoSum, pj->rho); VEC_HADD(rho_dhSum, pj->density.rho_dh); VEC_HADD(wcountSum, pj->density.wcount); VEC_HADD(wcount_dhSum, pj->density.wcount_dh); VEC_HADD(div_vSum, pj->density.div_v); VEC_HADD(curlvxSum, pj->density.rot_v[0]); VEC_HADD(curlvySum, pj->density.rot_v[1]); VEC_HADD(curlvzSum, pj->density.rot_v[2]); } /* loop over the parts in cj. */ TIMER_TOC(timer_dopair_density); } #endif /* WITH_VECTORIZATION */ } /** * @brief Compute the force interactions between a cell pair (non-symmetric) * using vector intrinsics. * * @param r The #runner. * @param ci The first #cell. * @param cj The second #cell. */ void runner_dopair2_force_vec(struct runner *r, struct cell *ci, struct cell *cj) { #ifdef WITH_VECTORIZATION const struct engine *restrict e = r->e; vector v_hi, v_vix, v_viy, v_viz, v_hig2, v_r2; vector v_rhoi, v_grad_hi, v_pOrhoi2, v_balsara_i, v_ci; TIMER_TIC; /* Anything to do here? */ if (!cell_is_active(ci, e) && !cell_is_active(cj, e)) return; if (!cell_are_part_drifted(ci, e) || !cell_are_part_drifted(cj, e)) error("Interacting undrifted cells."); /* Get the sort ID. */ double shift[3] = {0.0, 0.0, 0.0}; const int sid = space_getsid(e->s, &ci, &cj, shift); /* Have the cells been sorted? */ if (!(ci->sorted & (1 << sid)) || ci->dx_max_sort > space_maxreldx * ci->dmin) runner_do_sort(r, ci, (1 << sid), 1); if (!(cj->sorted & (1 << sid)) || cj->dx_max_sort > space_maxreldx * cj->dmin) runner_do_sort(r, cj, (1 << sid), 1); /* Get the cutoff shift. */ double rshift = 0.0; for (int k = 0; k < 3; k++) rshift += shift[k] * runner_shift[sid][k]; /* Pick-out the sorted lists. */ const struct entry *restrict sort_i = &ci->sort[sid * (ci->count + 1)]; const struct entry *restrict sort_j = &cj->sort[sid * (cj->count + 1)]; #ifdef SWIFT_DEBUG_CHECKS /* Check that the dx_max_sort values in the cell are indeed an upper bound on particle movement. */ for (int pid = 0; pid < ci->count; pid++) { const struct part *p = &ci->parts[sort_i[pid].i]; const float d = p->x[0] * runner_shift[sid][0] + p->x[1] * runner_shift[sid][1] + p->x[2] * runner_shift[sid][2]; if (fabsf(d - sort_i[pid].d) - ci->dx_max_sort > 1.0e-6 * max(fabsf(d), ci->dx_max_sort)) error("particle shift diff exceeds dx_max_sort."); } for (int pjd = 0; pjd < cj->count; pjd++) { const struct part *p = &cj->parts[sort_j[pjd].i]; const float d = p->x[0] * runner_shift[sid][0] + p->x[1] * runner_shift[sid][1] + p->x[2] * runner_shift[sid][2]; if (fabsf(d - sort_j[pjd].d) - cj->dx_max_sort > 1.0e-6 * max(fabsf(d), cj->dx_max_sort)) error("particle shift diff exceeds dx_max_sort."); } #endif /* SWIFT_DEBUG_CHECKS */ /* Get some other useful values. */ const int count_i = ci->count; const int count_j = cj->count; const double hi_max = ci->h_max * kernel_gamma - rshift; const double hj_max = cj->h_max * kernel_gamma; struct part *restrict parts_i = ci->parts; struct part *restrict parts_j = cj->parts; const double di_max = sort_i[count_i - 1].d - rshift; const double dj_min = sort_j[0].d; const float dx_max = (ci->dx_max_sort + cj->dx_max_sort); /* Check if any particles are active and return if there are not. */ //int numActive = 0; //for (int pid = count_i - 1; // pid >= 0 && sort_i[pid].d + hi_max + dx_max > dj_min; pid--) { // struct part *restrict pi = &parts_i[sort_i[pid].i]; // if (part_is_active(pi, e)) { // numActive++; // break; // } //} //if (!numActive) { // for (int pjd = 0; pjd < count_j && sort_j[pjd].d - hj_max - dx_max < di_max; // pjd++) { // struct part *restrict pj = &parts_j[sort_j[pjd].i]; // if (part_is_active(pj, e)) { // numActive++; // break; // } // } //} //if (numActive == 0) return; /* Get both particle caches from the runner and re-allocate * them if they are not big enough for the cells. */ struct cache *restrict ci_cache = &r->ci_cache; struct cache *restrict cj_cache = &r->cj_cache; if (ci_cache->count < count_i) { cache_init(ci_cache, count_i); } if (cj_cache->count < count_j) { cache_init(cj_cache, count_j); } int first_pi, last_pj; float *max_di __attribute__((aligned(sizeof(float) * VEC_SIZE))); float *max_dj __attribute__((aligned(sizeof(float) * VEC_SIZE))); max_di = r->ci_cache.max_d; max_dj = r->cj_cache.max_d; /* Find particles maximum distance into cj, max_di[] and ci, max_dj[]. */ /* Also find the first pi that interacts with any particle in cj and the last * pj that interacts with any particle in ci. */ populate_max_d_no_cache(ci, cj, sort_i, sort_j, dx_max, rshift, hi_max, hj_max, di_max, dj_min, max_di, max_dj, &first_pi, &last_pj, e); /* Find the maximum index into cj that is required by a particle in ci. */ /* Find the maximum index into ci that is required by a particle in cj. */ float di, dj; int max_ind_j = count_j - 1; int max_ind_i = 0; dj = sort_j[max_ind_j].d; while (max_ind_j > 0 && max_di[count_i - 1] < dj) { max_ind_j--; dj = sort_j[max_ind_j].d; } di = sort_i[max_ind_i].d; while (max_ind_i < count_i - 1 && max_dj[0] > di) { max_ind_i++; di = sort_i[max_ind_i].d; } /* Limits of the outer loops. */ int first_pi_loop = first_pi; int last_pj_loop = last_pj; /* Take the max/min of both values calculated to work out how many particles * to read into the cache. */ last_pj = max(last_pj, max_ind_j); first_pi = min(first_pi, max_ind_i); /* Read the needed particles into the two caches. */ int first_pi_align = first_pi; int last_pj_align = last_pj; cache_read_two_partial_cells_sorted_force(ci, cj, ci_cache, cj_cache, sort_i, sort_j, shift, &first_pi_align, &last_pj_align, 1); /* Get the number of particles read into the ci cache. */ int ci_cache_count = count_i - first_pi_align; if (cell_is_active(ci, e)) { /* Loop over the parts in ci until nothing is within range in cj. */ for (int pid = count_i - 1; pid >= first_pi_loop && max_ind_j >= 0; pid--) { /* Get a hold of the ith part in