#!/usr/bin/env python """ Usage: plot_tasks_MPI.py [options] input.dat png-output-prefix where input.dat is a thread info file for a step. Use the '-y interval' flag of the swift MPI command to create these. The output plot will be called 'png-output-prefix<mpi-rank>.png', i.e. one each for all the threads in each MPI rank. The --limit option can be used to produce plots with the same time span and the --expand option to expand each thread line into '*expand' lines, so that adjacent tasks of the same type can be distinguished. Other options can be seen using the --help flag. See the command 'process_plot_tasks_MPI' to efficiently wrap this command to process a number of thread info files and create an HTML file to view them. This file is part of SWIFT. Copyright (C) 2015 Pedro Gonnet (pedro.gonnet@durham.ac.uk), Bert Vandenbroucke (bert.vandenbroucke@ugent.be) Matthieu Schaller (matthieu.schaller@durham.ac.uk) (C) 2017 Peter W. Draper (p.w.draper@durham.ac.uk) All Rights Reserved. This program is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ import matplotlib matplotlib.use("Agg") import matplotlib.collections as collections import matplotlib.ticker as plticker import pylab as pl import sys import argparse # Handle the command line. parser = argparse.ArgumentParser(description="Plot task graphs") parser.add_argument("input", help="Thread data file (-y output)") parser.add_argument("outbase", help="Base name for output graphic files (PNG)") parser.add_argument("-l", "--limit", dest="limit", help="Upper time limit in millisecs (def: depends on data)", default=0, type=int) parser.add_argument("-e", "--expand", dest="expand", help="Thread expansion factor (def: 1)", default=1, type=int) parser.add_argument("--height", dest="height", help="Height of plot in inches (def: 4)", default=4., type=float) parser.add_argument("--width", dest="width", help="Width of plot in inches (def: 16)", default=16., type=float) parser.add_argument("--nolegend", dest="nolegend", help="Whether to show the legend (def: False)", default=False, action="store_true") parser.add_argument("-v", "--verbose", dest="verbose", help="Show colour assignments and other details (def: False)", default=False, action="store_true") args = parser.parse_args() infile = args.input outbase = args.outbase delta_t = args.limit expand = args.expand # Basic plot configuration. PLOT_PARAMS = {"axes.labelsize": 10, "axes.titlesize": 10, "font.size": 12, "legend.fontsize": 12, "xtick.labelsize": 10, "ytick.labelsize": 10, "figure.figsize" : (args.width, args.height), "figure.subplot.left" : 0.03, "figure.subplot.right" : 0.995, "figure.subplot.bottom" : 0.1, "figure.subplot.top" : 0.99, "figure.subplot.wspace" : 0., "figure.subplot.hspace" : 0., "lines.markersize" : 6, "lines.linewidth" : 3. } pl.rcParams.update(PLOT_PARAMS) # Tasks and subtypes. Indexed as in tasks.h. TASKTYPES = ["none", "sort", "self", "pair", "sub_self", "sub_pair", "init_grav", "ghost", "extra_ghost", "drift_part", "drift_gpart", "kick1", "kick2", "timestep", "send", "recv", "grav_top_level", "grav_long_range", "grav_mm", "grav_down", "cooling", "sourceterms", "count"] SUBTYPES = ["none", "density", "gradient", "force", "grav", "external_grav", "tend", "xv", "rho", "gpart", "multipole", "spart", "count"] # Task/subtypes of interest. FULLTYPES = ["self/force", "self/density", "self/grav", "sub_self/force", "sub_self/density", "pair/force", "pair/density", "pair/grav", "sub_pair/force", "sub_pair/density", "recv/xv", "send/xv", "recv/rho", "send/rho", "recv/tend", "send/tend"] # A number of colours for the various types. Recycled when there are # more task types than colours... colours = ["cyan", "lightgray", "darkblue", "yellow", "tan", "dodgerblue", "sienna", "aquamarine", "bisque", "blue", "green", "lightgreen", "brown", "purple", "moccasin", "olivedrab", "chartreuse", "darksage", "darkgreen", "green", "mediumseagreen", "mediumaquamarine", "darkslategrey", "mediumturquoise", "black", "cadetblue", "skyblue", "red", "slategray", "gold", "slateblue", "blueviolet", "mediumorchid", "firebrick", "magenta", "hotpink", "pink", "orange", "lightgreen"] maxcolours = len(colours) # Set colours of task/subtype. TASKCOLOURS = {} ncolours = 0 for task in TASKTYPES: TASKCOLOURS[task] = colours[ncolours] ncolours = (ncolours + 1) % maxcolours SUBCOLOURS = {} for task in FULLTYPES: SUBCOLOURS[task] = colours[ncolours] ncolours = (ncolours + 1) % maxcolours for task in SUBTYPES: SUBCOLOURS[task] = colours[ncolours] ncolours = (ncolours + 1) % maxcolours # For fiddling with colours... if args.verbose: print "#Selected colours:" for task in sorted(TASKCOLOURS.keys()): print "# " + task + ": " + TASKCOLOURS[task] for task in sorted(SUBCOLOURS.keys()): print "# " + task + ": " + SUBCOLOURS[task] # Read input. data = pl.loadtxt( infile ) # Get CPU_CLOCK to convert ticks into milliseconds. full_step = data[0,:] CPU_CLOCK = float(full_step[-1]) / 1000.0 if args.verbose: print "CPU frequency:", CPU_CLOCK * 1000.0 nranks = int(max(data[:,0])) + 1 print "Number of ranks:", nranks nthread = int(max(data[:,1])) + 1 print "Number of threads:", nthread # Avoid start and end times of zero. sdata = data[data[:,5] != 0] sdata = sdata[sdata[:,6] != 0] # Each rank can have different clock (compute node), but we want to use the # same delta times range for comparisons, so we suck it up and take the hit of # precalculating this, unless the user knows better. delta_t = delta_t * CPU_CLOCK if delta_t == 0: for rank in range(nranks): data = sdata[sdata[:,0] == rank] full_step = data[0,:] tic_step = int(full_step[5]) toc_step = int(full_step[6]) dt = toc_step - tic_step if dt > delta_t: delta_t = dt print "Data range: ", delta_t / CPU_CLOCK, "ms" # Once more doing the real gather and plots this time. for rank in range(nranks): data = sdata[sdata[:,0] == rank] # Start and end times for this rank. full_step = data[0,:] tic_step = int(full_step[5]) toc_step = int(full_step[6]) data = data[1:,:] typesseen = [] nethread = 0 # Dummy image for ranks that have no tasks. if data.size == 0: print "rank ", rank, " has no tasks" fig = pl.figure() ax = fig.add_subplot(1,1,1) ax.set_xlim(-delta_t * 0.01 / CPU_CLOCK, delta_t * 1.01 / CPU_CLOCK) ax.set_ylim(0, nthread*expand) start_t = tic_step end_t = (toc_step - start_t) / CPU_CLOCK else: start_t = float(tic_step) data[:,5] -= start_t data[:,6] -= start_t end_t = (toc_step - start_t) / CPU_CLOCK tasks = {} tasks[-1] = [] for i in range(nthread*expand): tasks[i] = [] # Counters for each thread when expanding. ecounter = [] for i in range(nthread): ecounter.append(0) num_lines = pl.shape(data)[0] for line in range(num_lines): thread = int(data[line,1]) # Expand to cover extra lines if expanding. ethread = thread * expand + (ecounter[thread] % expand) ecounter[thread] = ecounter[thread] + 1 thread = ethread tasks[thread].append({}) tasktype = TASKTYPES[int(data[line,2])] subtype = SUBTYPES[int(data[line,3])] tasks[thread][-1]["type"] = tasktype tasks[thread][-1]["subtype"] = subtype tic = int(data[line,5]) / CPU_CLOCK toc = int(data[line,6]) / CPU_CLOCK tasks[thread][-1]["tic"] = tic tasks[thread][-1]["toc"] = toc if "self" in tasktype or "pair" in tasktype or "recv" in tasktype or "send" in tasktype: fulltype = tasktype + "/" + subtype if fulltype in SUBCOLOURS: tasks[thread][-1]["colour"] = SUBCOLOURS[fulltype] else: tasks[thread][-1]["colour"] = SUBCOLOURS[subtype] else: tasks[thread][-1]["colour"] = TASKCOLOURS[tasktype] # Use expanded threads from now on. nethread = nthread * expand typesseen = [] fig = pl.figure() ax = fig.add_subplot(1,1,1) ax.set_xlim(-delta_t * 0.01 / CPU_CLOCK, delta_t * 1.01 / CPU_CLOCK) ax.set_ylim(0, nethread) for i in range(nethread): # Collect ranges and colours into arrays. tictocs = [] colours = [] j = 0 for task in tasks[i]: tictocs.append((task["tic"], task["toc"] - task["tic"])) colours.append(task["colour"]) # Legend support, collections don't add to this. if task["subtype"] != "none": qtask = task["type"] + "/" + task["subtype"] else: qtask = task["type"] if qtask not in typesseen: pl.plot([], [], color=task["colour"], label=qtask) typesseen.append(qtask) # Now plot. ax.broken_barh(tictocs, [i+0.05,0.90], facecolors = colours, linewidth=0) # Legend and room for it. nrow = len(typesseen) / 5 ax.fill_between([0, 0], nethread+0.5, nethread + nrow + 0.5, facecolor="white") ax.set_ylim(0, nethread + 0.5) if data.size > 0: ax.legend(loc=1, shadow=True, bbox_to_anchor=(0., 1.05 ,1., 0.2), mode="expand", ncol=5) box = ax.get_position() ax.set_position([box.x0, box.y0, box.width, box.height*0.8]) # Start and end of time-step ax.plot([0, 0], [0, nethread + nrow + 1], 'k--', linewidth=1) ax.plot([end_t, end_t], [0, nethread + nrow + 1], 'k--', linewidth=1) ax.set_xlabel("Wall clock time [ms]") if expand == 1: ax.set_ylabel("Thread ID" ) else: ax.set_ylabel("Thread ID * " + str(expand) ) ax.set_yticks(pl.array(range(nethread)), True) loc = plticker.MultipleLocator(base=expand) ax.yaxis.set_major_locator(loc) ax.grid(True, which='major', axis="y", linestyle="-") pl.show() outpng = outbase + str(rank) + ".png" pl.savefig(outpng) print "Graphics done, output written to", outpng sys.exit(0)