/*******************************************************************************
* This file is part of SWIFT.
* Copyright (c) 2019 Matthieu Schaller (schaller@strw.leidenuniv.nl)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see .
*
******************************************************************************/
/* Config parameters. */
#include "../config.h"
#if defined(HAVE_HDF5) && defined(WITH_MPI)
/* Some standard headers. */
#include
#include
#include
#include
#include
#include
#include
#include
/* This object's header. */
#include "distributed_io.h"
/* Local includes. */
#include "black_holes_io.h"
#include "chemistry_io.h"
#include "common_io.h"
#include "cooling_io.h"
#include "dimension.h"
#include "engine.h"
#include "error.h"
#include "fof_io.h"
#include "gravity_io.h"
#include "gravity_properties.h"
#include "hydro_io.h"
#include "hydro_properties.h"
#include "io_properties.h"
#include "memuse.h"
#include "output_list.h"
#include "output_options.h"
#include "part.h"
#include "part_type.h"
#include "sink_io.h"
#include "star_formation_io.h"
#include "stars_io.h"
#include "tools.h"
#include "tracers_io.h"
#include "units.h"
#include "velociraptor_io.h"
#include "xmf.h"
/**
* @brief Writes a data array in given HDF5 group.
*
* @param e The #engine we are writing from.
* @param grp The group in which to write.
* @param fileName The name of the file in which the data is written
* @param partTypeGroupName The name of the group containing the particles in
* the HDF5 file.
* @param props The #io_props of the field to read
* @param N The number of particles to write.
* @param internal_units The #unit_system used internally
* @param snapshot_units The #unit_system used in the snapshots
*
* @todo A better version using HDF5 hyper-slabs to write the file directly from
* the part array will be written once the structures have been stabilized.
*/
void write_distributed_array(
const struct engine* e, hid_t grp, const char* fileName,
const char* partTypeGroupName, const struct io_props props, const size_t N,
const enum lossy_compression_schemes lossy_compression,
const struct unit_system* internal_units,
const struct unit_system* snapshot_units) {
const size_t typeSize = io_sizeof_type(props.type);
const size_t num_elements = N * props.dimension;
/* message("Writing '%s' array...", props.name); */
/* Allocate temporary buffer */
void* temp = NULL;
if (swift_memalign("writebuff", (void**)&temp, IO_BUFFER_ALIGNMENT,
num_elements * typeSize) != 0)
error("Unable to allocate temporary i/o buffer");
/* Copy the particle data to the temporary buffer */
io_copy_temp_buffer(temp, e, props, N, internal_units, snapshot_units);
/* Create data space */
hid_t h_space;
if (N > 0)
h_space = H5Screate(H5S_SIMPLE);
else
h_space = H5Screate(H5S_NULL);
if (h_space < 0)
error("Error while creating data space for field '%s'.", props.name);
/* Decide what chunk size to use based on compression */
int log2_chunk_size = 20;
int rank;
hsize_t shape[2];
hsize_t chunk_shape[2];
if (props.dimension > 1) {
rank = 2;
shape[0] = N;
shape[1] = props.dimension;
chunk_shape[0] = 1 << log2_chunk_size;
chunk_shape[1] = props.dimension;
} else {
rank = 1;
shape[0] = N;
shape[1] = 0;
chunk_shape[0] = 1 << log2_chunk_size;
chunk_shape[1] = 0;
}
/* Make sure the chunks are not larger than the dataset */
if (chunk_shape[0] > N) chunk_shape[0] = N;
/* Change shape of data space */
hid_t h_err = H5Sset_extent_simple(h_space, rank, shape, shape);
if (h_err < 0)
error("Error while changing data space shape for field '%s'.", props.name);
/* Dataset type */
hid_t h_type = H5Tcopy(io_hdf5_type(props.type));
/* Dataset properties */
hid_t h_prop = H5Pcreate(H5P_DATASET_CREATE);
/* Create filters and set compression level if we have something to write */
if (N > 0) {
/* Set chunk size */
h_err = H5Pset_chunk(h_prop, rank, chunk_shape);
if (h_err < 0)
error("Error while setting chunk size (%llu, %llu) for field '%s'.",
chunk_shape[0], chunk_shape[1], props.name);
/* Are we imposing some form of lossy compression filter? */
if (lossy_compression != compression_write_lossless)
set_hdf5_lossy_compression(&h_prop, &h_type, lossy_compression,
props.name);
/* Impose GZIP data compression */
if (e->snapshot_compression > 0) {
h_err = H5Pset_shuffle(h_prop);
if (h_err < 0)
error("Error while setting shuffling options for field '%s'.",
props.name);