ci. */ struct part *restrict pi = &parts_i[sort_i[pid].i]; if (!part_is_active(pi, e)) continue; /* Set the cache index. */ int ci_cache_idx = pid - first_pi_align; /* Skip this particle if no particle in cj is within range of it. */ const float hi = ci_cache->h[ci_cache_idx]; const double di_test = sort_i[pid].d + hi * kernel_gamma + dx_max - rshift; if (di_test < dj_min) continue; /* Determine the exit iteration of the interaction loop. */ dj = sort_j[max_ind_j].d; while (max_ind_j > 0 && max_di[pid] < dj) { max_ind_j--; dj = sort_j[max_ind_j].d; } int exit_iteration = max_ind_j + 1; const float hig2 = hi * hi * kernel_gamma2; vector pix, piy, piz; /* Fill particle pi vectors. */ pix.v = vec_set1(ci_cache->x[ci_cache_idx]); piy.v = vec_set1(ci_cache->y[ci_cache_idx]); piz.v = vec_set1(ci_cache->z[ci_cache_idx]); v_hi.v = vec_set1(hi); v_vix.v = vec_set1(ci_cache->vx[ci_cache_idx]); v_viy.v = vec_set1(ci_cache->vy[ci_cache_idx]); v_viz.v = vec_set1(ci_cache->vz[ci_cache_idx]); v_rhoi.v = vec_set1(ci_cache->rho[ci_cache_idx]); v_grad_hi.v = vec_set1(ci_cache->grad_h[ci_cache_idx]); v_pOrhoi2.v = vec_set1(ci_cache->pOrho2[ci_cache_idx]); v_balsara_i.v = vec_set1(ci_cache->balsara[ci_cache_idx]); v_ci.v = vec_set1(ci_cache->soundspeed[ci_cache_idx]); v_hig2.v = vec_set1(hig2); /* Reset cumulative sums of update vectors. */ vector a_hydro_xSum, a_hydro_ySum, a_hydro_zSum, h_dtSum, v_sigSum, entropy_dtSum; /* Get the inverse of hi. */ vector v_hi_inv; v_hi_inv = vec_reciprocal(v_hi); a_hydro_xSum.v = vec_setzero(); a_hydro_ySum.v = vec_setzero(); a_hydro_zSum.v = vec_setzero(); h_dtSum.v = vec_setzero(); v_sigSum.v = vec_set1(pi->force.v_sig); entropy_dtSum.v = vec_setzero(); /* Pad the exit iteration if there is a serial remainder. */ int exit_iteration_align = exit_iteration; int rem = exit_iteration % VEC_SIZE; if (rem != 0) { int pad = VEC_SIZE - rem; if (exit_iteration_align + pad <= last_pj_align + 1) exit_iteration_align += pad; } vector pjx, pjy, pjz, hj, hjg2; /* Loop over the parts in cj. */ for (int pjd = 0; pjd < exit_iteration_align; pjd += VEC_SIZE) { /* Get the cache index to the jth particle. */ int cj_cache_idx = pjd; vector v_dx, v_dy, v_dz; #ifdef SWIFT_DEBUG_CHECKS if (cj_cache_idx % VEC_SIZE != 0 || cj_cache_idx < 0) { error("Unaligned read!!! cj_cache_idx=%d", cj_cache_idx); } #endif /* Load 2 sets of vectors from the particle cache. */ pjx.v = vec_load(&cj_cache->x[cj_cache_idx]); pjy.v = vec_load(&cj_cache->y[cj_cache_idx]); pjz.v = vec_load(&cj_cache->z[cj_cache_idx]); hj.v = vec_load(&cj_cache->h[cj_cache_idx]); hjg2.v = vec_mul(vec_mul(hj.v, hj.v), kernel_gamma2_vec.v); /* Compute the pairwise distance. */ v_dx.v = vec_sub(pix.v, pjx.v); v_dy.v = vec_sub(piy.v, pjy.v); v_dz.v = vec_sub(piz.v, pjz.v); v_r2.v = vec_mul(v_dx.v, v_dx.v); v_r2.v = vec_fma(v_dy.v, v_dy.v, v_r2.v); v_r2.v = vec_fma(v_dz.v, v_dz.v, v_r2.v); mask_t