/******************************************************************************* * This file is part of GadgetSMP. * Coypright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program. If not, see . * ******************************************************************************/ /* Config parameters. */ #include "../config.h" /* Some standard headers. */ #include #include #include #include #include #include #include /* Local headers. */ #include "cycle.h" #include "lock.h" #include "task.h" #include "part.h" #include "cell.h" #include "space.h" #include "runner.h" /* Error macro. */ #define error(s) { printf( "%s:%s:%i: %s\n" , __FILE__ , __FUNCTION__ , __LINE__ , s ); abort(); } /* Split size. */ int space_splitsize = space_splitsize_default; /* Map shift vector to sortlist. */ const int sortlistID[27] = { /* ( -1 , -1 , -1 ) */ 0 , /* ( -1 , -1 , 0 ) */ 1 , /* ( -1 , -1 , 1 ) */ 2 , /* ( -1 , 0 , -1 ) */ 3 , /* ( -1 , 0 , 0 ) */ 4 , /* ( -1 , 0 , 1 ) */ 5 , /* ( -1 , 1 , -1 ) */ 6 , /* ( -1 , 1 , 0 ) */ 7 , /* ( -1 , 1 , 1 ) */ 8 , /* ( 0 , -1 , -1 ) */ 9 , /* ( 0 , -1 , 0 ) */ 10 , /* ( 0 , -1 , 1 ) */ 11 , /* ( 0 , 0 , -1 ) */ 12 , /* ( 0 , 0 , 0 ) */ 0 , /* ( 0 , 0 , 1 ) */ 12 , /* ( 0 , 1 , -1 ) */ 11 , /* ( 0 , 1 , 0 ) */ 10 , /* ( 0 , 1 , 1 ) */ 9 , /* ( 1 , -1 , -1 ) */ 8 , /* ( 1 , -1 , 0 ) */ 7 , /* ( 1 , -1 , 1 ) */ 6 , /* ( 1 , 0 , -1 ) */ 5 , /* ( 1 , 0 , 0 ) */ 4 , /* ( 1 , 0 , 1 ) */ 3 , /* ( 1 , 1 , -1 ) */ 2 , /* ( 1 , 1 , 0 ) */ 1 , /* ( 1 , 1 , 1 ) */ 0 }; /** * @breif Recursively dismantle a cell tree. * */ void space_rebuild_recycle ( struct space *s , struct cell *c ) { int k; if ( c->split ) for ( k = 0 ; k < 8 ; k++ ) if ( c->progeny[k] != NULL ) { space_rebuild_recycle( s , c->progeny[k] ); space_recycle( s , c->progeny[k] ); c->progeny[k] = NULL; } } /** * @breif Recursively rebuild a cell tree. * */ int space_rebuild_recurse ( struct space *s , struct cell *c ) { int k, count, changes = 0, wasmt[8]; float h, h_limit, h_max = 0.0f; struct cell *temp; /* If the cell is already split, check that the split is still ok. */ if ( c->split ) { /* Check the depth. */ if ( c->depth > s->maxdepth ) s->maxdepth = c->depth; /* Set the minimum cutoff. */ h_limit = fmin( c->h[0] , fmin( c->h[1] , c->h[2] ) ) / 2; /* Count the particles below that. */ for ( count = 0 , k = 0 ; k < c->count ; k++ ) { h = c->parts[k].h; if ( h <= h_limit ) count += 1; if ( h > h_max ) h_max = h; } c->h_max = h_max; /* Un-split? */ if ( count < c->count*space_splitratio || c->count < space_splitsize ) { /* Get rid of the progeny. */ space_rebuild_recycle( s , c ); /* Re-set the split flag. */ c->split = 0; } /* Otherwise, recurse on the kids. */ else { /* Populate all progeny. */ for ( k = 0 ; k < 8 ; k++ ) if ( ( wasmt[k] = ( c->progeny[k] == NULL ) ) ) { temp = space_getcell( s ); temp->count = 0; temp->loc[0] = c->loc[0]; temp->loc[1] = c->loc[1]; temp->loc[2] = c->loc[2]; temp->h[0] = c->h[0]/2; temp->h[1] = c->h[1]/2; temp->h[2] = c->h[2]/2; if ( k & 4 ) temp->loc[0] += temp->h[0]; if ( k & 2 ) temp->loc[1] += temp->h[1]; if ( k & 1 ) temp->loc[2] += temp->h[2]; temp->depth = c->depth + 1; temp->split = 0; temp->h_max = 0.0; temp->parent = c; c->progeny[k] = temp; } /* Make sure each part is in its place. */ cell_split( c ); /* Remove empty progeny. */ for ( k = 0 ; k < 8 ; k++ ) if ( c->progeny[k]->count == 0 ) { changes += !wasmt[k]; space_recycle( s , c->progeny[k] ); c->progeny[k] = NULL; } else changes += wasmt[k]; /* Recurse. */ for ( k = 0 ; k < 8 ; k++ ) if ( c->progeny[k] != NULL ) changes += space_rebuild_recurse( s , c->progeny[k] ); } } /* Otherwise, try to split it anyway. */ else { space_split( s , c ); changes += c->split; } /* Return the grand total. */ return changes; } /** * @breif Re-build the cells as well as the tasks. * * @param s The #space in which to update the cells. * @param force Flag to force re-building the cells and tasks. * * @return 1 if changes to the cells and/or tasks were made. */ int space_rebuild ( struct space *s , int force , double cell_max ) { float h_max = s->parts[0].h, h_min = s->parts[0].h; int i, j, k, cdim[3]; struct cell *c; struct part *finger; int *ind, changes = 0; /* Run through the parts and get the current h_max. */ for ( k = 0 ; k < s->nr_parts ; k++ ) if ( s->parts[k].h > h_max ) h_max = s->parts[k].h; else if ( s->parts[k].h < h_min ) h_min = s->parts[k].h; s->h_min = h_min; s->h_max = h_max; /* Get the new putative cell dimensions. */ for ( k = 0 ; k < 3 ; k++ ) cdim[k] = floor( s->dim[k] / fmax( h_max*space_stretch , cell_max ) ); /* Do we need to re-build the upper-level cells? */ if ( force || cdim[0] < s->cdim[0] || cdim[1] < s->cdim[1] || cdim[2] < s->cdim[2] ) { /* Free the old cells, if they were allocated. */ if ( s->cells != NULL ) { for ( k = 0 ; k < s->nr_cells ; k++ ) space_rebuild_recycle( s , &s->cells[k] ); free( s->cells ); s->maxdepth = 0; } /* Set the new cell dimensions. */ for ( k = 0 ; k < 3 ; k++ ) { s->cdim[k] = cdim[k]; s->h[k] = s->dim[k] / cdim[k]; s->ih[k] = 1.0 / s->h[k]; } /* Allocate the highest level of cells. */ s->tot_cells = s->nr_cells = cdim[0] * cdim[1] * cdim[2]; if ( posix_memalign( (void *)&s->cells , 64 , s->nr_cells * sizeof(struct cell) ) != 0 ) error( "Failed to allocate cells." ); bzero( s->cells , s->nr_cells * sizeof(struct cell) ); for ( k = 0 ; k < s->nr_cells ; k++ ) if ( lock_init( &s->cells[k].lock ) != 0 ) error( "Failed to init spinlock." ); /* Set the cell location and sizes. */ for ( i = 0 ; i < cdim[0] ; i++ ) for ( j = 0 ; j < cdim[1] ; j++ ) for ( k = 0 ; k < cdim[2] ; k++ ) { c = &s->cells[ cell_getid( cdim , i , j , k ) ]; c->loc[0] = i*s->h[0]; c->loc[1] = j*s->h[1]; c->loc[2] = k*s->h[2]; c->h[0] = s->h[0]; c->h[1] = s->h[1]; c->h[2] = s->h[2]; c->depth = 0; } /* Run through the particles and get their cell index. */ ind = (int *)alloca( sizeof(int) * s->nr_parts ); for ( k = 0 ; k < s->nr_parts ; k++ ) { ind[k] = cell_getid( cdim , s->parts[k].x[0]*s->ih[0] , s->parts[k].x[1]*s->ih[1] , s->parts[k].x[2]*s->ih[2] ); s->cells[ ind[k] ].count += 1; } /* Sort the parts according to their cells. */ parts_sort( s->parts , ind , s->nr_parts , 0 , s->nr_cells ); /* Hook the cells up to the parts. */ for ( finger = s->parts , k = 0 ; k < s->nr_cells ; k++ ) { c = &s->cells[ k ]; c->parts = finger; finger = &finger[ c->count ]; } /* There were massive changes. */ changes = 1; } /* re-build upper-level cells? */ /* At this point, we have the upper-level cells, old or new. Now make sure that the parts in each cell are ok. */ for ( k = 0 ; k < s->nr_cells ; k++ ) changes += space_rebuild_recurse( s , &s->cells[k] ); /* Now that we have the cell structre, re-build the tasks. */ if ( changes ) space_maketasks( s , 1 ); /* Return the number of changes. */ return changes; } /** * @brief Sort the particles according to the given indices. * * @param parts The list of #part * @param ind The indices with respect to which the parts are sorted. * @param N The number of parts * @param min Lowest index. * @param max highest index. * * This function calls itself recursively. */ void parts_sort ( struct part *parts , int *ind , int N , int min , int max ) { int pivot = (min + max) / 2; int i = 0, j = N-1; int temp_i; struct part temp_p; /* One pass of quicksort. */ while ( i < j ) { while ( i < N && ind[i] <= pivot ) i++; while ( j >= 0 && ind[j] > pivot ) j--; if ( i < j ) { temp_i = ind[i]; ind[i] = ind[j]; ind[j] = temp_i; temp_p = parts[i]; parts[i] = parts[j]; parts[j] = temp_p; } } /* Verify sort. */ for ( int k = 0 ; k <= j ; k++ ) if ( ind[k] > pivot ) { printf( "parts_sort: sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i, N=%i.\n" , k , ind[k] , pivot , i , j , N ); error( "Sorting failed (<=pivot)." ); } for ( int k = j+1 ; k < N ; k++ ) if ( ind[k] <= pivot ) { printf( "parts_sort: sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i, N=%i.\n" , k , ind[k] , pivot , i , j , N ); error( "Sorting failed (>pivot)." ); } /* Recurse on the left? */ if ( j > 0 && pivot > min ) parts_sort( parts , ind , j+1 , min , pivot ); /* Recurse on the right? */ if ( i < N && pivot+1 < max ) parts_sort( &parts[i], &ind[i], N-i , pivot+1 , max ); } /** * @brief Mapping function to free the sorted indices buffers. */ void space_map_clearsort ( struct cell *c , void *data ) { if ( c->sort != NULL ) { free( c->sort ); c->sort = NULL; } } /** * @brief Mapping function to append a ghost task to each cell. * * Looks for the super cell, e.g. the highest-level cell above each * cell for which a pair is defined. All ghosts below this cell will * depend on the ghost of their parents (sounds spooky, but it isn't). */ void space_map_mkghosts ( struct cell *c , void *data ) { struct space *s = (struct space *)data; struct cell *finger; /* Find the super cell, i.e. the highest cell hierarchically above this one to still have at least one task associated with it. */ c->super = c; for ( finger = c->parent ; finger != NULL ; finger = finger->parent ) if ( finger->nr_tasks > 0 ) c->super = finger; /* Make the ghost task */ if ( c->super != c || c->nr_tasks > 0 ) c->ghost = space_addtask( s , task_type_ghost , task_subtype_none , 0 , 0 , c , NULL , NULL , 0 , NULL , 0 ); /* If we are not the super cell ourselves, make our ghost depend on our parent cell. */ if ( c->super != c ) task_addunlock( c->parent->ghost , c->ghost ); } /** * @brief Mapping function to clear the number of tasks in each cell. */ void space_map_clearnrtasks ( struct cell *c , void *data ) { c->nr_tasks = 0; c->nr_density = 0; } /** * @brief Get a task free of dependencies and conflicts. * * @param s The #space. */ struct task *space_gettask ( struct space *s ) { int k, tid = -1; struct task *res = NULL; struct cell *c; /* Main loop, while there are tasks... */ while ( s->next_task < s->nr_tasks ) { /* Grab the task lock. */ if ( lock_lock( &s->task_lock ) != 0 ) error( "Locking the task_lock failed.\n" ); /* Loop over the remaining task IDs. */ for ( k = s->next_task ; k < s->nr_tasks ; k++ ) { /* Put a finger on the task. */ res = &s->tasks[ s->tasks_ind[k] ]; /* Is this task blocked? */ if ( res->wait ) continue; /* Different criteria for different types. */ switch ( res->type ) { case task_type_self: if ( res->ci->lock || res->ci->wait > 0 ) continue; break; case task_type_pair: if ( res->ci->lock || res->cj->lock || res->ci->wait || res->cj->wait ) continue; break; case task_type_sort: if ( res->ci->lock ) continue; break; } /* If we made it this far, we're safe. */ break; } /* loop over the task IDs. */ /* Did we get a task? */ if ( k < s->nr_tasks ) { // /* Swap to front. */ // tid = s->tasks_ind[k]; // s->tasks_ind[k] = s->tasks_ind[ s->next_task ]; // s->tasks_ind[ s->next_task ] = tid; /* Bubble-down the task. */ tid = s->tasks_ind[k]; while ( k > s->next_task ) { s->tasks_ind[ k ] = s->tasks_ind[ k-1 ]; k -= 1; } s->tasks_ind[ s->next_task ] = tid; /* Lock the cells, if needed. */ if ( s->tasks[tid].type != task_type_sort ) { for ( c = res->ci ; c != NULL ; c = c->parent ) __sync_fetch_and_add( &c->lock , 1 ); for ( c = res->cj ; c != NULL ; c = c->parent ) __sync_fetch_and_add( &c->lock , 1 ); } /* up the counter. */ s->next_task += 1; } /* Release the task lock. */ if ( lock_unlock( &s->task_lock ) != 0 ) error( "Locking the task_lock failed.\n" ); /* Leave? */ if ( tid >= 0 ) return &s->tasks[tid]; } /* while there are tasks. */ /* No beef. */ return NULL; } /** * @brief Map a function to all particles in a aspace. * * @param s The #space we are working in. */ void space_map_parts ( struct space *s , void (*fun)( struct part *p , struct cell *c , void *data ) , void *data ) { int i; void rec_map ( struct cell *c ) { int k; /* No progeny? */ if ( !c->split ) for ( k = 0 ; k < c->count ; k++ ) fun( &c->parts[k] , c , data ); /* Otherwise, recurse. */ else for ( k = 0 ; k < 8 ; k++ ) if ( c->progeny[k] != NULL ) rec_map( c->progeny[k] ); } /* Call the recursive function on all higher-level cells. */ for ( i = 0 ; i < s->nr_cells ; i++ ) rec_map( &s->cells[i] ); } /** * @brief Map a function to all particles in a aspace. * * @param s The #space we are working in. * @param full Map to all cells, including cells with sub-cells. */ void space_map_cells ( struct space *s , int full , void (*fun)( struct cell *c , void *data ) , void *data ) { int i; void rec_map ( struct cell *c ) { int k; /* No progeny? */ if ( full || !c->split ) fun( c , data ); /* Recurse. */ if ( c->split ) for ( k = 0 ; k < 8 ; k++ ) if ( c->progeny[k] != NULL ) rec_map( c->progeny[k] ); } /* Call the recursive function on all higher-level cells. */ for ( i = 0 ; i < s->nr_cells ; i++ ) rec_map( &s->cells[i] ); } /** * @brief Add a #task to the #space. * * @param s The #space we are working in. */ struct task *space_addtask ( struct space *s , int type , int subtype , int flags , int wait , struct cell *ci , struct cell *cj , struct task *unlock_tasks[] , int nr_unlock_tasks , struct cell *unlock_cells[] , int nr_unlock_cells ) { struct task *t = &s->tasks[ s->nr_tasks ]; /* Copy the data. */ t->type = type; t->subtype = subtype; t->flags = flags; t->wait = wait; t->ci = ci; t->cj = cj; if ( unlock_tasks != NULL ) memcpy( t->unlock_tasks , unlock_tasks , sizeof(struct task *) * nr_unlock_tasks ); t->nr_unlock_tasks = nr_unlock_tasks; if ( unlock_cells != NULL ) memcpy( t->unlock_cells , unlock_cells , sizeof(struct task *) * nr_unlock_cells ); t->nr_unlock_cells = nr_unlock_cells; /* Increase the task counter. */ s->nr_tasks += 1; /* Return a pointer to the new task. */ return t; } /** * @brief Split tasks that may be too large. * * @param s The #space we are working in. */ void space_splittasks ( struct space *s ) { int k, sid, tid; struct cell *ci, *cj; double hi, hj, shift[3]; struct task *t; /* Loop through the tasks... */ for ( tid = 0 ; tid < s->nr_tasks ; tid++ ) { /* Get a pointer on the task. */ t = &s->tasks[tid]; /* If this task isn't a pair, i'm not interested. */ if ( t->type != task_type_pair ) continue; /* Get a handle on the cells involved. */ ci = t->ci; cj = t->cj; hi = fmax( ci->h[0] , fmax( ci->h[1] , ci->h[2] ) ); hj = fmax( cj->h[0] , fmax( cj->h[1] , cj->h[2] ) ); /* Should this task be split-up? */ if ( ci->split && cj->split && ci->h_max*space_stretch < hi/2 && cj->h_max*space_stretch < hj/2 ) { /* Get the relative distance between the pairs, wrapping. */ for ( k = 0 ; k < 3 ; k++ ) { if ( cj->loc[k] - ci->loc[k] < -s->dim[k]/2 ) shift[k] = s->dim[k]; else if ( cj->loc[k] - ci->loc[k] > s->dim[k]/2 ) shift[k] = -s->dim[k]; else shift[k] = 0.0; } /* Get the sorting index. */ for ( sid = 0 , k = 0 ; k < 3 ; k++ ) sid = 3*sid + ( (cj->loc[k] - ci->loc[k] + shift[k] < 0) ? 0 : (cj->loc[k] - ci->loc[k] + shift[k] > 0) ? 2 : 1 ); /* Flip? */ if ( sid < 13 ) { cj = t->ci; ci = t->cj; t->ci = ci; t->cj = cj; } else sid = 26 - sid; /* Remove the dependency of this task on the sorts of ci and cj. */ task_rmunlock( ci->sorts[sid] , t ); task_rmunlock( cj->sorts[sid] , t ); ci->nr_pairs -= 1; cj->nr_pairs -= 1; t->nr_unlock_cells = 0; /* For each different sorting type... */ switch ( sid ) { case 0: /* ( 1 , 1 , 1 ) */ t->ci = ci->progeny[7]; t->cj = cj->progeny[0]; task_addunlock( ci->progeny[7]->sorts[0] , t ); task_addunlock( cj->progeny[0]->sorts[0] , t ); ci->progeny[7]->nr_pairs += 1; cj->progeny[0]->nr_pairs += 1; break; case 1: /* ( 1 , 1 , 0 ) */ if ( space_dosub && !ci->progeny[6]->split && !ci->progeny[7]->split && !cj->progeny[0]->split && !cj->progeny[1]->split ) { t->type = task_type_sub; t->flags = 1; task_addunlock( ci->progeny[6]->sorts[1] , t ); task_addunlock( cj->progeny[0]->sorts[1] , t ); task_addunlock( ci->progeny[7]->sorts[1] , t ); task_addunlock( cj->progeny[1]->sorts[1] , t ); task_addunlock( ci->progeny[6]->sorts[0] , t ); task_addunlock( cj->progeny[1]->sorts[0] , t ); task_addunlock( ci->progeny[7]->sorts[2] , t ); task_addunlock( cj->progeny[0]->sorts[2] , t ); } else { t->ci = ci->progeny[6]; t->cj = cj->progeny[0]; task_addunlock( ci->progeny[6]->sorts[1] , t ); task_addunlock( cj->progeny[0]->sorts[1] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[7] , cj->progeny[1] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[7]->sorts[1] , t ); task_addunlock( cj->progeny[1]->sorts[1] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[6] , cj->progeny[1] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[6]->sorts[0] , t ); task_addunlock( cj->progeny[1]->sorts[0] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[7] , cj->progeny[0] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[7]->sorts[2] , t ); task_addunlock( cj->progeny[0]->sorts[2] , t ); } ci->progeny[6]->nr_pairs += 2; ci->progeny[7]->nr_pairs += 2; cj->progeny[0]->nr_pairs += 2; cj->progeny[1]->nr_pairs += 2; break; case 2: /* ( 1 , 1 , -1 ) */ t->ci = ci->progeny[6]; t->cj = cj->progeny[1]; task_addunlock( ci->progeny[6]->sorts[2] , t ); task_addunlock( cj->progeny[1]->sorts[2] , t ); ci->progeny[6]->nr_pairs += 1; cj->progeny[1]->nr_pairs += 1; break; case 3: /* ( 1 , 0 , 1 ) */ if ( space_dosub && !ci->progeny[5]->split && !ci->progeny[7]->split && !cj->progeny[0]->split && !cj->progeny[2]->split ) { t->type = task_type_sub; t->flags = 3; task_addunlock( ci->progeny[5]->sorts[3] , t ); task_addunlock( cj->progeny[0]->sorts[3] , t ); task_addunlock( ci->progeny[7]->sorts[3] , t ); task_addunlock( cj->progeny[2]->sorts[3] , t ); task_addunlock( ci->progeny[5]->sorts[0] , t ); task_addunlock( cj->progeny[2]->sorts[0] , t ); task_addunlock( ci->progeny[7]->sorts[6] , t ); task_addunlock( cj->progeny[0]->sorts[6] , t ); } else { t->ci = ci->progeny[5]; t->cj = cj->progeny[0]; task_addunlock( ci->progeny[5]->sorts[3] , t ); task_addunlock( cj->progeny[0]->sorts[3] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[7] , cj->progeny[2] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[7]->sorts[3] , t ); task_addunlock( cj->progeny[2]->sorts[3] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[5] , cj->progeny[2] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[5]->sorts[0] , t ); task_addunlock( cj->progeny[2]->sorts[0] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[7] , cj->progeny[0] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[7]->sorts[6] , t ); task_addunlock( cj->progeny[0]->sorts[6] , t ); } ci->progeny[5]->nr_pairs += 2; ci->progeny[7]->nr_pairs += 2; cj->progeny[0]->nr_pairs += 2; cj->progeny[2]->nr_pairs += 2; break; case 4: /* ( 1 , 0 , 0 ) */ if ( space_dosub && !ci->progeny[4]->split && !ci->progeny[5]->split && !ci->progeny[6]->split && !ci->progeny[7]->split && !cj->progeny[0]->split && !cj->progeny[1]->split && !cj->progeny[2]->split && !cj->progeny[3]->split ) { t->type = task_type_sub; t->flags = 4; task_addunlock( ci->progeny[4]->sorts[4] , t ); task_addunlock( cj->progeny[0]->sorts[4] , t ); task_addunlock( ci->progeny[5]->sorts[5] , t ); task_addunlock( cj->progeny[0]->sorts[5] , t ); task_addunlock( ci->progeny[6]->sorts[7] , t ); task_addunlock( cj->progeny[0]->sorts[7] , t ); task_addunlock( ci->progeny[7]->sorts[8] , t ); task_addunlock( cj->progeny[0]->sorts[8] , t ); task_addunlock( ci->progeny[4]->sorts[3] , t ); task_addunlock( cj->progeny[1]->sorts[3] , t ); task_addunlock( ci->progeny[5]->sorts[4] , t ); task_addunlock( cj->progeny[1]->sorts[4] , t ); task_addunlock( ci->progeny[6]->sorts[6] , t ); task_addunlock( cj->progeny[1]->sorts[6] , t ); task_addunlock( ci->progeny[7]->sorts[7] , t ); task_addunlock( cj->progeny[1]->sorts[7] , t ); task_addunlock( ci->progeny[4]->sorts[1] , t ); task_addunlock( cj->progeny[2]->sorts[1] , t ); task_addunlock( ci->progeny[5]->sorts[2] , t ); task_addunlock( cj->progeny[2]->sorts[2] , t ); task_addunlock( ci->progeny[6]->sorts[4] , t ); task_addunlock( cj->progeny[2]->sorts[4] , t ); task_addunlock( ci->progeny[7]->sorts[5] , t ); task_addunlock( cj->progeny[2]->sorts[5] , t ); task_addunlock( ci->progeny[4]->sorts[0] , t ); task_addunlock( cj->progeny[3]->sorts[0] , t ); task_addunlock( ci->progeny[5]->sorts[1] , t ); task_addunlock( cj->progeny[3]->sorts[1] , t ); task_addunlock( ci->progeny[6]->sorts[3] , t ); task_addunlock( cj->progeny[3]->sorts[3] , t ); task_addunlock( ci->progeny[7]->sorts[4] , t ); task_addunlock( cj->progeny[3]->sorts[4] , t ); } else { t->ci = ci->progeny[4]; t->cj = cj->progeny[0]; task_addunlock( ci->progeny[4]->sorts[4] , t ); task_addunlock( cj->progeny[0]->sorts[4] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[5] , cj->progeny[0] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[5]->sorts[5] , t ); task_addunlock( cj->progeny[0]->sorts[5] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[6] , cj->progeny[0] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[6]->sorts[7] , t ); task_addunlock( cj->progeny[0]->sorts[7] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[7] , cj->progeny[0] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[7]->sorts[8] , t ); task_addunlock( cj->progeny[0]->sorts[8] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[4] , cj->progeny[1] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[4]->sorts[3] , t ); task_addunlock( cj->progeny[1]->sorts[3] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[5] , cj->progeny[1] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[5]->sorts[4] , t ); task_addunlock( cj->progeny[1]->sorts[4] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[6] , cj->progeny[1] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[6]->sorts[6] , t ); task_addunlock( cj->progeny[1]->sorts[6] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[7] , cj->progeny[1] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[7]->sorts[7] , t ); task_addunlock( cj->progeny[1]->sorts[7] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[4] , cj->progeny[2] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[4]->sorts[1] , t ); task_addunlock( cj->progeny[2]->sorts[1] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[5] , cj->progeny[2] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[5]->sorts[2] , t ); task_addunlock( cj->progeny[2]->sorts[2] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[6] , cj->progeny[2] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[6]->sorts[4] , t ); task_addunlock( cj->progeny[2]->sorts[4] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[7] , cj->progeny[2] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[7]->sorts[5] , t ); task_addunlock( cj->progeny[2]->sorts[5] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[4] , cj->progeny[3] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[4]->sorts[0] , t ); task_addunlock( cj->progeny[3]->sorts[0] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[5] , cj->progeny[3] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[5]->sorts[1] , t ); task_addunlock( cj->progeny[3]->sorts[1] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[6] , cj->progeny[3] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[6]->sorts[3] , t ); task_addunlock( cj->progeny[3]->sorts[3] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[7] , cj->progeny[3] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[7]->sorts[4] , t ); task_addunlock( cj->progeny[3]->sorts[4] , t ); } ci->progeny[4]->nr_pairs += 4; ci->progeny[5]->nr_pairs += 4; ci->progeny[6]->nr_pairs += 4; ci->progeny[7]->nr_pairs += 4; cj->progeny[0]->nr_pairs += 4; cj->progeny[1]->nr_pairs += 4; cj->progeny[2]->nr_pairs += 4; cj->progeny[3]->nr_pairs += 4; break; case 5: /* ( 1 , 0 , -1 ) */ if ( space_dosub && !ci->progeny[4]->split && !ci->progeny[6]->split && !cj->progeny[1]->split && !cj->progeny[3]->split ) { t->type = task_type_sub; t->flags = 5; task_addunlock( ci->progeny[4]->sorts[5] , t ); task_addunlock( cj->progeny[1]->sorts[5] , t ); task_addunlock( ci->progeny[6]->sorts[5] , t ); task_addunlock( cj->progeny[3]->sorts[5] , t ); task_addunlock( ci->progeny[4]->sorts[2] , t ); task_addunlock( cj->progeny[3]->sorts[2] , t ); task_addunlock( ci->progeny[6]->sorts[8] , t ); task_addunlock( cj->progeny[1]->sorts[8] , t ); } else { t->ci = ci->progeny[4]; t->cj = cj->progeny[1]; task_addunlock( ci->progeny[4]->sorts[5] , t ); task_addunlock( cj->progeny[1]->sorts[5] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[6] , cj->progeny[3] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[6]->sorts[5] , t ); task_addunlock( cj->progeny[3]->sorts[5] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[4] , cj->progeny[3] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[4]->sorts[2] , t ); task_addunlock( cj->progeny[3]->sorts[2] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[6] , cj->progeny[1] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[6]->sorts[8] , t ); task_addunlock( cj->progeny[1]->sorts[8] , t ); } ci->progeny[4]->nr_pairs += 2; ci->progeny[6]->nr_pairs += 2; cj->progeny[1]->nr_pairs += 2; cj->progeny[3]->nr_pairs += 2; break; case 6: /* ( 1 , -1 , 1 ) */ t->ci = ci->progeny[5]; t->cj = cj->progeny[2]; task_addunlock( ci->progeny[5]->sorts[6] , t ); task_addunlock( cj->progeny[2]->sorts[6] , t ); ci->progeny[5]->nr_pairs += 1; cj->progeny[2]->nr_pairs += 1; break; case 7: /* ( 1 , -1 , 0 ) */ if ( space_dosub && !ci->progeny[4]->split && !ci->progeny[5]->split && !cj->progeny[2]->split && !cj->progeny[3]->split ) { t->type = task_type_sub; t->flags = 7; task_addunlock( ci->progeny[4]->sorts[6] , t ); task_addunlock( cj->progeny[3]->sorts[6] , t ); task_addunlock( ci->progeny[5]->sorts[8] , t ); task_addunlock( cj->progeny[2]->sorts[8] , t ); task_addunlock( ci->progeny[4]->sorts[7] , t ); task_addunlock( cj->progeny[2]->sorts[7] , t ); task_addunlock( ci->progeny[5]->sorts[7] , t ); task_addunlock( cj->progeny[3]->sorts[7] , t ); } else { t->ci = ci->progeny[4]; t->cj = cj->progeny[3]; task_addunlock( ci->progeny[4]->sorts[6] , t ); task_addunlock( cj->progeny[3]->sorts[6] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[5] , cj->progeny[2] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[5]->sorts[8] , t ); task_addunlock( cj->progeny[2]->sorts[8] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[4] , cj->progeny[2] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[4]->sorts[7] , t ); task_addunlock( cj->progeny[2]->sorts[7] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[5] , cj->progeny[3] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[5]->sorts[7] , t ); task_addunlock( cj->progeny[3]->sorts[7] , t ); } ci->progeny[4]->nr_pairs += 2; ci->progeny[5]->nr_pairs += 2; cj->progeny[2]->nr_pairs += 2; cj->progeny[3]->nr_pairs += 2; break; case 8: /* ( 1 , -1 , -1 ) */ t->ci = ci->progeny[4]; t->cj = cj->progeny[3]; task_addunlock( ci->progeny[4]->sorts[8] , t ); task_addunlock( cj->progeny[3]->sorts[8] , t ); ci->progeny[4]->nr_pairs += 1; cj->progeny[3]->nr_pairs += 1; break; case 9: /* ( 0 , 1 , 1 ) */ if ( space_dosub && !ci->progeny[3]->split && !ci->progeny[7]->split && !cj->progeny[0]->split && !cj->progeny[4]->split ) { t->type = task_type_sub; t->flags = 9; task_addunlock( ci->progeny[3]->sorts[9] , t ); task_addunlock( cj->progeny[0]->sorts[9] , t ); task_addunlock( ci->progeny[7]->sorts[9] , t ); task_addunlock( cj->progeny[4]->sorts[9] , t ); task_addunlock( ci->progeny[3]->sorts[0] , t ); task_addunlock( cj->progeny[4]->sorts[0] , t ); task_addunlock( ci->progeny[7]->sorts[8] , t ); task_addunlock( cj->progeny[0]->sorts[8] , t ); } else { t->ci = ci->progeny[3]; t->cj = cj->progeny[0]; task_addunlock( ci->progeny[3]->sorts[9] , t ); task_addunlock( cj->progeny[0]->sorts[9] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[7] , cj->progeny[4] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[7]->sorts[9] , t ); task_addunlock( cj->progeny[4]->sorts[9] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[3] , cj->progeny[4] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[3]->sorts[0] , t ); task_addunlock( cj->progeny[4]->sorts[0] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[7] , cj->progeny[0] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[7]->sorts[8] , t ); task_addunlock( cj->progeny[0]->sorts[8] , t ); } ci->progeny[3]->nr_pairs += 2; ci->progeny[7]->nr_pairs += 2; cj->progeny[0]->nr_pairs += 2; cj->progeny[4]->nr_pairs += 2; break; case 10: /* ( 0 , 1 , 0 ) */ if ( space_dosub && !ci->progeny[2]->split && !ci->progeny[3]->split && !ci->progeny[6]->split && !ci->progeny[7]->split && !cj->progeny[0]->split && !cj->progeny[1]->split && !cj->progeny[4]->split && !cj->progeny[5]->split ) { t->type = task_type_sub; t->flags = 10; task_addunlock( ci->progeny[2]->sorts[10] , t ); task_addunlock( cj->progeny[0]->sorts[10] , t ); task_addunlock( ci->progeny[3]->sorts[11] , t ); task_addunlock( cj->progeny[0]->sorts[11] , t ); task_addunlock( ci->progeny[6]->sorts[7] , t ); task_addunlock( cj->progeny[0]->sorts[7] , t ); task_addunlock( ci->progeny[7]->sorts[6] , t ); task_addunlock( cj->progeny[0]->sorts[6] , t ); task_addunlock( ci->progeny[2]->sorts[9] , t ); task_addunlock( cj->progeny[1]->sorts[9] , t ); task_addunlock( ci->progeny[3]->sorts[10] , t ); task_addunlock( cj->progeny[1]->sorts[10] , t ); task_addunlock( ci->progeny[6]->sorts[8] , t ); task_addunlock( cj->progeny[1]->sorts[8] , t ); task_addunlock( ci->progeny[7]->sorts[7] , t ); task_addunlock( cj->progeny[1]->sorts[7] , t ); task_addunlock( ci->progeny[2]->sorts[1] , t ); task_addunlock( cj->progeny[4]->sorts[1] , t ); task_addunlock( ci->progeny[3]->sorts[2] , t ); task_addunlock( cj->progeny[4]->sorts[2] , t ); task_addunlock( ci->progeny[6]->sorts[10] , t ); task_addunlock( cj->progeny[4]->sorts[10] , t ); task_addunlock( ci->progeny[7]->sorts[11] , t ); task_addunlock( cj->progeny[4]->sorts[11] , t ); task_addunlock( ci->progeny[2]->sorts[0] , t ); task_addunlock( cj->progeny[5]->sorts[0] , t ); task_addunlock( ci->progeny[3]->sorts[1] , t ); task_addunlock( cj->progeny[5]->sorts[1] , t ); task_addunlock( ci->progeny[6]->sorts[9] , t ); task_addunlock( cj->progeny[5]->sorts[9] , t ); task_addunlock( ci->progeny[7]->sorts[10] , t ); task_addunlock( cj->progeny[5]->sorts[10] , t ); } else { t->ci = ci->progeny[2]; t->cj = cj->progeny[0]; task_addunlock( ci->progeny[2]->sorts[10] , t ); task_addunlock( cj->progeny[0]->sorts[10] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[3] , cj->progeny[0] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[3]->sorts[11] , t ); task_addunlock( cj->progeny[0]->sorts[11] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[6] , cj->progeny[0] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[6]->sorts[7] , t ); task_addunlock( cj->progeny[0]->sorts[7] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[7] , cj->progeny[0] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[7]->sorts[6] , t ); task_addunlock( cj->progeny[0]->sorts[6] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[2] , cj->progeny[1] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[2]->sorts[9] , t ); task_addunlock( cj->progeny[1]->sorts[9] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[3] , cj->progeny[1] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[3]->sorts[10] , t ); task_addunlock( cj->progeny[1]->sorts[10] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[6] , cj->progeny[1] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[6]->sorts[8] , t ); task_addunlock( cj->progeny[1]->sorts[8] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[7] , cj->progeny[1] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[7]->sorts[7] , t ); task_addunlock( cj->progeny[1]->sorts[7] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[2] , cj->progeny[4] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[2]->sorts[1] , t ); task_addunlock( cj->progeny[4]->sorts[1] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[3] , cj->progeny[4] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[3]->sorts[2] , t ); task_addunlock( cj->progeny[4]->sorts[2] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[6] , cj->progeny[4] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[6]->sorts[10] , t ); task_addunlock( cj->progeny[4]->sorts[10] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[7] , cj->progeny[4] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[7]->sorts[11] , t ); task_addunlock( cj->progeny[4]->sorts[11] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[2] , cj->progeny[5] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[2]->sorts[0] , t ); task_addunlock( cj->progeny[5]->sorts[0] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[3] , cj->progeny[5] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[3]->sorts[1] , t ); task_addunlock( cj->progeny[5]->sorts[1] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[6] , cj->progeny[5] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[6]->sorts[9] , t ); task_addunlock( cj->progeny[5]->sorts[9] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[7] , cj->progeny[5] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[7]->sorts[10] , t ); task_addunlock( cj->progeny[5]->sorts[10] , t ); } ci->progeny[2]->nr_pairs += 4; ci->progeny[3]->nr_pairs += 