/******************************************************************************* * This file is part of SWIFT. * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk), * Matthieu Schaller (matthieu.schaller@durham.ac.uk). * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program. If not, see . * ******************************************************************************/ /* Config parameters. */ #include "../config.h" #if defined(HAVE_HDF5) && defined(WITH_MPI) && defined(HAVE_PARALLEL_HDF5) /* Some standard headers. */ #include #include #include #include #include #include #include #include /* This object's header. */ #include "parallel_io.h" /* Local includes. */ #include "black_holes_io.h" #include "chemistry_io.h" #include "common_io.h" #include "cooling_io.h" #include "dimension.h" #include "engine.h" #include "error.h" #include "fof_io.h" #include "gravity_io.h" #include "gravity_properties.h" #include "hydro_io.h" #include "hydro_properties.h" #include "io_properties.h" #include "memuse.h" #include "output_list.h" #include "output_options.h" #include "part.h" #include "part_type.h" #include "sink_io.h" #include "star_formation_io.h" #include "stars_io.h" #include "tracers_io.h" #include "units.h" #include "velociraptor_io.h" #include "xmf.h" /* The current limit of ROMIO (the underlying MPI-IO layer) is 2GB */ #define HDF5_PARALLEL_IO_MAX_BYTES 2147000000LL /* Are we timing the i/o? */ //#define IO_SPEED_MEASUREMENT /** * @brief Reads a chunk of data from an open HDF5 dataset * * @param h_data The HDF5 dataset to write to. * @param h_plist_id the parallel HDF5 properties. * @param props The #io_props of the field to read. * @param N The number of particles to write. * @param offset Offset in the array where this mpi task starts writing. * @param internal_units The #unit_system used internally. * @param ic_units The #unit_system used in the snapshots. * @param cleanup_h Are we removing h-factors from the ICs? * @param cleanup_sqrt_a Are we cleaning-up the sqrt(a) factors in the Gadget * IC velocities? * @param h The value of the reduced Hubble constant to use for cleaning. * @param a The current value of the scale-factor. */ void read_array_parallel_chunk(hid_t h_data, hid_t h_plist_id, const struct io_props props, size_t N, long long offset, const struct unit_system* internal_units, const struct unit_system* ic_units, int cleanup_h, int cleanup_sqrt_a, double h, double a) { const size_t typeSize = io_sizeof_type(props.type); const size_t copySize = typeSize * props.dimension; const size_t num_elements = N * props.dimension; /* Can't handle writes of more than 2GB */ if (N * props.dimension * typeSize > HDF5_PARALLEL_IO_MAX_BYTES) error("Dataset too large to be read in one pass!"); /* Allocate temporary buffer */ void* temp = malloc(num_elements * typeSize); if (temp == NULL) error("Unable to allocate memory for temporary buffer"); /* Prepare information for hyper-slab */ hsize_t shape[2], offsets[2]; int rank; if (props.dimension > 1) { rank = 2; shape[0] = N; shape[1] = props.dimension; offsets[0] = offset; offsets[1] = 0; } else { rank = 2; shape[0] = N; shape[1] = 1; offsets[0] = offset; offsets[1] = 0; } /* Create data space in memory */ const hid_t h_memspace = H5Screate_simple(rank, shape, NULL); /* Select hyper-slab in file */ const hid_t h_filespace = H5Dget_space(h_data); H5Sselect_hyperslab(h_filespace, H5S_SELECT_SET, offsets, NULL, shape, NULL); /* Read HDF5 dataspace in temporary buffer */ /* Dirty version that happens to work for vectors but should be improved */ /* Using HDF5 dataspaces would be better */ const hid_t h_err = H5Dread(h_data, io_hdf5_type(props.type), h_memspace, h_filespace, h_plist_id, temp); if (h_err < 0) error("Error while reading data array '%s'.", props.name); /* Unit conversion if necessary */ const double factor = units_conversion_factor(ic_units, internal_units, props.units); if (factor != 1.) { /* message("Converting ! factor=%e", factor); */ if (io_is_double_precision(props.type)) { double* temp_d = (double*)temp; for (size_t i = 0; i < num_elements; ++i) temp_d[i] *= factor; } else { float* temp_f = (float*)temp; #ifdef SWIFT_DEBUG_CHECKS float maximum = 0.; float minimum = FLT_MAX; #endif /* Loop that converts the Units */ for (size_t i = 0; i < num_elements; ++i) { #ifdef SWIFT_DEBUG_CHECKS /* Find the absolute minimum and maximum values */ const float abstemp_f = fabsf(temp_f[i]); if (abstemp_f != 0.f) { maximum = max(maximum, abstemp_f); minimum = min(minimum, abstemp_f); } #endif /* Convert the float units */ temp_f[i] *= factor; } #ifdef SWIFT_DEBUG_CHECKS /* The two possible errors: larger than float or smaller * than float precission. */ if (factor * maximum > FLT_MAX) { error("Unit conversion results in numbers larger than floats"); } else if (factor * minimum < FLT_MIN) { error("Numbers smaller than float precision"); } #endif } } /* Clean-up h if necessary */ const float h_factor_exp = units_h_factor(internal_units, props.units); if (cleanup_h && h_factor_exp != 0.f) { /* message("Multipltying '%s' by h^%f=%f", props.name, h_factor_exp, * h_factor); */ if (io_is_double_precision(props.type)) { double* temp_d = (double*)temp; const double h_factor = pow(h, h_factor_exp); for (size_t i = 0; i < num_elements; ++i) temp_d[i] *= h_factor; } else { float* temp_f = (float*)temp; const float h_factor = pow(h, h_factor_exp); for (size_t i = 0; i < num_elements; ++i) temp_f[i] *= h_factor; } } /* Clean-up a if necessary */ if (cleanup_sqrt_a && a != 1. && (strcmp(props.name, "Velocities") == 0)) { if (io_is_double_precision(props.type)) { double* temp_d = (double*)temp; const double vel_factor = sqrt(a); for (size_t i = 0; i < num_elements; ++i) temp_d[i] *= vel_factor; } else { float* temp_f = (float*)temp; const float vel_factor = sqrt(a); for (size_t i = 0; i < num_elements; ++i) temp_f[i] *= vel_factor; } } /* Copy temporary buffer to particle data */ char* temp_c = (char*)temp; for (size_t i = 0; i < N; ++i) memcpy(props.field + i * props.partSize, &temp_c[i * copySize], copySize); /* Free and close everything */ free(temp); H5Sclose(h_filespace); H5Sclose(h_memspace); } /** * @brief Reads a data array from a given HDF5 group. * * @param grp The group from which to read. * @param props The #io_props of the field to read. * @param N The number of particles on that rank. * @param N_total The total number of particles. * @param mpi_rank The MPI rank of this node. * @param offset The offset in the array on disk for this rank. * @param internal_units The #unit_system used internally. * @param ic_units The #unit_system used in the ICs. * @param cleanup_h Are we removing h-factors from the ICs? * @param cleanup_sqrt_a Are we cleaning-up the sqrt(a) factors in the Gadget * IC velocities? * @param h The value of the reduced Hubble constant to use for cleaning. * @param a The current value of the scale-factor. */ void read_array_parallel(hid_t grp, struct io_props props, size_t N, long long N_total, int mpi_rank, long long offset, const struct unit_system* internal_units, const struct unit_system* ic_units, int cleanup_h, int cleanup_sqrt_a, double h, double a) { const size_t typeSize = io_sizeof_type(props.type); const size_t copySize = typeSize * props.dimension; /* Check whether the dataspace exists or not */ const htri_t exist = H5Lexists(grp, props.name, 0); if (exist < 0) { error("Error while checking the existence of data set '%s'.", props.name); } else if (exist == 0) { if (props.importance == COMPULSORY) { error("Compulsory data set '%s' not present in the file.", props.name); } else { for (size_t i = 0; i < N; ++i) memset(props.field + i * props.partSize, 0, copySize); return; } } /* Open data space in file */ const hid_t h_data = H5Dopen2(grp, props.name, H5P_DEFAULT); if (h_data < 0) error("Error while opening data space '%s'.", props.name); /* Parallel-HDF5 1.10.2 incorrectly reads data that was compressed */ /* We detect this here and crash with an error message instead of */ /* continuing with garbage data. */ #if H5_VERSION_LE(1, 10, 2) && H5_VERSION_GE(1, 10, 2) if (mpi_rank == 0) { /* Recover the list of filters that were applied to the data */ const hid_t h_plist = H5Dget_create_plist(h_data); if (h_plist < 0) error("Error getting property list for data set '%s'", props.name); /* Recover the number of filters in the list */ const int n_filters = H5Pget_nfilters(h_plist); for (int n = 0; n < n_filters; ++n) { unsigned int flag; size_t cd_nelmts = 32; unsigned int* cd_values = malloc(cd_nelmts * sizeof(unsigned int)); size_t namelen = 256; char* name = calloc(namelen, sizeof(char)); unsigned int filter_config; /* Recover the n^th filter in the list */ const H5Z_filter_t filter = H5Pget_filter(h_plist, n, &flag, &cd_nelmts, cd_values, namelen, name, &filter_config); if (filter < 0) error("Error retrieving %d^th (%d) filter for data set '%s'", n, n_filters, props.name); /* Now check whether the deflate filter had been applied */ if (filter == H5Z_FILTER_DEFLATE) error( "HDF5 1.10.2 cannot correctly read data that was compressed with " "the 'deflate' filter.