v_doi_mask; int doi_mask; /* Form a mask from r2 < hig2 mask and r2 < hjg2 mask. */ vector v_h2; v_h2.v = vec_fmax(v_hig2.v, hjg2.v); vec_create_mask(v_doi_mask, vec_cmp_lt(v_r2.v, v_h2.v)); /* Form integer masks. */ doi_mask = vec_form_int_mask(v_doi_mask); /* If there are any interactions perform them. */ if (doi_mask) { runner_iact_nonsym_1_vec_force( &v_r2, &v_dx, &v_dy, &v_dz, &v_vix, &v_viy, &v_viz, &v_rhoi, &v_grad_hi, &v_pOrhoi2, &v_balsara_i, &v_ci, &cj_cache->vx[cj_cache_idx], &cj_cache->vy[cj_cache_idx], &cj_cache->vz[cj_cache_idx], &cj_cache->m[cj_cache_idx], &cj_cache->rho[cj_cache_idx], &cj_cache->grad_h[cj_cache_idx], &cj_cache->pOrho2[cj_cache_idx], &cj_cache->balsara[cj_cache_idx], &cj_cache->soundspeed[cj_cache_idx], &v_hi_inv, &hj, &a_hydro_xSum, &a_hydro_ySum, &a_hydro_zSum, &h_dtSum, &v_sigSum, &entropy_dtSum, v_doi_mask); } } /* loop over the parts in cj. */ /* Perform horizontal adds on vector sums and store result in particle pi. */ VEC_HADD(a_hydro_xSum, pi->a_hydro[0]); VEC_HADD(a_hydro_ySum, pi->a_hydro[1]); VEC_HADD(a_hydro_zSum, pi->a_hydro[2]); VEC_HADD(h_dtSum, pi->force.h_dt); VEC_HMAX(v_sigSum, pi->force.v_sig); VEC_HADD(entropy_dtSum, pi->entropy_dt); } /* loop over the parts in ci. */ } if (cell_is_active(cj, e)) { /* Loop over the parts in cj until nothing is within range in ci. */ for (int pjd = 0; pjd <= last_pj_loop && max_ind_i < count_i; pjd++) { /* Get a hold of the jth part in cj. */ struct part *restrict pj = &parts_j[sort_j[pjd].i]; if (!part_is_active(pj, e)) continue; /* Set the cache index. */ int cj_cache_idx = pjd; /*TODO: rshift term. */ /* Skip this particle if no particle in ci is within range of it. */ const float hj = cj_cache->h[cj_cache_idx]; const double dj_test = sort_j[pjd].d - hj * kernel_gamma - dx_max - rshift; if (dj_test > di_max) continue; /* Determine the exit iteration of the interaction loop. */ di = sort_i[max_ind_i].d; while (max_ind_i < count_i - 1 && max_dj[pjd] > di) { max_ind_i++; di = sort_i[max_ind_i].d; } int exit_iteration = max_ind_i; const float hjg2 = hj * hj * kernel_gamma2; vector pjx, pjy, pjz; vector v_hj, v_vjx, v_vjy, v_vjz, v_hjg2; vector v_rhoj, v_grad_hj, v_pOrhoj2, v_balsara_j, v_cj; /* Fill particle pi vectors. */ pjx.v = vec_set1(cj_cache->x[cj_cache_idx]); pjy.v = vec_set1(cj_cache->y[cj_cache_idx]); pjz.v = vec_set1(cj_cache->z[cj_cache_idx]); v_hj.v = vec_set1(hj); v_vjx.v = vec_set1(cj_cache->vx[cj_cache_idx]); v_vjy.v = vec_set1(cj_cache->vy[cj_cache_idx]); v_vjz.v = vec_set1(cj_cache->vz[cj_cache_idx]); v_rhoj.v = vec_set1(cj_cache->rho[cj_cache_idx]); v_grad_hj.v = vec_set1(cj_cache->grad_h[cj_cache_idx]); v_pOrhoj2.v = vec_set1(cj_cache->pOrho2[cj_cache_idx]); v_balsara_j.v = vec_set1(cj_cache->balsara[cj_cache_idx]); v_cj.v = vec_set1(cj_cache->soundspeed[cj_cache_idx]); v_hjg2.v = vec_set1(hjg2); /* Reset cumulative sums of update