#!/usr/bin/env python """ Usage: analsyse_tasks_MPI.py [options] input.dat where input.dat is a thread info file for an MPI step. Use the '-y interval' flag of the swift command to create these. The output is an analysis of the task timings, including deadtime per thread and step, total amount of time spent for each task type, for the whole step and per thread and the minimum and maximum times spent per task type. This file is part of SWIFT. Copyright (c) 2017 Peter W. Draper (p.w.draper@durham.ac.uk) This program is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ import matplotlib matplotlib.use("Agg") import matplotlib.collections as collections import matplotlib.ticker as plticker import pylab as pl import sys import argparse # Handle the command line. parser = argparse.ArgumentParser(description="Analyse task dumps") parser.add_argument("input", help="Thread data file (-y output)") parser.add_argument("-v", "--verbose", dest="verbose", help="Verbose output (default: False)", default=False, action="store_true") parser.add_argument("-r", "--rank", dest="rank", help="Rank to process (default: all)", default="all", action="store") args = parser.parse_args() infile = args.input # Tasks and subtypes. Indexed as in tasks.h. TASKTYPES = ["none", "sort", "self", "pair", "sub_self", "sub_pair", "init_grav", "ghost", "extra_ghost", "drift_part", "drift_gpart", "kick1", "kick2", "timestep", "send", "recv", "grav_top_level", "grav_long_range", "grav_mm", "grav_down", "cooling", "sourceterms", "count"] SUBTYPES = ["none", "density", "gradient", "force", "grav", "external_grav", "tend", "xv", "rho", "gpart", "multipole", "spart", "count"] SIDS = ["(-1,-1,-1)", "(-1,-1, 0)", "(-1,-1, 1)", "(-1, 0,-1)", "(-1, 0, 0)", "(-1, 0, 1)", "(-1, 1,-1)", "(-1, 1, 0)", "(-1, 1, 1)", "( 0,-1,-1)", "( 0,-1, 0)", "( 0,-1, 1)", "( 0, 0,-1)"] # Read input. data = pl.loadtxt( infile ) # Get the CPU clock to convert ticks into milliseconds. full_step = data[0,:] updates = int(full_step[7]) g_updates = int(full_step[8]) s_updates = int(full_step[9]) CPU_CLOCK = float(full_step[-1]) / 1000.0 if args.verbose: print "# CPU frequency:", CPU_CLOCK * 1000.0 print "# updates:", updates print "# g_updates:", g_updates print "# s_updates:", s_updates nranks = int(max(data[:,0])) + 1 print "# Number of ranks:", nranks if args.rank == "all": ranks = range(nranks) else: ranks = [int(args.rank)] if ranks[0] >= nranks: print "Error: maximum rank is " + str(nranks - 1) sys.exit(1) maxthread = int(max(data[:,1])) + 1 print "# Maximum thread id:", maxthread # Avoid start and end times of zero. sdata = data[data[:,5] != 0] sdata = data[data[:,6] != 0] # Now we process the required ranks. for rank in ranks: print "# Rank", rank data = sdata[sdata[:,0] == rank] # Recover the start and end time full_step = data[0,:] tic_step = int(full_step[5]) toc_step = int(full_step[6]) data = data[1:,:] # Avoid start and end times of zero. data = data[data[:,5] != 0] data = data[data[:,6] != 0] # Calculate the time range. total_t = (toc_step - tic_step)/ CPU_CLOCK print "# Data range: ", total_t, "ms" print # Correct times to relative values. start_t = float(tic_step) data[:,5] -= start_t data[:,6] -= start_t end_t = (toc_step - start_t) / CPU_CLOCK tasks = {} tasks[-1] = [] for i in range(maxthread): tasks[i] = [] # Gather into by thread data. num_lines = pl.shape(data)[0] for line in range(num_lines): thread = int(data[line,1]) tic = int(data[line,5]) / CPU_CLOCK toc = int(data[line,6]) / CPU_CLOCK tasktype = int(data[line,2]) subtype = int(data[line,3]) sid = int(data[line, -1]) tasks[thread].append([tic,toc,tasktype,subtype, sid]) # Sort by tic and gather used threads. threadids = [] for i in range(maxthread): tasks[i] = sorted(tasks[i], key=lambda task: task[0]) threadids.append(i) # Times per task. print "# Task times:" print "# -----------" print "# {0:<17s}: {1:>7s} {2:>9s} {3:>9s} {4:>9s} {5:>9s} {6:>9s}"\ .format("type/subtype", "count","minimum", "maximum", "sum", "mean", "percent") alltasktimes = {} sidtimes = {} for i in threadids: tasktimes = {} for task in tasks[i]: key = TASKTYPES[task[2]] + "/" + SUBTYPES[task[3]] dt = task[1] - task[0] if not key in tasktimes: tasktimes[key] = [] tasktimes[key].append(dt) if not key in alltasktimes: alltasktimes[key] = [] alltasktimes[key].append(dt) my_sid = task[4] if my_sid > -1: if not my_sid in sidtimes: sidtimes[my_sid] = [] sidtimes[my_sid].append(dt) print "# Thread : ", i for key in sorted(tasktimes.keys()): taskmin = min(tasktimes[key]) taskmax = max(tasktimes[key]) tasksum = sum(tasktimes[key]) print "{0:19s}: {1:7d} {2:9.4f} {3:9.4f} {4:9.4f} {5:9.4f} {6:9.2f}"\ .format(key, len(tasktimes[key]), taskmin, taskmax, tasksum, tasksum / len(tasktimes[key]), tasksum / total_t * 100.0) print print "# All threads : " for key in sorted(alltasktimes.keys()): taskmin = min(alltasktimes[key]) taskmax = max(alltasktimes[key]) tasksum = sum(alltasktimes[key]) print "{0:18s}: {1:7d} {2:9.4f} {3:9.4f} {4:9.4f} {5:9.4f} {6:9.2f}"\ .format(key, len(alltasktimes[key]), taskmin, taskmax, tasksum, tasksum / len(alltasktimes[key]), tasksum / (len(threadids) * total_t) * 100.0) print # For pairs, show stuf sorted by SID print "# By SID (all threads): " print "# {0:<17s}: {1:>7s} {2:>9s} {3:>9s} {4:>9s} {5:>9s} {6:>9s}"\ .format("Pair/Sub-pair SID", "count","minimum", "maximum", "sum", "mean", "percent") for sid in range(0,13): if sid in sidtimes: sidmin = min(sidtimes[sid]) sidmax = max(sidtimes[sid]) sidsum = sum(sidtimes[sid]) sidcount = len(sidtimes[sid]) sidmean = sidsum / sidcount else: sidmin = 0. sidmax = 0. sidsum = 0. sidcount = 0 sidmean = 0. print "{0:3d} {1:15s}: {2:7d} {3:9.4f} {4:9.4f} {5:9.4f} {6:9.4f} {7:9.2f}"\ .format(sid, SIDS[sid], sidcount, sidmin, sidmax, sidsum, sidmean, sidsum / (len(threadids) * total_t) * 100.0) print # Dead times. print "# Times not in tasks (deadtimes)" print "# ------------------------------" print "# Time before first task:" print "# no. : {0:>9s} {1:>9s}".format("value", "percent") predeadtimes = [] for i in threadids: if len(tasks[i]) > 0: predeadtime = tasks[i][0][0] print "thread {0:2d}: {1:9.4f} {2:9.4f}"\ .format(i, predeadtime, predeadtime / total_t * 100.0) predeadtimes.append(predeadtime) else: predeadtimes.append(0.0) predeadmin = min(predeadtimes) predeadmax = max(predeadtimes) predeadsum = sum(predeadtimes) print "# : {0:>9s} {1:>9s} {2:>9s} {3:>9s} {4:>9s} {5:>9s}"\ .format("count", "minimum", "maximum", "sum", "mean", "percent") print "all : {0:9d} {1:9.4f} {2:9.4f} {3:9.4f} {4:9.4f} {5:9.2f}"\ .format(len(predeadtimes), predeadmin, predeadmax, predeadsum, predeadsum / len(predeadtimes), predeadsum / (len(threadids) * total_t ) * 100.0) print print "# Time after last task:" print "# no. : {0:>9s} {1:>9s}".format("value", "percent") postdeadtimes = [] for i in threadids: if len(tasks[i]) > 0: postdeadtime = total_t - tasks[i][-1][1] print "thread {0:2d}: {1:9.4f} {2:9.4f}"\ .format(i, postdeadtime, postdeadtime / total_t * 100.0) postdeadtimes.append(postdeadtime) else: postdeadtimes.append(0.0) postdeadmin = min(postdeadtimes) postdeadmax = max(postdeadtimes) postdeadsum = sum(postdeadtimes) print "# : {0:>9s} {1:>9s} {2:>9s} {3:>9s} {4:>9s} {5:>9s}"\ .format("count", "minimum", "maximum", "sum", "mean", "percent") print "all : {0:9d} {1:9.4f} {2:9.4f} {3:9.4f} {4:9.4f} {5:9.2f}"\ .format(len(postdeadtimes), postdeadmin, postdeadmax, postdeadsum, postdeadsum / len(postdeadtimes), postdeadsum / (len(threadids) * total_t ) * 100.0) print # Time in engine, i.e. from first to last tasks. print "# Time between tasks (engine deadtime):" print "# no. : {0:>9s} {1:>9s} {2:>9s} {3:>9s} {4:>9s} {5:>9s}"\ .format("count", "minimum", "maximum", "sum", "mean", "percent") enginedeadtimes = [] for i in threadids: deadtimes = [] if len(tasks[i]) > 0: last = tasks[i][0][0] else: last = 0.0 for task in tasks[i]: dt = task[0] - last deadtimes.append(dt) last = task[1] # Drop first value, last value already gone. if len(deadtimes) > 1: deadtimes = deadtimes[1:] else: # Only one or fewer tasks, so no deadtime by definition. deadtimes = [0.0] deadmin = min(deadtimes) deadmax = max(deadtimes) deadsum = sum(deadtimes) print "thread {0:2d}: {1:9d} {2:9.4f} {3:9.4f} {4:9.4f} {5:9.4f} {6:9.2f}"\ .format(i, len(deadtimes), deadmin, deadmax, deadsum, deadsum / len(deadtimes), deadsum / total_t * 100.0) enginedeadtimes.extend(deadtimes) deadmin = min(enginedeadtimes) deadmax = max(enginedeadtimes) deadsum = sum(enginedeadtimes) print "all : {0:9d} {1:9.4f} {2:9.4f} {3:9.4f} {4:9.4f} {5:9.2f}"\ .format(len(enginedeadtimes), deadmin, deadmax, deadsum, deadsum / len(enginedeadtimes), deadsum / (len(threadids) * total_t ) * 100.0) print # All times in step. print "# All deadtimes:" print "# no. : {0:>9s} {1:>9s} {2:>9s} {3:>9s} {4:>9s} {5:>9s}"\ .format("count", "minimum", "maximum", "sum", "mean", "percent") alldeadtimes = [] for i in threadids: deadtimes = [] last = 0 for task in tasks[i]: dt = task[0] - last deadtimes.append(dt) last = task[1] dt = total_t - last deadtimes.append(dt) deadmin = min(deadtimes) deadmax = max(deadtimes) deadsum = sum(deadtimes) print "thread {0:2d}: {1:9d} {2:9.4f} {3:9.4f} {4:9.4f} {5:9.4f} {6:9.2f}"\ .format(i, len(deadtimes), deadmin, deadmax, deadsum, deadsum / len(deadtimes), deadsum / total_t * 100.0) alldeadtimes.extend(deadtimes) deadmin = min(alldeadtimes) deadmax = max(alldeadtimes) deadsum = sum(alldeadtimes) print "all : {0:9d} {1:9.4f} {2:9.4f} {3:9.4f} {4:9.4f} {5:9.2f}"\ .format(len(alldeadtimes), deadmin, deadmax, deadsum, deadsum / len(alldeadtimes), deadsum / (len(threadids) * total_t ) * 100.0) print sys.exit(0)