\nThe field '%s' has had this filter applied " "and the code would silently read garbage into the particle arrays " "so we'd rather stop here. You can:\n - Recompile the code with an " "earlier or older version of HDF5.\n - Use the 'h5repack' tool to " "remove the filter from the ICs (e.g. h5repack -f NONE -i in_file " "-o out_file).\n", props.name); free(name); free(cd_values); } H5Pclose(h_plist); } #endif /* Create property list for collective dataset read. */ const hid_t h_plist_id = H5Pcreate(H5P_DATASET_XFER); H5Pset_dxpl_mpio(h_plist_id, H5FD_MPIO_COLLECTIVE); /* Given the limitations of ROM-IO we will need to read the data in chunk of HDF5_PARALLEL_IO_MAX_BYTES bytes per node until all the nodes are done. */ char redo = 1; while (redo) { /* Maximal number of elements */ const size_t max_chunk_size = HDF5_PARALLEL_IO_MAX_BYTES / (props.dimension * typeSize); /* Write the first chunk */ const size_t this_chunk = (N > max_chunk_size) ? max_chunk_size : N; read_array_parallel_chunk(h_data, h_plist_id, props, this_chunk, offset, internal_units, ic_units, cleanup_h, cleanup_sqrt_a, h, a); /* Compute how many items are left */ if (N > max_chunk_size) { N -= max_chunk_size; props.field += max_chunk_size * props.partSize; /* char* on the field */ props.parts += max_chunk_size; /* part* on the part */ props.xparts += max_chunk_size; /* xpart* on the xpart */ props.gparts += max_chunk_size; /* gpart* on the gpart */ props.sparts += max_chunk_size; /* spart* on the spart */ props.bparts += max_chunk_size; /* bpart* on the bpart */ offset += max_chunk_size; redo = 1; } else { N = 0; offset += 0; redo = 0; } /* Do we need to run again ? */ MPI_Allreduce(MPI_IN_PLACE, &redo, 1, MPI_SIGNED_CHAR, MPI_MAX, MPI_COMM_WORLD); if (redo && mpi_rank == 0) message("Need to redo one iteration for array '%s'", props.name); } /* Close everything */ H5Pclose(h_plist_id); H5Dclose(h_data); } /** * @brief Prepares an array in the snapshot. * * @param e The #engine we are writing from. * @param grp The HDF5 grp to write to. * @param fileName The name of the file we are writing to. * @param xmfFile The (opened) XMF file we are appending to. * @param partTypeGroupName The name of the group we are writing to. * @param props The #io_props of the field to write. * @param N_total The total number of particles to write in this array. * @param snapshot_units The units used for the data in this snapshot. */ void prepare_array_parallel( struct engine* e, hid_t grp, const char* fileName, FILE* xmfFile, char* partTypeGroupName, struct io_props props, long long N_total, const enum lossy_compression_schemes lossy_compression, const struct unit_system* snapshot_units) { /* Create data space */ const hid_t h_space = H5Screate(H5S_SIMPLE); if (h_space < 0) error("Error while creating data space for field '%s'.", props.name); int rank = 0; hsize_t shape[2]; hsize_t chunk_shape[2]; if (props.dimension > 1) { rank = 2; shape[0] = N_total; shape[1] = props.dimension; chunk_shape[0] = 1 << 20; /* Just a guess...*/ chunk_shape[1] = props.dimension; } else { rank = 1; shape[0] = N_total; shape[1] = 0; chunk_shape[0] = 1 << 20; /* Just a guess...*/ chunk_shape[1] = 0; } /* Make sure the chunks are not larger than the dataset */ if ((long long)chunk_shape[0] > N_total) chunk_shape[0] = N_total; /* Change shape of data space */ hid_t h_err = H5Sset_extent_simple(h_space, rank, shape, NULL); if (h_err < 0) error("Error while changing data space shape for field '%s'.", props.name); /* Dataset type */ hid_t h_type = H5Tcopy(io_hdf5_type(props.type)); /* Dataset properties */ hid_t h_prop = H5Pcreate(H5P_DATASET_CREATE); /* Create property list for collective dataset write. */ const hid_t h_plist_id = H5Pcreate(H5P_DATASET_XFER); H5Pset_dxpl_mpio(h_plist_id, H5FD_MPIO_COLLECTIVE); /* Set chunk size */ // h_err = H5Pset_chunk(h_prop, rank, chunk_shape); // if (h_err < 0) { // error("Error while setting chunk size (%llu, %llu) for field '%s'.", // chunk_shape[0], chunk_shape[1], props.name); //} /* Are we imposing some form of lossy compression filter? */ // if (lossy_compression != compression_write_lossless) // set_hdf5_lossy_compression(&h_prop, &h_type, lossy_compression, // props.name); /* Impose check-sum to verify data corruption */ // h_err = H5Pset_fletcher32(h_prop); // if (h_err < 0) // error("Error while setting checksum options for field '%s'.", props.name); /* Create dataset */ const hid_t h_data = H5Dcreate(grp, props.name, h_type, h_space, H5P_DEFAULT, h_prop, H5P_DEFAULT); if (h_data < 0) error("Error while creating dataspace '%s'.", props.name); /* Write unit conversion factors for this data set */ char buffer[FIELD_BUFFER_SIZE] = {0}; units_cgs_conversion_string(buffer, snapshot_units, props.units, props.scale_factor_exponent); float baseUnitsExp[5]; units_get_base_unit_exponents_array(baseUnitsExp, props.units); io_write_attribute_f(h_data, "U_M exponent", baseUnitsExp[UNIT_MASS]); io_write_attribute_f(h_data, "U_L exponent", baseUnitsExp[UNIT_LENGTH]); io_write_attribute_f(h_data, "U_t exponent", baseUnitsExp[UNIT_TIME]); io_write_attribute_f(h_data, "U_I exponent", baseUnitsExp[UNIT_CURRENT]); io_write_attribute_f(h_data, "U_T exponent", baseUnitsExp[UNIT_TEMPERATURE]); io_write_attribute_f(h_data, "h-scale exponent", 0.f); io_write_attribute_f(h_data, "a-scale exponent", props.scale_factor_exponent); io_write_attribute_s(h_data, "Expression for physical CGS units", buffer); /* Write the actual number this conversion factor corresponds to */ const double factor = units_cgs_conversion_factor(snapshot_units, props.units); io_write_attribute_d( h_data, "Conversion factor to CGS (not including cosmological corrections)", factor); io_write_attribute_d( h_data, "Conversion factor to physical CGS (including cosmological corrections)", factor * pow(e->cosmology->a, props.scale_factor_exponent)); #ifdef SWIFT_DEBUG_CHECKS if (strlen(props.description) == 0) error("Invalid (empty) description of the field '%s'", props.name); #endif /* Write the full description */ io_write_attribute_s(h_data, "Description", props.description); /* Add a line to the XMF */ if (xmfFile != NULL) xmf_write_line(xmfFile, fileName, partTypeGroupName, props.name, N_total, props.dimension, props.type); /* Close everything */ H5Tclose(h_type); H5Pclose(h_prop); H5Pclose(h_plist_id); H5Dclose(h_data); H5Sclose(h_space); } /** * @brief Writes a chunk of data in an open HDF5 dataset * * @param e The #engine we are writing from. * @param h_data The HDF5 dataset to write to. * @param props The #io_props of the field to write. * @param N The number of particles to write. * @param offset Offset in the array where this mpi task starts writing. * @param internal_units The #unit_system used internally. * @param snapshot_units The #unit_system used in the snapshots. */ void write_array_parallel_chunk(struct engine* e, hid_t h_data, const struct io_props props, size_t N, long long offset, const struct unit_system* internal_units, const struct unit_system* snapshot_units) { const size_t typeSize = io_sizeof_type(props.type); const size_t num_elements = N * props.dimension; /* Can't handle writes of more than 2GB */ if (N * props.dimension * typeSize > HDF5_PARALLEL_IO_MAX_BYTES) error("Dataset too large to be written in one pass!"); /* message("Writing '%s' array...", props.name); */ /* Allocate temporary buffer */ void* temp = NULL; if (swift_memalign("writebuff", (void**)&temp, IO_BUFFER_ALIGNMENT, num_elements * typeSize) != 0) error("Unable to allocate temporary i/o buffer"); #ifdef IO_SPEED_MEASUREMENT MPI_Barrier(MPI_COMM_WORLD); ticks tic = getticks(); #endif /* Copy the particle data to the temporary buffer */ io_copy_temp_buffer(temp, e, props, N, internal_units, snapshot_units); #ifdef IO_SPEED_MEASUREMENT MPI_Barrier(MPI_COMM_WORLD); if (engine_rank == 0) message("Copying for '%s' took %.3f %s.", props.name, clocks_from_ticks(getticks() - tic), clocks_getunit()); #endif /* Create data space */ const hid_t h_memspace = H5Screate(H5S_SIMPLE); if (h_memspace < 0) error("Error while creating data space (memory) for field '%s'.", props.name); int rank; hsize_t shape[2]; hsize_t offsets[2]; if (props.dimension > 1) { rank = 2; shape[0] = N; shape[1] = props.dimension; offsets[0] = offset; offsets[1] = 0; } else { rank = 1; shape[0] = N; shape[1] = 0; offsets[0] = offset; offsets[1] = 0; } /* Change shape of memory data space */ hid_t h_err = H5Sset_extent_simple(h_memspace, rank, shape, NULL); if (h_err < 0) error("Error while changing data space (memory) shape for field '%s'.", props.name); /* Select the hyper-salb corresponding to this rank */ hid_t h_filespace = H5Dget_space(h_data); if (N > 0) H5Sselect_hyperslab(h_filespace, H5S_SELECT_SET, offsets, NULL, shape, NULL); else H5Sselect_none(h_filespace); /* message("Writing %lld '%s', %zd elements = %zd bytes (int=%d) at offset * %zd", N, props.name, N * props.dimension, N * props.dimension * typeSize, */ /* (int)(N * props.dimension * typeSize), offset); */ /* Make a dataset creation property list and set MPI-I/O mode */ hid_t h_plist_id = H5Pcreate(H5P_DATASET_XFER); H5Pset_dxpl_mpio(h_plist_id, H5FD_MPIO_COLLECTIVE); #ifdef IO_SPEED_MEASUREMENT MPI_Barrier(MPI_COMM_WORLD); tic = getticks(); #endif /* Write temporary buffer to HDF5 dataspace */ h_err = H5Dwrite(h_data, io_hdf5_type(props.type), h_memspace, h_filespace, h_plist_id, temp); if (h_err < 0) error("Error while writing data array '%s'.", props.name); #ifdef IO_SPEED_MEASUREMENT MPI_Barrier(MPI_COMM_WORLD); ticks toc = getticks(); float ms = clocks_from_ticks(toc - tic); int megaBytes = N * props.dimension * typeSize / (1024 * 1024); int total = 0; MPI_Reduce(&megaBytes, &total, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD); if (engine_rank == 0) message("H5Dwrite for '%s' (%d MB) took %.3f %s (speed = %f MB/s).", props.name, total, ms, clocks_getunit(), total / (ms / 1000.)); #endif /* Free and close everything */ swift_free("writebuff", temp); H5Pclose(h_plist_id); H5Sclose(h_memspace); H5Sclose(h_filespace); } /** * @brief Writes a data array in given HDF5 group. * * @param e The #engine we are writing from. * @param grp The group in which to write. * @param fileName The name of the file in which the data is written. * @param partTypeGroupName The name of the group containing the particles in * the HDF5 file. * @param props The #io_props of the field to read * @param N The number of particles to write. * @param N_total Total number of particles across all cores. * @param mpi_rank The rank of this node. * @param offset Offset in the array where this mpi task starts writing. * @param internal_units The #unit_system used internally. * @param snapshot_units The #unit_system used in the snapshots. */ void write_array_parallel(struct engine* e, hid_t grp, char* fileName, char* partTypeGroupName, struct io_props props, size_t N, long long N_total, int mpi_rank, long long offset, const struct unit_system* internal_units, const struct unit_system* snapshot_units) { const size_t typeSize = io_sizeof_type(props.type); #ifdef IO_SPEED_MEASUREMENT const ticks tic = getticks(); #endif /* Open dataset */ const hid_t h_data = H5Dopen(grp, props.name, H5P_DEFAULT); if (h_data < 0) error("Error while opening dataset '%s'.", props.name); /* Given the limitations of ROM-IO we will need to write the data in chunk of HDF5_PARALLEL_IO_MAX_BYTES bytes per node until all the nodes are done. */ char redo = 1; while (redo) { /* Maximal number of elements */ const size_t max_chunk_size = HDF5_PARALLEL_IO_MAX_BYTES / (props.dimension * typeSize); /* Write the first chunk */ const size_t this_chunk = (N > max_chunk_size) ? max_chunk_size : N; write_array_parallel_chunk(e, h_data, props, this_chunk, offset, internal_units, snapshot_units); /* Compute how many items are left */ if (N > max_chunk_size) { N -= max_chunk_size; props.field += max_chunk_size * props.partSize; /* char* on the field */ props.parts += max_chunk_size; /* part* on the part */ props.xparts += max_chunk_size; /* xpart* on the xpart */ props.gparts += max_chunk_size; /* gpart* on the gpart */ props.sparts += max_chunk_size; /* spart* on the spart */ props.bparts += max_chunk_size; /* bpart* on the bpart */ offset += max_chunk_size; redo = 1; } else { N = 0; offset += 0; redo = 0; } /* Do we need to run again ? */ MPI_Allreduce(MPI_IN_PLACE, &redo, 1, MPI_SIGNED_CHAR, MPI_MAX, MPI_COMM_WORLD); if (redo && e->verbose && mpi_rank == 0) message("Need to redo one iteration for array '%s'", props.name); } /* Close everything */ H5Dclose(h_data); #ifdef IO_SPEED_MEASUREMENT MPI_Barrier(MPI_COMM_WORLD); if (engine_rank == 0) message("'%s' took %.3f %s.", props.name, clocks_from_ticks(getticks() - tic), clocks_getunit()); #endif } /** * @brief Reads an HDF5 initial condition file (GADGET-3 type) in parallel * * @param fileName The file to read. * @param internal_units The system units used internally * @param dim (output) The dimension of the volume read from the file. * @param parts (output) The array of #part read from the file. * @param gparts (output) The array of #gpart read from the file. * @param sinks (output) The array of #sink read from the file. * @param sparts (output) The array of #spart read from the file. * @param bparts (output) The array of #bpart read from the file. * @param Ngas (output) The number of particles read from the file. * @param Ngparts (output) The number of particles read from the file. * @param Ngparts_background (output) The number of background DM particles read * from the file. * @param Nsink (output) The number of particles read from the file. * @param Nstars (output) The number of particles read from the file. * @param Nblackholes (output) The number of particles read from the file. * @param flag_entropy (output) 1 if the ICs contained Entropy in the * InternalEnergy field * @param with_hydro Are we running with hydro ? * @param with_gravity Are we running with gravity ? * @param with_sink Are we running with sink ? * @param with_stars Are we running with stars ? * @param with_black_holes Are we running with black holes ? * @param with_cosmology Are we running with cosmology ? * @param cleanup_h Are we cleaning-up h-factors from the quantities we read? * @param cleanup_sqrt_a Are we cleaning-up the sqrt(a) factors in the Gadget * IC velocities? * @param h The value of the reduced Hubble constant to use for correction. * @param a The current value of the scale-factor. * @param mpi_rank The MPI rank of this node * @param mpi_size The number of MPI ranks * @param comm The MPI communicator * @param info The MPI information object * @param n_threads The number of threads to use for local operations. * @param dry_run If 1, don't