4; ci->progeny[6]->nr_pairs += 4; ci->progeny[7]->nr_pairs += 4; cj->progeny[0]->nr_pairs += 4; cj->progeny[1]->nr_pairs += 4; cj->progeny[4]->nr_pairs += 4; cj->progeny[5]->nr_pairs += 4; break; case 11: /* ( 0 , 1 , -1 ) */ if ( space_dosub && !ci->progeny[2]->split && !ci->progeny[6]->split && !cj->progeny[1]->split && !cj->progeny[5]->split ) { t->type = task_type_sub; t->flags = 11; task_addunlock( ci->progeny[2]->sorts[11] , t ); task_addunlock( cj->progeny[1]->sorts[11] , t ); task_addunlock( ci->progeny[6]->sorts[11] , t ); task_addunlock( cj->progeny[5]->sorts[11] , t ); task_addunlock( ci->progeny[2]->sorts[2] , t ); task_addunlock( cj->progeny[5]->sorts[2] , t ); task_addunlock( ci->progeny[6]->sorts[6] , t ); task_addunlock( cj->progeny[1]->sorts[6] , t ); } else { t->ci = ci->progeny[2]; t->cj = cj->progeny[1]; task_addunlock( ci->progeny[2]->sorts[11] , t ); task_addunlock( cj->progeny[1]->sorts[11] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[6] , cj->progeny[5] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[6]->sorts[11] , t ); task_addunlock( cj->progeny[5]->sorts[11] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[2] , cj->progeny[5] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[2]->sorts[2] , t ); task_addunlock( cj->progeny[5]->sorts[2] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[6] , cj->progeny[1] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[6]->sorts[6] , t ); task_addunlock( cj->progeny[1]->sorts[6] , t ); } ci->progeny[2]->nr_pairs += 2; ci->progeny[6]->nr_pairs += 2; cj->progeny[1]->nr_pairs += 2; cj->progeny[5]->nr_pairs += 2; break; case 12: /* ( 0 , 0 , 1 ) */ if ( space_dosub && !ci->progeny[1]->split && !ci->progeny[3]->split && !ci->progeny[5]->split && !ci->progeny[7]->split && !cj->progeny[0]->split && !cj->progeny[2]->split && !cj->progeny[4]->split && !cj->progeny[6]->split ) { t->type = task_type_sub; t->flags = 12; task_addunlock( ci->progeny[1]->sorts[12] , t ); task_addunlock( cj->progeny[0]->sorts[12] , t ); task_addunlock( ci->progeny[3]->sorts[11] , t ); task_addunlock( cj->progeny[0]->sorts[11] , t ); task_addunlock( ci->progeny[5]->sorts[5] , t ); task_addunlock( cj->progeny[0]->sorts[5] , t ); task_addunlock( ci->progeny[7]->sorts[2] , t ); task_addunlock( cj->progeny[0]->sorts[2] , t ); task_addunlock( ci->progeny[1]->sorts[9] , t ); task_addunlock( cj->progeny[2]->sorts[9] , t ); task_addunlock( ci->progeny[3]->sorts[12] , t ); task_addunlock( cj->progeny[2]->sorts[12] , t ); task_addunlock( ci->progeny[5]->sorts[8] , t ); task_addunlock( cj->progeny[2]->sorts[8] , t ); task_addunlock( ci->progeny[7]->sorts[5] , t ); task_addunlock( cj->progeny[2]->sorts[5] , t ); task_addunlock( ci->progeny[1]->sorts[3] , t ); task_addunlock( cj->progeny[4]->sorts[3] , t ); task_addunlock( ci->progeny[3]->sorts[6] , t ); task_addunlock( cj->progeny[4]->sorts[6] , t ); task_addunlock( ci->progeny[5]->sorts[12] , t ); task_addunlock( cj->progeny[4]->sorts[12] , t ); task_addunlock( ci->progeny[7]->sorts[11] , t ); task_addunlock( cj->progeny[4]->sorts[11] , t ); task_addunlock( ci->progeny[1]->sorts[0] , t ); task_addunlock( cj->progeny[6]->sorts[0] , t ); task_addunlock( ci->progeny[3]->sorts[3] , t ); task_addunlock( cj->progeny[6]->sorts[3] , t ); task_addunlock( ci->progeny[5]->sorts[9] , t ); task_addunlock( cj->progeny[6]->sorts[9] , t ); task_addunlock( ci->progeny[7]->sorts[12] , t ); task_addunlock( cj->progeny[6]->sorts[12] , t ); } else { t->ci = ci->progeny[1]; t->cj = cj->progeny[0]; task_addunlock( ci->progeny[1]->sorts[12] , t ); task_addunlock( cj->progeny[0]->sorts[12] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[3] , cj->progeny[0] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[3]->sorts[11] , t ); task_addunlock( cj->progeny[0]->sorts[11] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[5] , cj->progeny[0] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[5]->sorts[5] , t ); task_addunlock( cj->progeny[0]->sorts[5] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[7] , cj->progeny[0] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[7]->sorts[2] , t ); task_addunlock( cj->progeny[0]->sorts[2] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[1] , cj->progeny[2] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[1]->sorts[9] , t ); task_addunlock( cj->progeny[2]->sorts[9] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[3] , cj->progeny[2] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[3]->sorts[12] , t ); task_addunlock( cj->progeny[2]->sorts[12] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[5] , cj->progeny[2] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[5]->sorts[8] , t ); task_addunlock( cj->progeny[2]->sorts[8] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[7] , cj->progeny[2] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[7]->sorts[5] , t ); task_addunlock( cj->progeny[2]->sorts[5] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[1] , cj->progeny[4] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[1]->sorts[3] , t ); task_addunlock( cj->progeny[4]->sorts[3] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[3] , cj->progeny[4] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[3]->sorts[6] , t ); task_addunlock( cj->progeny[4]->sorts[6] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[5] , cj->progeny[4] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[5]->sorts[12] , t ); task_addunlock( cj->progeny[4]->sorts[12] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[7] , cj->progeny[4] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[7]->sorts[11] , t ); task_addunlock( cj->progeny[4]->sorts[11] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[1] , cj->progeny[6] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[1]->sorts[0] , t ); task_addunlock( cj->progeny[6]->sorts[0] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[3] , cj->progeny[6] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[3]->sorts[3] , t ); task_addunlock( cj->progeny[6]->sorts[3] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[5] , cj->progeny[6] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[5]->sorts[9] , t ); task_addunlock( cj->progeny[6]->sorts[9] , t ); t = space_addtask( s , task_type_pair , t->subtype , 0 , 0 , ci->progeny[7] , cj->progeny[6] , NULL , 0 , NULL , 0 ); task_addunlock( ci->progeny[7]->sorts[12] , t ); task_addunlock( cj->progeny[6]->sorts[12] , t ); } ci->progeny[1]->nr_pairs += 4; ci->progeny[3]->nr_pairs += 4; ci->progeny[5]->nr_pairs += 4; ci->progeny[7]->nr_pairs += 4; cj->progeny[0]->nr_pairs += 