/******************************************************************************* * This file is part of SWIFT. * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk) * Matthieu Schaller (matthieu.schaller@durham.ac.uk) * 2015 Peter W. Draper (p.w.draper@durham.ac.uk) * 2016 John A. Regan (john.a.regan@durham.ac.uk) * Tom Theuns (tom.theuns@durham.ac.uk) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program. If not, see . * ******************************************************************************/ /* Config parameters. */ #include "../config.h" /* Some standard headers. */ #include #include #include #include #include #include /* MPI headers. */ #ifdef WITH_MPI #include #endif /* This object's header. */ #include "task.h" /* Local headers. */ #include "atomic.h" #include "error.h" #include "lock.h" /* Task type names. */ const char *taskID_names[task_type_count] = { "none", "sort", "self", "pair", "sub", "init", "ghost", "drift", "kick", "kick_fixdt", "send", "recv", "grav_gather_m", "grav_fft", "grav_mm", "grav_up", "grav_external", "part_sort", "gpart_sort", "split_cell", "rewait"}; const char *subtaskID_names[task_type_count] = {"none", "density", "force", "grav"}; /** * @brief Computes the overlap between the parts array of two given cells. */ size_t task_cell_overlap_part(const struct cell *ci, const struct cell *cj) { if (ci == NULL || cj == NULL) return 0; if (ci->parts <= cj->parts && ci->parts + ci->count >= cj->parts + cj->count) { return cj->count; } else if (cj->parts <= ci->parts && cj->parts + cj->count >= ci->parts + ci->count) { return ci->count; } return 0; } /** * @brief Computes the overlap between the gparts array of two given cells. */ size_t task_cell_overlap_gpart(const struct cell *ci, const struct cell *cj) { if (ci == NULL || cj == NULL) return 0; if (ci->gparts <= cj->gparts && ci->gparts + ci->gcount >= cj->gparts + cj->gcount) { return cj->gcount; } else if (cj->gparts <= ci->gparts && cj->gparts + cj->gcount >= ci->gparts + ci->gcount) { return ci->gcount; } return 0; } /** * @brief Returns the #task_actions for a given task. * * @param t The #task. */ enum task_actions task_acts_on(const struct task *t) { switch (t->type) { case task_type_none: return task_action_none; break; case task_type_sort: case task_type_ghost: return task_action_part; break; case task_type_self: case task_type_pair: case task_type_sub_self: case task_type_sub_pair: switch (t->subtype) { case task_subtype_density: case task_subtype_force: return task_action_part; break; case task_subtype_grav: return task_action_gpart; break; default: error("Unknow task_action for task"); return task_action_none; break; } break; case task_type_init: case task_type_drift: case task_type_kick: case task_type_kick_fixdt: case task_type_send: case task_type_recv: return task_action_all; break; case task_type_grav_gather_m: case task_type_grav_fft: case task_type_grav_mm: case task_type_grav_up: return task_action_multipole; break; case task_type_grav_external: return task_action_gpart; break; case task_type_part_sort: case task_type_gpart_sort: case task_type_split_cell: case task_type_rewait: return task_action_none; break; default: error("Unknow task_action for task"); return task_action_none; break; } } /** * @brief Compute the Jaccard similarity of the data used by two * different tasks. * * @param ta The first #task. * @param tb The second #task. */ float task_overlap(const struct task *ta, const struct task *tb) { if (ta == NULL || tb == NULL) return 0.f; const enum task_actions ta_act = task_acts_on(ta); const enum task_actions tb_act = task_acts_on(tb); /* First check if any of the two tasks are of a type that don't use cells. */ if (ta_act == task_action_none || tb_act == task_action_none) return 0.f; const int ta_part = (ta_act == task_action_part || ta_act == task_action_all); const int ta_gpart = (ta_act == task_action_gpart || ta_act == task_action_all); const int tb_part = (tb_act == task_action_part || tb_act == task_action_all); const int tb_gpart = (tb_act == task_action_gpart || tb_act == task_action_all); /* In the case where both tasks act on parts */ if (ta_part && tb_part) { /* Compute the union of the cell data. */ size_t size_union = 0; if (ta->ci != NULL) size_union += ta->ci->count; if (ta->cj != NULL) size_union += ta->cj->count; if (tb->ci != NULL) size_union += tb->ci->count; if (tb->cj != NULL) size_union += tb->cj->count; /* Compute the intersection of the cell data. */ const size_t size_intersect = task_cell_overlap_part(ta->ci, tb->ci) + task_cell_overlap_part(ta->ci, tb->cj) + task_cell_overlap_part(ta->cj, tb->ci) + task_cell_overlap_part(ta->cj, tb->cj); return ((float)size_intersect) / (size_union - size_intersect); } /* In the case where both tasks act on gparts */ else if (ta_gpart && tb_gpart) { /* Compute the union of the cell data. */ size_t size_union = 0; if (ta->ci != NULL) size_union += ta->ci->gcount; if (ta->cj != NULL) size_union += ta->cj->gcount; if (tb->ci != NULL) size_union += tb->ci->gcount; if (tb->cj != NULL) size_union += tb->cj->gcount; /* Compute the intersection of the cell data. */ const size_t size_intersect = task_cell_overlap_gpart(ta->ci, tb->ci) + task_cell_overlap_gpart(ta->ci, tb->cj) + task_cell_overlap_gpart(ta->cj, tb->ci) + task_cell_overlap_gpart(ta->cj, tb->cj); return ((float)size_intersect) / (size_union - size_intersect); } /* Else, no overlap */ return 0.f; } /** * @brief Unlock the cell held by this task. * * @param t The #task. */ void task_unlock(struct task *t) { const int type = t->type; const int subtype = t->subtype; struct cell *ci = t->ci, *cj = t->cj; /* Act based on task type. */ switch (type) { case task_type_sort: cell_unlocktree(ci); break; case task_type_self: case task_type_sub_self: if (subtype == task_subtype_grav) { cell_gunlocktree(ci); } else { cell_unlocktree(ci); } break; case task_type_pair: case task_type_sub_pair: if (subtype == task_subtype_grav) { cell_gunlocktree(ci); cell_gunlocktree(cj); } else { cell_unlocktree(ci); cell_unlocktree(cj); } break; case task_type_grav_mm: cell_gunlocktree(ci); break; default: break; } } /** * @brief Try to lock the cells associated with this task. * * @param t the #task. */ int task_lock(struct task *t) { const int type = t->type; const int subtype = t->subtype; struct cell *ci = t->ci, *cj = t->cj; #ifdef WITH_MPI int res = 0, err = 0; MPI_Status stat; #endif switch (type) { /* Communication task? */ case task_type_recv: case task_type_send: #ifdef WITH_MPI /* Check the status of the MPI request. */ if ((err = MPI_Test(&t->req, &res, &stat)) != MPI_SUCCESS) { char buff[MPI_MAX_ERROR_STRING]; int len; MPI_Error_string(err, buff, &len); error("Failed to test request on send/recv task (tag=%i, %s).", t->flags, buff); } return res; #else error("SWIFT was not compiled with MPI support."); #endif break; case task_type_sort: if (cell_locktree(ci) != 0) return 0; break; case task_type_self: case task_type_sub_self: if (subtype == task_subtype_grav) { if (cell_glocktree(ci) != 0) return 0; } else { if (cell_locktree(ci) != 0) return 0; } break; case task_type_pair: case task_type_sub_pair: if (subtype == task_subtype_grav) { if (ci->ghold || cj->ghold) return 0; if (cell_glocktree(ci) != 0) return 0; if (cell_glocktree(cj) != 0) { cell_gunlocktree(ci); return 0; } } else { if (ci->hold || cj->hold) return 0; if (cell_locktree(ci) != 0) return 0; if (cell_locktree(cj) != 0) { cell_unlocktree(ci); return 0; } } break; case task_type_grav_mm: cell_glocktree(ci); break; default: break; } /* If we made it this far, we've got a lock. */ return 1; } /** * @brief Prints the list of tasks contained in a given mask * * @param mask The mask to analyse */ void task_print_mask(unsigned int mask) { printf("task_print_mask: The tasks to run are ["); for (int k = 1; k < task_type_count; k++) printf(" %s=%s", taskID_names[k], (mask & (1 << k)) ? "yes" : "no"); printf(" ]\n"); } /** * @brief Prints the list of subtasks contained in a given submask * * @param submask The submask to analyse */ void task_print_submask(unsigned int submask) { printf("task_print_submask: The subtasks to run are ["); for (int k = 1; k < task_subtype_count; k++) printf(" %s=%s", subtaskID_names[k], (submask & (1 << k)) ? "yes" : "no"); printf(" ]\n"); }