read the particle. Only allocates the arrays. * */ void read_ic_parallel(char* fileName, const struct unit_system* internal_units, double dim[3], struct part** parts, struct gpart** gparts, struct sink** sinks, struct spart** sparts, struct bpart** bparts, size_t* Ngas, size_t* Ngparts, size_t* Ngparts_background, size_t* Nsinks, size_t* Nstars, size_t* Nblackholes, int* flag_entropy, int with_hydro, int with_gravity, int with_sink, int with_stars, int with_black_holes, int with_cosmology, int cleanup_h, int cleanup_sqrt_a, double h, double a, int mpi_rank, int mpi_size, MPI_Comm comm, MPI_Info info, int n_threads, int dry_run, int remap_ids) { hid_t h_file = 0, h_grp = 0; /* GADGET has only cubic boxes (in cosmological mode) */ double boxSize[3] = {0.0, -1.0, -1.0}; long long numParticles[swift_type_count] = {0}; long long numParticles_highWord[swift_type_count] = {0}; size_t N[swift_type_count] = {0}; long long N_total[swift_type_count] = {0}; long long offset[swift_type_count] = {0}; int dimension = 3; /* Assume 3D if nothing is specified */ size_t Ndm = 0; size_t Ndm_background = 0; /* Initialise counters */ *Ngas = 0, *Ngparts = 0, *Ngparts_background = 0, *Nstars = 0, *Nblackholes = 0, *Nsinks = 0; /* Open file */ /* message("Opening file '%s' as IC.", fileName); */ hid_t h_plist_id = H5Pcreate(H5P_FILE_ACCESS); H5Pset_fapl_mpio(h_plist_id, comm, info); h_file = H5Fopen(fileName, H5F_ACC_RDONLY, h_plist_id); if (h_file < 0) error("Error while opening file '%s'.", fileName); /* Open header to read simulation properties */ /* message("Reading file header..."); */ h_grp = H5Gopen(h_file, "/Header", H5P_DEFAULT); if (h_grp < 0) error("Error while opening file header\n"); /* Check the dimensionality of the ICs (if the info exists) */ const hid_t hid_dim = H5Aexists(h_grp, "Dimension"); if (hid_dim < 0) error("Error while testing existance of 'Dimension' attribute"); if (hid_dim > 0) io_read_attribute(h_grp, "Dimension", INT, &dimension); if (dimension != hydro_dimension) error("ICs dimensionality (%dD) does not match code dimensionality (%dD)", dimension, (int)hydro_dimension); /* Check whether the number of files is specified (if the info exists) */ const hid_t hid_files = H5Aexists(h_grp, "NumFilesPerSnapshot"); int num_files = 1; if (hid_files < 0) error( "Error while testing the existance of 'NumFilesPerSnapshot' attribute"); if (hid_files > 0) io_read_attribute(h_grp, "NumFilesPerSnapshot", INT, &num_files); if (num_files != 1) error( "ICs are split over multiples files (%d). SWIFT cannot handle this " "case. The script /tools/combine_ics.py is availalbe in the repository " "to combine files into a valid input file.", num_files); /* Read the relevant information and print status */ int flag_entropy_temp[6]; io_read_attribute(h_grp, "Flag_Entropy_ICs", INT, flag_entropy_temp); *flag_entropy = flag_entropy_temp[0]; io_read_attribute(h_grp, "BoxSize", DOUBLE, boxSize); io_read_attribute(h_grp, "NumPart_Total", LONGLONG, numParticles); io_read_attribute(h_grp, "NumPart_Total_HighWord", LONGLONG, numParticles_highWord); /* Check that the user is not doing something silly when they e.g. restart * from a snapshot by asserting that the current scale-factor (from * parameter file) and the redshift in the header are consistent */ if (with_cosmology) { io_assert_valid_header_cosmology(h_grp, a); } for (int ptype = 0; ptype < swift_type_count; ++ptype) N_total[ptype] = (numParticles[ptype]) + (numParticles_highWord[ptype] << 32); /* Get the box size if not cubic */ dim[0] = boxSize[0]; dim[1] = (boxSize[1] < 0) ? boxSize[0] : boxSize[1]; dim[2] = (boxSize[2] < 0) ? boxSize[0] : boxSize[2]; /* Change box size in the 1D and 2D case */ if (hydro_dimension == 2) dim[2] = min(dim[0], dim[1]); else if (hydro_dimension == 1) dim[2] = dim[1] = dim[0]; /* Convert the box size if we want to clean-up h-factors */ if (cleanup_h) { dim[0] /= h; dim[1] /= h; dim[2] /= h; } /* message("Found %lld particles in a %speriodic box of size [%f %f %f].", */ /* N_total[0], (periodic ? "": "non-"), dim[0], dim[1], dim[2]); */ /* Divide the particles among the tasks. */ for (int ptype = 0; ptype < swift_type_count; ++ptype) { offset[ptype] = mpi_rank * N_total[ptype] / mpi_size; N[ptype] = (mpi_rank + 1) * N_total[ptype] / mpi_size - offset[ptype]; } /* Close header */ H5Gclose(h_grp); /* Read the unit system used in the ICs */ struct unit_system* ic_units = (struct unit_system*)malloc(sizeof(struct unit_system)); if (ic_units == NULL) error("Unable to allocate memory for IC unit system"); io_read_unit_system(h_file, ic_units, internal_units, mpi_rank); /* Tell the user if a conversion will be needed */ if (mpi_rank == 0) { if (units_are_equal(ic_units, internal_units)) { message("IC and internal units match. No conversion needed."); } else { message("Conversion needed from:"); message("(ICs) Unit system: U_M = %e g.", ic_units->UnitMass_in_cgs); message("(ICs) Unit system: U_L = %e cm.", ic_units->UnitLength_in_cgs); message("(ICs) Unit system: U_t = %e s.", ic_units->UnitTime_in_cgs); message("(ICs) Unit system: U_I = %e A.", ic_units->UnitCurrent_in_cgs); message("(ICs) Unit system: U_T = %e K.", ic_units->UnitTemperature_in_cgs); message("to:"); message("(internal) Unit system: U_M = %e g.", internal_units->UnitMass_in_cgs); message("(internal) Unit system: U_L = %e cm.", internal_units->UnitLength_in_cgs); message("(internal) Unit system: U_t = %e s.", internal_units->UnitTime_in_cgs); message("(internal) Unit system: U_I = %e A.", internal_units->UnitCurrent_in_cgs); message("(internal) Unit system: U_T = %e K.", internal_units->UnitTemperature_in_cgs); } } /* Convert the dimensions of the box */ for (int j = 0; j < 3; j++) dim[j] *= units_conversion_factor(ic_units, internal_units, UNIT_CONV_LENGTH); /* Allocate memory to store SPH particles */ if (with_hydro) { *Ngas = N[0]; if (swift_memalign("parts", (void**)parts, part_align, (*Ngas) * sizeof(struct part)) != 0) error("Error while allocating memory for particles"); bzero(*parts, *Ngas * sizeof(struct part)); } /* Allocate memory to store black hole particles */ if (with_sink) { *Nsinks = N[swift_type_sink]; if (swift_memalign("sinks", (void**)sinks, sink_align, *Nsinks * sizeof(struct sink)) != 0) error("Error while allocating memory for sink particles"); bzero(*sinks, *Nsinks * sizeof(struct sink)); } /* Allocate memory to store stars particles */ if (with_stars) { *Nstars = N[swift_type_stars]; if (swift_memalign("sparts", (void**)sparts, spart_align, *Nstars * sizeof(struct spart)) != 0) error("Error while allocating memory for stars particles"); bzero(*sparts, *Nstars * sizeof(struct spart)); } /* Allocate memory to store black hole particles */ if (with_black_holes) { *Nblackholes = N[swift_type_black_hole]; if (swift_memalign("bparts", (void**)bparts, bpart_align, *Nblackholes * sizeof(struct bpart)) != 0) error("Error while allocating memory for black_holes particles"); bzero(*bparts, *Nblackholes * sizeof(struct bpart)); } /* Allocate memory to store gravity particles */ if (with_gravity) { Ndm = N[swift_type_dark_matter]; Ndm_background = N[swift_type_dark_matter_background]; *Ngparts = (with_hydro ? N[swift_type_gas] : 0) + N[swift_type_dark_matter] + N[swift_type_dark_matter_background] + (with_stars ? N[swift_type_stars] : 0) + (with_sink ? N[swift_type_sink] : 0) + (with_black_holes ? N[swift_type_black_hole] : 0); *Ngparts_background = Ndm_background; if (swift_memalign("gparts", (void**)gparts, gpart_align, *Ngparts * sizeof(struct gpart)) != 0) error("Error while allocating memory for gravity particles"); bzero(*gparts, *Ngparts * sizeof(struct gpart)); } /* message("Allocated %8.2f MB for particles.", *N * sizeof(struct part) / * (1024.