4; cj->progeny[2]->nr_pairs += 4; cj->progeny[4]->nr_pairs += 4; cj->progeny[6]->nr_pairs += 4; break; } /* Take a step back... */ tid -= 1; } /* split this task? */ } /* loop over all tasks. */ } /** * @brief Fill the #space's task list. * * @param s The #space we are working in. * @param do_sort Flag to add sorting tasks to the list. */ void space_maketasks ( struct space *s , int do_sort ) { int i, j, k, ii, jj, kk, iii, jjj, kkk, cid, cjd; int *cdim = s->cdim; struct task *t , *t2; int pts[7][8] = { { -1 , 12 , 10 , 9 , 4 , 3 , 1 , 0 } , { -1 , -1 , 11 , 10 , 5 , 4 , 2 , 1 } , { -1 , -1 , -1 , 12 , 7 , 6 , 4 , 3 } , { -1 , -1 , -1 , -1 , 8 , 7 , 5 , 4 } , { -1 , -1 , -1 , -1 , -1 , 12 , 10 , 9 } , { -1 , -1 , -1 , -1 , -1 , -1 , 11 , 10 } , { -1 , -1 , -1 , -1 , -1 , -1 , -1 , 12 } }; int counts[task_type_count]; /* Recursive function to generate tasks in the cell tree. */ void maketasks_rec ( struct cell *c , struct task *sort_up[] , int nr_sort_up , struct cell *parent ) { int j, k, nr_sort = 0; struct task *sort[7], *t; /* Clear the waits on this cell. */ c->wait = 0; sort[0] = NULL; /* Start by generating the sort task. */ if ( c->count > 0 ) { if ( do_sort ) { if ( c->count < 1000 ) { sort[0] = space_addtask( s , task_type_sort , task_subtype_none , 0x1fff , 0 , c , NULL , sort_up , nr_sort_up , NULL , 0 ); for ( k = 0 ; k < 13 ; k++ ) c->sorts[k] = sort[0]; nr_sort = 1; } else if ( c->count < 5000 ) { sort[0] = space_addtask( s , task_type_sort , task_subtype_none , 0x7f , 0 , c , NULL , sort_up , nr_sort_up , NULL , 0 ); sort[1] = space_addtask( s , task_type_sort , task_subtype_none , 0x1f80 , 0 , c , NULL , sort_up , nr_sort_up , NULL , 0 ); for ( k = 0 ; k < 7 ; k++ ) c->sorts[k] = sort[0]; for ( k = 7 ; k < 14 ; k++ ) c->sorts[k] = sort[1]; nr_sort = 2; } else { c->sorts[0] = c->sorts[1] = sort[0] = space_addtask( s , task_type_sort , task_subtype_none , 0x1 + 0x2 , 0 , c , NULL , sort_up , nr_sort_up , NULL , 0 ); c->sorts[2] = c->sorts[3] = sort[1] = space_addtask( s , task_type_sort , task_subtype_none , 0x4 + 0x8 , 0 , c , NULL , sort_up , nr_sort_up , NULL , 0 ); c->sorts[4] = c->sorts[5] = sort[2] = space_addtask( s , task_type_sort , task_subtype_none , 0x10 + 0x20 , 0 , c , NULL , sort_up , nr_sort_up , NULL , 0 ); c->sorts[6] = c->sorts[7] = sort[3] = space_addtask( s , task_type_sort , task_subtype_none , 0x40 + 0x80 , 0 , c , NULL , sort_up , nr_sort_up , NULL , 0 ); c->sorts[8] = c->sorts[9] = sort[4] = space_addtask( s , task_type_sort , task_subtype_none , 0x100 + 0x200 , 0 , c , NULL , sort_up , nr_sort_up , NULL , 0 ); c->sorts[10] = c->sorts[11] = sort[5] = space_addtask( s , task_type_sort , task_subtype_none , 0x400 + 0x800 , 0 , c , NULL , sort_up , nr_sort_up , NULL , 0 ); c->sorts[12] = c->sorts[13] = sort[6] = space_addtask( s , task_type_sort , task_subtype_none , 0x1000 , 0 , c , NULL , sort_up , nr_sort_up , NULL , 0 ); nr_sort = 7; } } /* Generate a self-interaction if not split. */ if ( !c->split && c->count > 1 ) space_addtask( s , task_type_self , task_subtype_density , 0 , 0 , c , NULL , NULL , 0 , NULL , 0 ); } /* Otherwise, add the interactions between progeny. */ if ( c->split ) { /* Recurse. */ for ( k = 0 ; k < 8 ; k++ ) if ( c->progeny[k] != NULL ) maketasks_rec( c->progeny[k] , sort , nr_sort , c ); /* Worth splitting into several tasks? */ if ( !space_dosub || c->count > 2*space_splitsize ) { /* Make a task for each pair of progeny. */ for ( j = 0 ; j < 8 ; j++ ) if ( c->progeny[j] != NULL && c->progeny[j]->count > 0 ) for ( k = j + 1 ; k < 8 ; k++ ) if ( c->progeny[k] != NULL && c->progeny[k]->count > 0 ) { t = space_addtask( s , task_type_pair , task_subtype_density , 0 , 0 , c->progeny[j] , c->progeny[k] , NULL , 0 , NULL , 0 ); task_addunlock( c->progeny[j]->sorts[ pts[j][k] ] , t ); task_addunlock( c->progeny[k]->sorts[ pts[j][k] ] , t ); c->progeny[k]->nr_pairs += 1; c->progeny[j]->nr_pairs += 1; } } /* Otherwise, dispatch as one large task. */ else { /* Add the task. */ t = space_addtask( s , task_type_sub , task_subtype_density , 0 , 0 , c , NULL , NULL , 0 , NULL , 0 ); /* Make it depend on all the sorts of its progeny. */ for ( k = 0 ; k < 8 ; k++ ) for ( j = 0 ; j < 13 ; j++ ) if ( c->progeny[k] != NULL ) task_addunlock( c->progeny[k]->sorts[j] , t ); } } } /* void maketasks_rec. */ /* Allocate the task-list, if needed. */ if ( s->tasks == NULL || s->tasks_size < s->tot_cells * 43 ) { if ( s->tasks != NULL ) free( s->tasks ); if ( s->tasks_ind != NULL ) free( s->tasks_ind ); s->tasks_size = s->tot_cells * 43; if ( posix_memalign( (void *)&s->tasks , 64 , sizeof(struct task) * s->tasks_size ) != 0 ) error( "Failed to allocate task list." ); if ( ( s->tasks_ind = (int *)malloc( sizeof(int) * s->tasks_size ) ) == NULL ) error( "Failed to allocate task indices." ); } s->nr_tasks = 0; /* Loop over the cells and get their sub-tasks. */ for ( k = 0 ; k < s->nr_cells ; k++ ) maketasks_rec( &s->cells[k] , NULL , 0 , NULL ); /* Run through the highest level of cells and add pairs. */ for ( i = 0 ; i < cdim[0] ; i++ ) for ( j = 0 ; j < cdim[1] ; j++ ) for ( k = 0 ; k < cdim[2] ; k++ ) { cid = cell_getid( cdim , i , j , k ); if ( s->cells[cid].count == 0 ) continue; for ( ii = -1 ; ii < 2 ; ii++ ) { iii = i + ii; if ( !s->periodic && ( iii < 0 || iii >= cdim[0] ) ) continue; iii = ( iii + cdim[0] ) % cdim[0]; for ( jj = -1 ; jj < 2 ; jj++ ) { jjj = j + jj; if ( !s->periodic && ( jjj < 0 || jjj >= cdim[1] ) ) continue; jjj = ( jjj + cdim[1] ) % cdim[1]; for ( kk = -1 ; kk < 2 ; kk++ ) { kkk = k + kk; if ( !s->periodic && ( kkk < 0 || kkk >= cdim[2] ) ) continue; kkk = ( kkk + cdim[2] ) % cdim[2]; cjd = cell_getid( cdim , iii , jjj , kkk ); if ( s->cells[cjd].count == 0 ) continue; if ( cid >= cjd ) continue; t = space_addtask( s , task_type_pair , task_subtype_density , 0 , 0 , &s->cells[cid] , &s->cells[cjd] , NULL , 0 , NULL , 0 ); task_addunlock( s->cells[cid].sorts[ sortlistID[ (kk+1) + 3*( (jj+1) + 3*(ii+1) ) ] ] , t ); task_addunlock( s->cells[cjd].sorts[ sortlistID[ (kk+1) + 3*( (jj+1) + 3*(ii+1) ) ] ] , t ); s->cells[cid].nr_pairs += 1; s->cells[cjd].nr_pairs += 1; } } } } /* Split the tasks. */ space_splittasks( s ); /* Remove sort tasks with no dependencies. */ for ( k = 0 ; k < s->nr_tasks ; k++ ) { t = &s->tasks[k]; if ( t->type == task_type_sort && t->nr_unlock_tasks == 0 ) { if ( t->ci->split ) for ( i = 0 ; i < 13 ; i++ ) if ( t->flags & ( 1 << i ) ) { for ( j = 0 ; j < 8 ; j++ ) if ( t->ci->progeny[j] != NULL ) task_rmunlock_blind( t->ci->progeny[j]->sorts[i] , t ); t->ci->sorts[i] = NULL; } t->type = task_type_none; } } /* Count the number of