vectors. */ vector a_hydro_xSum, a_hydro_ySum, a_hydro_zSum, h_dtSum, v_sigSum, entropy_dtSum; /* Get the inverse of hj. */ vector v_hj_inv; v_hj_inv = vec_reciprocal(v_hj); a_hydro_xSum.v = vec_setzero(); a_hydro_ySum.v = vec_setzero(); a_hydro_zSum.v = vec_setzero(); h_dtSum.v = vec_setzero(); v_sigSum.v = vec_set1(pj->force.v_sig); entropy_dtSum.v = vec_setzero(); /* Convert exit iteration to cache indices. */ int exit_iteration_align = exit_iteration - first_pi_align; /* Pad the exit iteration align so cache reads are aligned. */ int rem = exit_iteration_align % VEC_SIZE; if (exit_iteration_align < VEC_SIZE) { exit_iteration_align = 0; } else exit_iteration_align -= rem; vector pix, piy, piz, hi, hig2; /* Loop over the parts in ci. */ for (int ci_cache_idx = exit_iteration_align; ci_cache_idx < ci_cache_count; ci_cache_idx += VEC_SIZE) { #ifdef SWIFT_DEBUG_CHECKS if (ci_cache_idx % VEC_SIZE != 0 || ci_cache_idx < 0) { error("Unaligned read!!! ci_cache_idx=%d", ci_cache_idx); } #endif vector v_dx, v_dy, v_dz, v_r2; /* Load 2 sets of vectors from the particle cache. */ pix.v = vec_load(&ci_cache->x[ci_cache_idx]); piy.v = vec_load(&ci_cache->y[ci_cache_idx]); piz.v = vec_load(&ci_cache->z[ci_cache_idx]); hi.v = vec_load(&ci_cache->h[ci_cache_idx]); hig2.v = vec_mul(vec_mul(hi.v, hi.v), kernel_gamma2_vec.v); /* Compute the pairwise distance. */ v_dx.v = vec_sub(pjx.v, pix.v); v_dy.v = vec_sub(pjy.v, piy.v); v_dz.v = vec_sub(pjz.v, piz.v); v_r2.v = vec_mul(v_dx.v, v_dx.v); v_r2.v = vec_fma(v_dy.v, v_dy.v, v_r2.v); v_r2.v = vec_fma(v_dz.v, v_dz.v, v_r2.v); mask_t v_doj_mask; int doj_mask; /* Form a mask from r2 < hig2 mask and r2 < hjg2 mask. */ vector v_h2; v_h2.v = vec_fmax(v_hjg2.v, hig2.v); vec_create_mask(v_doj_mask, vec_cmp_lt(v_r2.v, v_h2.v)); /* Form integer masks. */ doj_mask = vec_form_int_mask(v_doj_mask); /* If there are any interactions perform them. */ if (doj_mask) { runner_iact_nonsym_1_vec_force( &v_r2, &v_dx, &v_dy, &v_dz, &v_vjx, &v_vjy, &v_vjz, &v_rhoj, &v_grad_hj, &v_pOrhoj2, &v_balsara_j, &v_cj, &ci_cache->vx[ci_cache_idx], &ci_cache->vy[ci_cache_idx], &ci_cache->vz[ci_cache_idx], &ci_cache->m[ci_cache_idx], &ci_cache->rho[ci_cache_idx], &ci_cache->grad_h[ci_cache_idx], &ci_cache->pOrho2[ci_cache_idx], &ci_cache->balsara[ci_cache_idx], &ci_cache->soundspeed[ci_cache_idx], &v_hj_inv, &hi, &a_hydro_xSum, &a_hydro_ySum, &a_hydro_zSum, &h_dtSum, &v_sigSum, &entropy_dtSum, v_doj_mask); } } /* loop over the parts in ci. */ /* Perform horizontal adds on vector sums and store result in particle pj. */ VEC_HADD(a_hydro_xSum, pj->a_hydro[0]); VEC_HADD(a_hydro_ySum, pj->a_hydro[1]); VEC_HADD(a_hydro_zSum, pj->a_hydro[2]); VEC_HADD(h_dtSum, pj->force.h_dt); VEC_HMAX(v_sigSum, pj->force.v_sig); VEC_HADD(entropy_dtSum, pj->entropy_dt); } /* loop over the parts in cj. */ TIMER_TOC(timer_dopair_density); } #endif /* WITH_VECTORIZATION */ }