*1024.)); */ /* message("BoxSize = %lf", dim[0]); */ /* message("NumPart = [%zd, %zd] Total = %zd", *Ngas, Ndm, *Ngparts); */ /* Loop over all particle types */ for (int ptype = 0; ptype < swift_type_count; ptype++) { /* Don't do anything if no particle of this kind */ if (N_total[ptype] == 0) continue; /* Open the particle group in the file */ char partTypeGroupName[PARTICLE_GROUP_BUFFER_SIZE]; snprintf(partTypeGroupName, PARTICLE_GROUP_BUFFER_SIZE, "/PartType%d", ptype); h_grp = H5Gopen(h_file, partTypeGroupName, H5P_DEFAULT); if (h_grp < 0) error("Error while opening particle group %s.", partTypeGroupName); int num_fields = 0; struct io_props list[100]; size_t Nparticles = 0; /* Read particle fields into the particle structure */ switch (ptype) { case swift_type_gas: if (with_hydro) { Nparticles = *Ngas; hydro_read_particles(*parts, list, &num_fields); num_fields += chemistry_read_particles(*parts, list + num_fields); } break; case swift_type_dark_matter: if (with_gravity) { Nparticles = Ndm; darkmatter_read_particles(*gparts, list, &num_fields); } break; case swift_type_dark_matter_background: if (with_gravity) { Nparticles = Ndm_background; darkmatter_read_particles(*gparts + Ndm, list, &num_fields); } break; case swift_type_sink: if (with_sink) { Nparticles = *Nsinks; sink_read_particles(*sinks, list, &num_fields); } break; case swift_type_stars: if (with_stars) { Nparticles = *Nstars; stars_read_particles(*sparts, list, &num_fields); } break; case swift_type_black_hole: if (with_black_holes) { Nparticles = *Nblackholes; black_holes_read_particles(*bparts, list, &num_fields); } break; default: if (mpi_rank == 0) message("Particle Type %d not yet supported. Particles ignored", ptype); } /* Read everything */ if (!dry_run) for (int i = 0; i < num_fields; ++i) { /* If we are remapping ParticleIDs later, don't need to read them. */ if (remap_ids && strcmp(list[i].name, "ParticleIDs") == 0) continue; /* Read array. */ read_array_parallel(h_grp, list[i], Nparticles, N_total[ptype], mpi_rank, offset[ptype], internal_units, ic_units, cleanup_h, cleanup_sqrt_a, h, a); } /* Close particle group */ H5Gclose(h_grp); } /* If we are remapping ParticleIDs later, start by setting them to 1. */ if (remap_ids) set_ids_to_one(*gparts, *Ngparts); if (!dry_run && with_gravity) { /* Let's initialise a bit of thread parallelism here */ struct threadpool tp; threadpool_init(&tp, n_threads); /* Prepare the DM particles */ io_prepare_dm_gparts(&tp, *gparts, Ndm); /* Prepare the DM background particles */ io_prepare_dm_background_gparts(&tp, *gparts + Ndm, Ndm_background); /* Duplicate the hydro particles into gparts */ if (with_hydro) io_duplicate_hydro_gparts(&tp, *parts, *gparts, *Ngas, Ndm + Ndm_background); /* Duplicate the sink particles into gparts */ if (with_sink) io_duplicate_sinks_gparts(&tp, *sinks, *gparts, *Nsinks, Ndm + Ndm_background + *Ngas); /* Duplicate the stars particles into gparts */ if (with_stars) io_duplicate_stars_gparts(&tp, *sparts, *gparts, *Nstars, Ndm + Ndm_background + *Ngas + *Nsinks); /* Duplicate the stars particles into gparts */ if (with_black_holes) io_duplicate_black_holes_gparts( &tp, *bparts, *gparts, *Nblackholes, Ndm + Ndm_background + *Ngas + *Nsinks + *Nstars); threadpool_clean(&tp); } /* message("Done Reading particles..."); */ /* Clean up */ free(ic_units); /* Close property handler */ H5Pclose(h_plist_id); /* Close file */ H5Fclose(h_file); } /** * @brief Prepares a file for a parallel write. * * @param e The #engine. * @param N_total The total number of particles of each type to write. * @param numFields The number of fields to write for each particle type. * @param internal_units The #unit_system used internally. * @param snapshot_units The #unit_system used in the snapshots. */ void prepare_file(struct engine* e, const char* fileName, const char* xmfFileName, long long N_total[swift_type_count], const int numFields[swift_type_count], char current_selection_name[FIELD_BUFFER_SIZE], const struct unit_system* internal_units, const struct unit_system* snapshot_units) { const struct part* parts = e->s->parts; const struct xpart* xparts = e->s->xparts; const struct gpart* gparts = e->s->gparts; const struct spart* sparts = e->s->sparts; const struct bpart* bparts = e->s->bparts; const struct sink* sinks = e->s->sinks; struct output_options* output_options = e->output_options; const int with_cosmology = e->policy & engine_policy_cosmology; const int with_cooling = e->policy & engine_policy_cooling; const int with_temperature = e->policy & engine_policy_temperature; const int with_fof = e->policy & engine_policy_fof; #ifdef HAVE_VELOCIRAPTOR const int with_stf = (e->policy & engine_policy_structure_finding) && (e->s->gpart_group_data != NULL); #else const int with_stf = 0; #endif FILE* xmfFile = 0; int numFiles = 1; /* First time, we need to create the XMF file */ if (e->snapshot_output_count == 0) xmf_create_file(xmfFileName); /* Prepare the XMF file for the new entry */ xmfFile = xmf_prepare_file(xmfFileName); /* Open HDF5 file with the chosen parameters */ hid_t h_file = H5Fcreate(fileName, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); if (h_file < 0) error("Error while opening file '%s'.", fileName); /* Write the part of the XMF file corresponding to this * specific output */ xmf_write_outputheader(xmfFile, fileName, e->time); /* Open header to write simulation properties */ /* message("Writing file header..."); */ hid_t h_grp = H5Gcreate(h_file, "/Header", H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); if (h_grp < 0) error("Error while creating file header\n"); /* Convert basic output information to snapshot units */ const double factor_time = units_conversion_factor(internal_units, snapshot_units, UNIT_CONV_TIME); const double factor_length = units_conversion_factor(internal_units, snapshot_units, UNIT_CONV_LENGTH); const double dblTime = e->time * factor_time; const double dim[3] = {e->s->dim[0] * factor_length, e->s->dim[1] * factor_length, e->s->dim[2] * factor_length}; /* Print the relevant information and print status */ io_write_attribute(h_grp, "BoxSize", DOUBLE, dim, 3); io_write_attribute(h_grp, "Time", DOUBLE, &dblTime, 1); const int dimension = (int)hydro_dimension; io_write_attribute(h_grp, "Dimension", INT, &dimension, 1); io_write_attribute(h_grp, "Redshift", DOUBLE, &e->cosmology->z, 1); io_write_attribute(h_grp, "Scale-factor", DOUBLE, &e->cosmology->a, 1); io_write_attribute_s(h_grp, "Code", "SWIFT"); io_write_attribute_s(h_grp, "RunName", e->run_name); /* Store the time at which the snapshot was written */ time_t tm = time(NULL); struct tm* timeinfo = localtime(&tm); char snapshot_date[64]; strftime(snapshot_date, 64, "%T %F %Z", timeinfo); io_write_attribute_s(h_grp, "Snapshot date", snapshot_date); /* GADGET-2 legacy values */ /* Number of particles of each type */ unsigned int numParticles[swift_type_count] = {0}; unsigned int numParticlesHighWord[swift_type_count] = {0}; for (int ptype = 0; ptype < swift_type_count; ++ptype) { numParticles[ptype] = (unsigned int)N_total[ptype]; numParticlesHighWord[ptype] = (unsigned int)(N_total[ptype] >> 32); } io_write_attribute(h_grp, "NumPart_ThisFile", LONGLONG, N_total, swift_type_count); io_write_attribute(h_grp, "NumPart_Total", UINT, numParticles, swift_type_count); io_write_attribute(h_grp, "NumPart_Total_HighWord", UINT, numParticlesHighWord, swift_type_count); double MassTable[6] = {0., 0., 0., 0., 0., 0.