tasks associated with each cell and store the density tasks in each cell. */ space_map_cells( s , 1 , &space_map_clearnrtasks , NULL ); for ( k = 0 ; k < s->nr_tasks ; k++ ) { t = &s->tasks[k]; if ( t->type == task_type_self ) { t->ci->nr_tasks += 1; if ( t->subtype == task_subtype_density ) { t->ci->density[ t->ci->nr_density ] = t; t->ci->nr_density += 1; } } else if ( t->type == task_type_pair ) { t->ci->nr_tasks += 1; t->cj->nr_tasks += 1; if ( t->subtype == task_subtype_density ) { t->ci->density[ t->ci->nr_density ] = t; t->ci->nr_density += 1; t->cj->density[ t->cj->nr_density ] = t; t->cj->nr_density += 1; } } else if ( t->type == task_type_sub ) { t->ci->nr_tasks += 1; if ( t->cj != NULL ) t->cj->nr_tasks += 1; if ( t->subtype == task_subtype_density ) { t->ci->density[ t->ci->nr_density ] = t; t->ci->nr_density += 1; if ( t->cj != NULL ) { t->cj->density[ t->cj->nr_density ] = t; t->cj->nr_density += 1; } } } } /* Append a ghost task to each cell. */ space_map_cells( s , 1 , &space_map_mkghosts , s ); /* Run through the tasks and make iacts for each density task. */ for ( k = 0 ; k < s->nr_tasks ; k++ ) { /* Get a pointer to the task. */ t = &s->tasks[k]; /* Self-interaction? */ if ( t->type == task_type_self && t->subtype == task_subtype_density ) { task_addunlock( t , t->ci->super->ghost ); t2 = space_addtask( s , task_type_self , task_subtype_force , 0 , 0 , t->ci , NULL , NULL , 0 , NULL , 0 ); task_addunlock( t->ci->ghost , t2 ); } /* Otherwise, pair interaction? */ else if ( t->type == task_type_pair && t->subtype == task_subtype_density ) { task_addunlock( t , t->ci->super->ghost ); task_addunlock( t , t->cj->super->ghost ); t2 = space_addtask( s , task_type_pair , task_subtype_force , 0 , 0 , t->ci , t->cj , NULL , 0 , NULL , 0 ); task_addunlock( t->ci->ghost , t2 ); task_addunlock( t->cj->ghost , t2 ); } /* Otherwise, sub interaction? */ else if ( t->type == task_type_sub && t->subtype == task_subtype_density ) { task_addunlock( t , t->ci->super->ghost ); if ( t->cj != NULL ) task_addunlock( t , t->cj->super->ghost ); t2 = space_addtask( s , task_type_sub , task_subtype_force , t->flags , 0 , t->ci , t->cj , NULL , 0 , NULL , 0 ); task_addunlock( t->ci->ghost , t2 ); if ( t->cj != NULL ) task_addunlock( t->cj->ghost , t2 ); } } /* Re-set the indices. */ for ( k = 0 ; k < s->nr_tasks ; k++ ) s->tasks_ind[k] = k; /* Count the number of each task type. */ for ( k = 0 ; k < task_type_count ; k++ ) counts[k] = 0; for ( k = 0 ; k < s->nr_tasks ; k++ ) counts[ s->tasks[k].type ] += 1; printf( "space_maketasks: task counts are [ %s=%i" , taskID_names[0] , counts[0] ); for ( k = 1 ; k < task_type_count ; k++ ) printf( " %s=%i" , taskID_names[k] , counts[k] ); printf( " ]\n" ); /* Re-set the next task pointer. */ s->next_task = 0; } /** * @brief Split cells that contain too many particles. * * @param s The #space we are working in. * @param c The #cell under consideration. */ void space_split ( struct space *s , struct cell *c ) { int k, count; double h, h_limit, h_max = 0.0; struct cell *temp; /* Check the depth. */ if ( c->depth > s->maxdepth ) s->maxdepth = c->depth; /* Set the minimum cutoff. */ h_limit = fmin( c->h[0] , fmin( c->h[1] , c->h[2] ) ) / 2; /* Count the particles below that. */ for ( count = 0 , k = 0 ; k < c->count ; k++ ) { h = c->parts[k].h; if ( h <= h_limit ) count += 1; if ( h > h_max ) h_max = h; } c->h_max = h_max; /* Split or let it be? */ if ( count > c->count*space_splitratio && c->count > space_splitsize ) { /* No longer just a leaf. */ c->split = 1; /* Create the cell's progeny. */ for ( k = 0 ; k < 8 ; k++ ) { temp = space_getcell( s ); temp->count = 0; temp->loc[0] = c->loc[0]; temp->loc[1] = c->loc[1]; temp->loc[2] = c->loc[2]; temp->h[0] = c->h[0]/2; temp->h[1] = c->h[1]/2; temp->h[2] = c->h[2]/2; if ( k & 4 ) temp->loc[0] += temp->h[0]; if ( k & 2 ) temp->loc[1] += temp->h[1]; if ( k & 1 ) temp->loc[2] += temp->h[2]; temp->depth = c->depth + 1; temp->split = 0; temp->h_max = 0.0; temp->parent = c; c->progeny[k] = temp; } /* Split the cell data. */ cell_split( c ); /* Recurse? */ for ( k = 0 ; k < 8 ; k++ ) space_split( s , c->progeny[k] ); /* Remove any progeny with zero parts. */ for ( k = 0 ; k < 8 ; k++ ) if ( c->progeny[k]->count == 0 ) { space_recycle( s , c->progeny[k] ); c->progeny[k] = NULL; } } /* Otherwise, set the progeny to null. */ else { bzero( c->progeny , sizeof(struct cell *) * 8 ); c->split = 0; } } /** * @brief Return a used cell to the cell buffer. * * @param s The #space. * @param c The #cell. */ void space_recycle ( struct space *s , struct cell *c ) { /* Clear the cell. */ if ( lock_destroy( &c->lock ) != 0 ) error( "Failed to destroy spinlock." ); /* Clear this cell's sort arrays. */ if ( c->sort != NULL ) free( c->sort ); /* Hook this cell into the buffer. */ c->next = s->cells_new; s->cells_new = c; s->tot_cells -= 1; } /** * @brief Get a new empty cell. * * @param s The #space. */ struct cell *space_getcell ( struct space *s ) { struct cell *c; int k; /* Is the buffer empty? */ if ( s->cells_new == NULL ) { if ( posix_memalign( (void *)&s->cells_new , 64 , space_cellallocchunk * sizeof(struct cell) ) != 0 ) error( "Failed to allocate more cells." ); bzero( s->cells_new , space_cellallocchunk * sizeof(struct cell) ); for ( k = 0 ; k < space_cellallocchunk-1 ; k++ ) s->cells_new[k].next = &s->cells_new[k+1]; s->cells_new[ space_cellallocchunk-1 ].next = NULL; } /* Pick off the next cell. */ c = s->cells_new; s->cells_new = c->next; s->tot_cells += 1; /* Init some things in the cell. */ bzero( c , sizeof(struct cell) ); if ( lock_init( &c->lock ) != 0 ) error( "Failed to initialize cell spinlock." ); return c; } /** * @brief Split the space into cells given the array of particles. * * @param The #space to initialize. * @param dim Spatial dimensions of the domain. * @param parts Pointer to an array of #part. * @param N The number of parts in the space. * @param periodic flag whether the domain is periodic or not. * * Makes a grid of edge length > r_max and fills the particles * into the respective cells. Cells containing more than #space_maxppc * parts with a cutoff below half the cell width are then split * recursively. */ void space_init ( struct space *s , double dim[3] , struct part *parts , int N , int periodic , double h_max ) { /* Store eveything in the space. */ s->dim[0] = dim[0]; s->dim[1] = dim[1]; s->dim[2] = dim[2]; s->periodic = periodic; s->nr_parts = N; s->parts = parts; if ( lock_init( &s->task_lock ) != 0 ) error( "Failed to create task spin-lock." ); /* Build the cells and the tasks. */ space_rebuild( s , 1 , h_max ); }