}; io_write_attribute(h_grp, "MassTable", DOUBLE, MassTable, swift_type_count); unsigned int flagEntropy[swift_type_count] = {0}; flagEntropy[0] = writeEntropyFlag(); io_write_attribute(h_grp, "Flag_Entropy_ICs", UINT, flagEntropy, swift_type_count); io_write_attribute(h_grp, "NumFilesPerSnapshot", INT, &numFiles, 1); io_write_attribute_i(h_grp, "ThisFile", 0); io_write_attribute_s(h_grp, "OutputType", "FullVolume"); io_write_attribute_s(h_grp, "SelectOutput", current_selection_name); /* Close header */ H5Gclose(h_grp); /* Write all the meta-data */ io_write_meta_data(h_file, e, internal_units, snapshot_units); /* Loop over all particle types */ for (int ptype = 0; ptype < swift_type_count; ptype++) { /* Don't do anything if there are (a) no particles of this kind, or (b) * if we have disabled every field of this particle type. */ if (N_total[ptype] == 0 || numFields[ptype] == 0) continue; /* Add the global information for that particle type to * the XMF meta-file */ xmf_write_groupheader(xmfFile, fileName, N_total[ptype], (enum part_type)ptype); /* Create the particle group in the file */ char partTypeGroupName[PARTICLE_GROUP_BUFFER_SIZE]; snprintf(partTypeGroupName, PARTICLE_GROUP_BUFFER_SIZE, "/PartType%d", ptype); h_grp = H5Gcreate(h_file, partTypeGroupName, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); if (h_grp < 0) error("Error while creating particle group %s.", partTypeGroupName); /* Add an alias name for convenience */ char aliasName[PARTICLE_GROUP_BUFFER_SIZE]; snprintf(aliasName, PARTICLE_GROUP_BUFFER_SIZE, "/%sParticles", part_type_names[ptype]); hid_t h_err = H5Lcreate_soft(partTypeGroupName, h_grp, aliasName, H5P_DEFAULT, H5P_DEFAULT); if (h_err < 0) error("Error while creating alias for particle group.\n"); /* Write the number of particles as an attribute */ io_write_attribute_l(h_grp, "NumberOfParticles", N_total[ptype]); int num_fields = 0; struct io_props list[100]; /* Write particle fields from the particle structure */ switch (ptype) { case swift_type_gas: hydro_write_particles(parts, xparts, list, &num_fields); num_fields += chemistry_write_particles(parts, list + num_fields); if (with_cooling || with_temperature) { num_fields += cooling_write_particles( parts, xparts, list + num_fields, e->cooling_func); } num_fields += tracers_write_particles(parts, xparts, list + num_fields, with_cosmology); num_fields += star_formation_write_particles(parts, xparts, list + num_fields); if (with_fof) { num_fields += fof_write_parts(parts, xparts, list + num_fields); } if (with_stf) { num_fields += velociraptor_write_parts(parts, xparts, list + num_fields); } break; case swift_type_dark_matter: darkmatter_write_particles(gparts, list, &num_fields); if (with_fof) { num_fields += fof_write_gparts(gparts, list + num_fields); } if (with_stf) { num_fields += velociraptor_write_gparts(e->s->gpart_group_data, list + num_fields); } break; case swift_type_dark_matter_background: darkmatter_write_particles(gparts, list, &num_fields); if (with_fof) { num_fields += fof_write_gparts(gparts, list + num_fields); } if (with_stf) { num_fields += velociraptor_write_gparts(e->s->gpart_group_data, list + num_fields); } break; case swift_type_sink: sink_write_particles(sinks, list, &num_fields, with_cosmology); break; case swift_type_stars: stars_write_particles(sparts, list, &num_fields, with_cosmology); num_fields += chemistry_write_sparticles(sparts, list + num_fields); num_fields += tracers_write_sparticles(sparts, list + num_fields, with_cosmology); num_fields += star_formation_write_sparticles(sparts, list + num_fields); if (with_fof) { num_fields += fof_write_sparts(sparts, list + num_fields); } if (with_stf) { num_fields += velociraptor_write_sparts(sparts, list + num_fields); } break; case swift_type_black_hole: black_holes_write_particles(bparts, list, &num_fields, with_cosmology); num_fields += chemistry_write_bparticles(bparts, list + num_fields); if (with_fof) { num_fields += fof_write_bparts(bparts, list + num_fields); } if (with_stf) { num_fields += velociraptor_write_bparts(bparts, list + num_fields); } break; default: error("Particle Type %d not yet supported. Aborting", ptype); } /* Did the user specify a non-standard default for the entire particle * type? */ const enum lossy_compression_schemes compression_level_current_default = output_options_get_ptype_default_compression( output_options->select_output, current_selection_name, (enum part_type)ptype); /* Prepare everything that is not cancelled */ int num_fields_written = 0; for (int i = 0; i < num_fields; ++i) { /* Did the user cancel this field? */ const enum lossy_compression_schemes compression_level = output_options_get_field_compression( output_options, current_selection_name, list[i].name, (enum part_type)ptype, compression_level_current_default); if (compression_level != compression_do_not_write) { prepare_array_parallel(e, h_grp, fileName, xmfFile, partTypeGroupName, list[i], N_total[ptype], compression_level, snapshot_units); num_fields_written++; } } /* Only write this now that we know exactly how many fields there are. */ io_write_attribute_i(h_grp, "NumberOfFields", num_fields_written); /* Close particle group */ H5Gclose(h_grp); /* Close this particle group in the XMF file as well */ xmf_write_groupfooter(xmfFile, (enum part_type)ptype); } /* Write LXMF file descriptor */ xmf_write_outputfooter(xmfFile, e->snapshot_output_count, e->time); /* Close the file for now */ H5Fclose(h_file); } /** * @brief Writes an HDF5 output file (GADGET-3 type) with *its XMF descriptor * * @param e The engine containing all the system. * @param internal_units The #unit_system used internally * @param snapshot_units The #unit_system used in the snapshots * @param mpi_rank The MPI rank of this node. * @param mpi_size The number of MPI ranks. * @param comm The MPI communicator. * @param info The MPI information object * * Creates an HDF5 output file and writes the particles * contained in the engine. If such a file already exists, it is * erased and replaced by the new one. * The companion XMF file is also updated accordingly. * * Calls #error() if an error occurs. * */ void write_output_parallel(struct engine* e, const struct unit_system* internal_units, const struct unit_system* snapshot_units, int mpi_rank, int mpi_size, MPI_Comm comm, MPI_Info info) { const struct part* parts = e->s->parts; const struct xpart* xparts = e->s->xparts; const struct gpart* gparts = e->s->gparts; const struct spart* sparts = e->s->sparts; const struct bpart* bparts = e->s->bparts; const struct sink* sinks = e->s->sinks; struct output_options* output_options = e->output_options; struct output_list* output_list = e->output_list_snapshots; const int with_cosmology = e->policy & engine_policy_cosmology; const int with_cooling = e->policy & engine_policy_cooling; const int with_temperature = e->policy & engine_policy_temperature; const int with_fof = e->policy & engine_policy_fof; const int with_DM_background = e->s->with_DM_background; #ifdef HAVE_VELOCIRAPTOR const int with_stf = (e->policy & engine_policy_structure_finding) && (e->s->gpart_group_data != NULL); #else const int with_stf = 0; #endif /* Number of particles currently in the arrays */ const size_t Ntot = e->s->nr_gparts; const size_t Ngas = e->s->nr_parts; const size_t Nstars = e->s->nr_sparts; const size_t Nsinks = e->s->nr_sinks; const size_t Nblackholes = e->s->nr_bparts; // const size_t Nbaryons = Ngas + Nstars; // const size_t Ndm = Ntot > 0 ? Ntot - Nbaryons : 0; size_t Ndm_background = 0; if (with_DM_background) { Ndm_background = io_count_dm_background_gparts(gparts, Ntot); } /* Number of particles that we will write */ const size_t Ntot_written = e->s->nr_gparts - e->s->nr_inhibited_gparts - e->s->nr_extra_gparts; const size_t Ngas_written = e->s->nr_parts - e->s->nr_inhibited_parts - e->s->nr_extra_parts; const size_t Nsinks_written = e->s->nr_sinks - e->s->nr_inhibited_sinks - e->s->nr_extra_sinks; const size_t Nstars_written = e->s->nr_sparts - e->s->nr_inhibited_sparts - e->s->nr_extra_sparts; const size_t Nblackholes_written = e->s->nr_bparts - e->s->nr_inhibited_bparts - e->s->nr_extra_bparts; const size_t Nbaryons_written = Ngas_written + Nstars_written + Nblackholes_written + Nsinks_written; const size_t Ndm_written = Ntot_written > 0 ? Ntot_written - Nbaryons_written - Ndm_background : 0; /* Compute offset in the file and total number of particles */ size_t N[swift_type_count] = {Ngas_written, Ndm_written, Ndm_background, Nsinks_written, Nstars_written, Nblackholes_written}; long long N_total[swift_type_count] = {0}; long long offset[swift_type_count] = {0}; MPI_Exscan(N, offset, swift_type_count, MPI_LONG_LONG_INT, MPI_SUM, comm); for (int ptype = 0; ptype < swift_type_count; ++ptype) N_total[ptype] = offset[ptype] + N[ptype]; /* The last rank now has the correct N_total. Let's * broadcast from there */ MPI_Bcast(N_total, 6, MPI_LONG_LONG_INT, mpi_size - 1, comm); /* Now everybody konws its offset and the total number of * particles of each type */ #ifdef IO_SPEED_MEASUREMENT ticks tic = getticks(); #endif /* File names */ char fileName[FILENAME_BUFFER_SIZE]; char xmfFileName[FILENAME_BUFFER_SIZE]; io_get_snapshot_filename(fileName, xmfFileName, e->snapshot_int_time_label_on, e->snapshot_invoke_stf, e->time, e->stf_output_count, e->snapshot_output_count, e->snapshot_subdir, e->snapshot_base_name); char current_selection_name[FIELD_BUFFER_SIZE] = select_output_header_default_name; if (output_list) { /* Users could have specified a different Select Output scheme for each * snapshot. */ output_list_get_current_select_output(output_list, current_selection_name); } /* Total number of fields to write per ptype */ int numFields[swift_type_count] = {0}; for (int ptype = 0; ptype < swift_type_count; ++ptype) { numFields[ptype] = output_options_get_num_fields_to_write( output_options, current_selection_name, ptype); } /* Rank 0 prepares the file */ if (mpi_rank == 0) prepare_file(e, fileName, xmfFileName, N_total, numFields, current_selection_name, internal_units, snapshot_units); MPI_Barrier(MPI_COMM_WORLD); #ifdef IO_SPEED_MEASUREMENT if (engine_rank == 0) message("Preparing file on rank 0 took %.3f %s.", clocks_from_ticks(getticks() - tic), clocks_getunit()); tic = getticks(); #endif /* Now write the top-level cell structure */ hid_t h_file_cells = 0, h_grp_cells = 0; if (mpi_rank == 0) { /* Open the snapshot on rank 0 */ h_file_cells = H5Fopen(fileName, H5F_ACC_RDWR, H5P_DEFAULT); if (h_file_cells < 0) error("Error while opening file '%s' on rank %d.", fileName, mpi_rank); /* Create the group we want in the file */ h_grp_cells = H5Gcreate(h_file_cells, "/Cells", H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); if (h_grp_cells < 0) error("Error while creating cells group"); } /* Write the location of the particles in the arrays */ io_write_cell_offsets(h_grp_cells, e->s->cdim, e->s->dim, e->s->pos_dithering, e->s->cells_top, e->s->nr_cells, e->s->width, mpi_rank, /*distributed=*/0, N_total, offset, numFields, internal_units, snapshot_units); /* Close everything */ if (mpi_rank == 0) { H5Gclose(h_grp_cells); H5Fclose(h_file_cells); } /* Prepare some file-access properties */ hid_t plist_id = H5Pcreate(H5P_FILE_ACCESS); /* Set some MPI-IO parameters */ // MPI_Info_set(info, "IBM_largeblock_io", "true"); MPI_Info_set(info, "romio_cb_write", "enable"); MPI_Info_set(info, "romio_ds_write", "disable"); /* Activate parallel i/o */ hid_t h_err = H5Pset_fapl_mpio(plist_id, comm, info); if (h_err < 0) error("Error setting parallel i/o"); /* Align on 4k pages. */ h_err = H5Pset_alignment(plist_id, 1024, 4096); if (h_err < 0) error("Error setting Hdf5 alignment"); /* Disable meta-data cache eviction */ H5AC_cache_config_t mdc_config; mdc_config.version = H5AC__CURR_CACHE_CONFIG_VERSION; h_err = H5Pget_mdc_config(plist_id, &mdc_config); if (h_err < 0) error("Error getting the MDC config"); mdc_config.evictions_enabled = 0; /* false */ mdc_config.incr_mode = H5C_incr__off; mdc_config.decr_mode = H5C_decr__off; mdc_config.flash_incr_mode = H5C_flash_incr__off; h_err = H5Pset_mdc_config(plist_id, &mdc_config); if (h_err < 0) error("Error setting the MDC config"); /* Use parallel meta-data writes */ #if H5_VERSION_GE(1, 10, 0) h_err = H5Pset_all_coll_metadata_ops(plist_id, 1); if (h_err < 0) error("Error setting collective meta-data on all ops"); // h_err = H5Pset_coll_metadata_write(plist_id, 1); // if (h_err < 0) error("Error setting collective meta-data writes"); #endif #ifdef IO_SPEED_MEASUREMENT MPI_Barrier(MPI_COMM_WORLD); if (engine_rank == 0) message("Setting parallel HDF5 access properties took %.3f %s.", clocks_from_ticks(getticks() - tic), clocks_getunit()); tic = getticks(); #endif /* Open HDF5 file with the chosen parameters */ hid_t h_file = H5Fopen(fileName, H5F_ACC_RDWR, plist_id); if (h_file < 0) error("Error while opening file '%s'.", fileName); #ifdef IO_SPEED_MEASUREMENT MPI_Barrier(MPI_COMM_WORLD); if (engine_rank == 0) message("Opening HDF5 file took %.3f %s.", clocks_from_ticks(getticks() - tic), clocks_getunit()); tic = getticks(); #endif /* Loop over all particle types */ for (int ptype = 0; ptype < swift_type_count; ptype++) { /* Don't do anything if no particle of this kind */ if (N_total[ptype] == 0 || numFields[ptype] == 0) continue; /* Open the particle group in the file */ char partTypeGroupName[PARTICLE_GROUP_BUFFER_SIZE]; snprintf(partTypeGroupName, PARTICLE_GROUP_BUFFER_SIZE, "/PartType%d", ptype); hid_t h_grp = H5Gopen(h_file, partTypeGroupName, H5P_DEFAULT); if (h_grp < 0) error("Error while opening particle group %s.", partTypeGroupName); int num_fields = 0; struct io_props list[100]; size_t Nparticles = 0; struct part* parts_written = NULL; struct xpart* xparts_written = NULL; struct gpart* gparts_written = NULL; struct velociraptor_gpart_data* gpart_group_data_written = NULL; struct spart* sparts_written = NULL; struct bpart* bparts_written = NULL; struct sink* sinks_written = NULL; /* Write particle fields from the particle structure */ switch (ptype) { case swift_type_gas: { if (Ngas == Ngas_written) { /* No inhibted particles: easy case */ Nparticles = Ngas; hydro_write_particles(parts, xparts, list, &num_fields); num_fields += chemistry_write_particles(parts, list + num_fields); if (with_cooling || with_temperature) { num_fields += cooling_write_particles( parts, xparts, list + num_fields, e->cooling_func); } if (with_fof) { num_fields += fof_write_parts(parts, xparts, list + num_fields); } if (with_stf) { num_fields += velociraptor_write_parts(parts, xparts, list + num_fields); } num_fields += tracers_write_particles( parts, xparts, list + num_fields, with_cosmology); num_fields += star_formation_write_particles(parts, xparts, list + num_fields); } else { /* Ok, we need to fish out the particles we want */ Nparticles = Ngas_written; /* Allocate temporary arrays */ if (swift_memalign("parts_written", (void**)&parts_written, part_align, Ngas_written * sizeof(struct part)) != 0) error("Error while allocating temporary memory for parts"); if (swift_memalign("xparts_written", (void**)&xparts_written, xpart_align, Ngas_written * sizeof(struct xpart)) != 0) error("Error while allocating temporary memory for xparts"); /* Collect the particles we want to write */ io_collect_parts_to_write(parts, xparts, parts_written, xparts_written, Ngas, Ngas_written); /* Select the fields to write */ hydro_write_particles(parts_written, xparts_written, list, &num_fields); num_fields += chemistry_write_particles(parts_written, list + num_fields); if (with_cooling || with_temperature) { num_fields += cooling_write_particles(parts_written, xparts_written, list + num_fields, e->cooling_func); } if (with_fof) { num_fields += fof_write_parts(parts_written, xparts_written, list + num_fields); } if (with_stf) { num_fields += velociraptor_write_parts( parts_written, xparts_written, list + num_fields); } num_fields += tracers_write_particles( parts_written, xparts_written, list + num_fields, with_cosmology); num_fields += star_formation_write_particles( parts_written, xparts_written, list + num_fields); } } break; case swift_type_dark_matter: { if (Ntot == Ndm_written) { /* This is a DM-only run without inhibited particles */ Nparticles = Ntot; darkmatter_write_particles(gparts, list, &num_fields); if (with_fof) { num_fields += fof_write_gparts(gparts, list + num_fields); } if (with_stf) { num_fields += velociraptor_write_gparts(e->s->gpart_group_data, list + num_fields); } } else { /* Ok, we need to fish out the particles we want */ Nparticles = Ndm_written; /* Allocate temporary array */ if (swift_memalign("gparts_written", (void**)&gparts_written, gpart_align, Ndm_written * sizeof(struct gpart)) != 0) error("Error while allocating temporary memory for gparts"); if (with_stf) { if (swift_memalign( "gpart_group_written", (void**)&gpart_group_data_written, gpart_align, Ndm_written * sizeof(struct velociraptor_gpart_data)) != 0) error( "Error while allocating temporary memory for gparts STF " "data"); } /* Collect the non-inhibited DM particles from gpart */ io_collect_gparts_to_write(gparts, e->s->gpart_group_data, gparts_written, gpart_group_data_written, Ntot, Ndm_written, with_stf); /* Select the fields to write */ darkmatter_write_particles(gparts_written, list, &num_fields); if (with_fof) { num_fields += fof_write_gparts(gparts_written, list + num_fields); } if (with_stf) { num_fields += velociraptor_write_gparts(gpart_group_data_written, list + num_fields); } } } break; case swift_type_dark_matter_background: { /* Ok, we need to fish out the particles we want */ Nparticles = Ndm_background; /* Allocate temporary array */ if (swift_memalign("gparts_written", (void**)&gparts_written, gpart_align, Ndm_background * sizeof(struct gpart)) != 0) error("Error while allocating temporart memory for gparts"); if (with_stf) { if (swift_memalign( "gpart_group_written", (void**)&gpart_group_data_written, gpart_align, Ndm_background * sizeof(struct velociraptor_gpart_data)) != 0) error( "Error while allocating temporart memory for gparts STF " "data"); } /* Collect the non-inhibited DM particles from gpart */ io_collect_gparts_background_to_write( gparts, e->s->gpart_group_data, gparts_written, gpart_group_data_written, Ntot, Ndm_background, with_stf); /* Select the fields to write */ darkmatter_write_particles(gparts_written, list, &num_fields); if (with_stf) { #ifdef HAVE_VELOCIRAPTOR num_fields += velociraptor_write_gparts(gpart_group_data_written, list + num_fields); #endif } } break; case swift_type_sink: { if (Nsinks == Nsinks_written) { /* No inhibted particles: easy case */ Nparticles = Nsinks; sink_write_particles(sinks, list, &num_fields, with_cosmology); } else { /* Ok, we need to fish out the particles we want */ Nparticles = Nsinks_written; /* Allocate temporary arrays */ if (swift_memalign("sinks_written", (void**)&sinks_written, sink_align, Nsinks_written * sizeof(struct sink)) != 0) error("Error while allocating temporary memory for sink"); /* Collect the particles we want to write */ io_collect_sinks_to_write(sinks, sinks_written, Nsinks, Nsinks_written); /* Select the fields to write */ sink_write_particles(sinks_written, list, &num_fields, with_cosmology); } } break; case swift_type_stars: { if (Nstars == Nstars_written) { /* No inhibted particles: easy case */ Nparticles = Nstars; stars_write_particles(sparts, list, &num_fields, with_cosmology); num_fields += chemistry_write_sparticles(sparts, list + num_fields); num_fields += tracers_write_sparticles(sparts, list + num_fields, with_cosmology); num_fields += star_formation_write_sparticles(sparts, list + num_fields); if (with_fof) { num_fields += fof_write_sparts(sparts, list + num_fields); } if (with_stf) { num_fields += velociraptor_write_sparts(sparts, list + num_fields); } } else { /* Ok, we need to fish out the particles we want */ Nparticles = Nstars_written; /* Allocate temporary arrays */ if (swift_memalign("sparts_written", (void**)&sparts_written, spart_align, Nstars_written * sizeof(struct spart)) != 0) error("Error while allocating temporary memory for sparts"); /* Collect the particles we want to write */ io_collect_sparts_to_write(sparts, sparts_written, Nstars, Nstars_written); /* Select the fields to write */ stars_write_particles(sparts_written, list, &num_fields, with_cosmology); num_fields += chemistry_write_sparticles(sparts_written, list + num_fields); num_fields += tracers_write_sparticles( sparts_written, list + num_fields, with_cosmology); num_fields += star_formation_write_sparticles(sparts_written, list + num_fields); if (with_fof) { num_fields += fof_write_sparts(sparts_written, list + num_fields); } if (with_stf) { num_fields += velociraptor_write_sparts(sparts_written, list + num_fields); } } } break; case swift_type_black_hole: { if (Nblackholes == Nblackholes_written) { /* No inhibted particles: easy case */ Nparticles = Nblackholes; black_holes_write_particles(bparts, list, &num_fields, with_cosmology); num_fields += chemistry_write_bparticles(bparts, list + num_fields); if (with_fof) { num_fields += fof_write_bparts(bparts, list + num_fields); } if (with_stf) { num_fields += velociraptor_write_bparts(bparts, list + num_fields); } } else { /* Ok, we need to fish out the particles we want */ Nparticles = Nblackholes_written; /* Allocate temporary arrays */ if (swift_memalign("bparts_written", (void**)&bparts_written, bpart_align, Nblackholes_written * sizeof(struct bpart)) != 0) error("Error while allocating temporary memory for bparts"); /* Collect the particles we want to write */ io_collect_bparts_to_write(bparts, bparts_written, Nblackholes, Nblackholes_written); /* Select the fields to write */ black_holes_write_particles(bparts_written, list, &num_fields, with_cosmology); num_fields += chemistry_write_bparticles(bparts, list + num_fields); if (with_fof) { num_fields += fof_write_bparts(bparts_written, list + num_fields); } if (with_stf) { num_fields += velociraptor_write_bparts(bparts_written, list + num_fields); } } } break; default: error("Particle Type %d not yet supported. Aborting", ptype); } /* Did the user specify a non-standard default for the entire particle * type? */ const enum lossy_compression_schemes compression_level_current_default = output_options_get_ptype_default_compression( output_options->select_output, current_selection_name, (enum part_type)ptype); /* Write everything that is not cancelled */ for (int i = 0; i < num_fields; ++i) { /* Did the user cancel this field? */ const enum lossy_compression_schemes compression_level = output_options_get_field_compression( output_options, current_selection_name, list[i].name, (enum part_type)ptype, compression_level_current_default); if (compression_level != compression_do_not_write) { write_array_parallel(e, h_grp, fileName, partTypeGroupName, list[i], Nparticles, N_total[ptype], mpi_rank, offset[ptype], internal_units, snapshot_units); } } /* Free temporary array */ if (parts_written) swift_free("parts_written", parts_written); if (xparts_written) swift_free("xparts_written", xparts_written); if (gparts_written) swift_free("gparts_written", gparts_written); if (gpart_group_data_written) swift_free("gpart_group_written", gpart_group_data_written); if (sparts_written) swift_free("sparts_written", sparts_written); if (bparts_written) swift_free("bparts_written", bparts_written); if (sinks_written) swift_free("sinks_written", sinks_written); #ifdef IO_SPEED_MEASUREMENT MPI_Barrier(MPI_COMM_WORLD); tic = getticks(); #endif /* Close particle group */ H5Gclose(h_grp); #ifdef IO_SPEED_MEASUREMENT MPI_Barrier(MPI_COMM_WORLD); if (engine_rank == 0) message("Closing particle group took %.3f %s.", clocks_from_ticks(getticks() - tic), clocks_getunit()); tic = getticks(); #endif } #ifdef IO_SPEED_MEASUREMENT MPI_Barrier(MPI_COMM_WORLD); tic = getticks(); #endif /* message("Done writing particles..."); */ /* Close property descriptor */ H5Pclose(plist_id); #ifdef IO_SPEED_MEASUREMENT MPI_Barrier(MPI_COMM_WORLD); if (engine_rank == 0) message("Closing property descriptor took %.3f %s.", clocks_from_ticks(getticks() - tic), clocks_getunit()); tic = getticks(); #endif /* Close file */ H5Fclose(h_file); #ifdef IO_SPEED_MEASUREMENT MPI_Barrier(MPI_COMM_WORLD); if (engine_rank == 0) message("Closing file took %.3f %s.", clocks_from_ticks(getticks() - tic), clocks_getunit()); #endif e->snapshot_output_count++; if (e->snapshot_invoke_stf) e->stf_output_count++; } #endif /* HAVE_HDF5 */