h_err = H5Pset_deflate(h_prop, e->snapshot_compression);
if (h_err < 0)
error("Error while setting compression options for field '%s'.",
props.name);
}
/* Impose check-sum to verify data corruption */
h_err = H5Pset_fletcher32(h_prop);
if (h_err < 0)
error("Error while setting checksum options for field '%s'.", props.name);
}
/* Create dataset */
const hid_t h_data = H5Dcreate(grp, props.name, h_type, h_space, H5P_DEFAULT,
h_prop, H5P_DEFAULT);
if (h_data < 0) error("Error while creating dataspace '%s'.", props.name);
/* Write temporary buffer to HDF5 dataspace */
h_err = H5Dwrite(h_data, io_hdf5_type(props.type), h_space, H5S_ALL,
H5P_DEFAULT, temp);
if (h_err < 0) error("Error while writing data array '%s'.", props.name);
/* Write unit conversion factors for this data set */
char buffer[FIELD_BUFFER_SIZE] = {0};
units_cgs_conversion_string(buffer, snapshot_units, props.units,
props.scale_factor_exponent);
float baseUnitsExp[5];
units_get_base_unit_exponents_array(baseUnitsExp, props.units);
io_write_attribute_f(h_data, "U_M exponent", baseUnitsExp[UNIT_MASS]);
io_write_attribute_f(h_data, "U_L exponent", baseUnitsExp[UNIT_LENGTH]);
io_write_attribute_f(h_data, "U_t exponent", baseUnitsExp[UNIT_TIME]);
io_write_attribute_f(h_data, "U_I exponent", baseUnitsExp[UNIT_CURRENT]);
io_write_attribute_f(h_data, "U_T exponent", baseUnitsExp[UNIT_TEMPERATURE]);
io_write_attribute_f(h_data, "h-scale exponent", 0.f);
io_write_attribute_f(h_data, "a-scale exponent", props.scale_factor_exponent);
io_write_attribute_s(h_data, "Expression for physical CGS units", buffer);
/* Write the actual number this conversion factor corresponds to */
const double factor =
units_cgs_conversion_factor(snapshot_units, props.units);
io_write_attribute_d(
h_data,
"Conversion factor to CGS (not including cosmological corrections)",
factor);
io_write_attribute_d(
h_data,
"Conversion factor to physical CGS (including cosmological corrections)",
factor * pow(e->cosmology->a, props.scale_factor_exponent));
#ifdef SWIFT_DEBUG_CHECKS
if (strlen(props.description) == 0)
error("Invalid (empty) description of the field '%s'", props.name);
#endif
/* Write the full description */
io_write_attribute_s(h_data, "Description", props.description);
/* Free and close everything */
swift_free("writebuff", temp);
H5Tclose(h_type);
H5Pclose(h_prop);
H5Dclose(h_data);
H5Sclose(h_space);
}
/**
* @brief Writes a snapshot distributed into multiple files.
*
* @param e The engine containing all the system.
* @param internal_units The #unit_system used internally
* @param snapshot_units The #unit_system used in the snapshots
* @param mpi_rank The rank number of the calling MPI rank.
* @param mpi_size the number of MPI ranks.
* @param comm The communicator used by the MPI ranks.
* @param info The MPI information object.
*
* Creates a series of HDF5 output files (1 per MPI node) as a snapshot.
* Writes the particles contained in the engine.
* If such files already exist, it is erased and replaced by the new one.
* The companion XMF file is also updated accordingly.
*/
void write_output_distributed(struct engine* e,
const struct unit_system* internal_units,
const struct unit_system* snapshot_units,
const int mpi_rank, const int mpi_size,
MPI_Comm comm, MPI_Info info) {
hid_t h_file = 0, h_grp = 0;
int numFiles = mpi_size;
const struct part* parts = e->s->parts;
const struct xpart* xparts = e->s->xparts;
const struct gpart* gparts = e->s->gparts;
const struct sink* sinks = e->s->sinks;
const struct spart* sparts = e->s->sparts;
const struct bpart* bparts = e->s->bparts;
struct output_options* output_options = e->output_options;
struct output_list* output_list = e->output_list_snapshots;
const int with_cosmology = e->policy & engine_policy_cosmology;
const int with_cooling = e->policy & engine_policy_cooling;
const int with_temperature = e->policy & engine_policy_temperature;
const int with_fof = e->policy & engine_policy_fof;
const int with_DM_background = e->s->with_DM_background;
#ifdef HAVE_VELOCIRAPTOR
const int with_stf = (e->policy & engine_policy_structure_finding) &&
(e->s->gpart_group_data != NULL);
#else
const int with_stf = 0;
#endif
/* Number of particles currently in the arrays */
const size_t Ntot = e->s->nr_gparts;
const size_t Ngas = e->s->nr_parts;
const size_t Nsinks = e->s->nr_sinks;
const size_t Nstars = e->s->nr_sparts;
const size_t Nblackholes = e->s->nr_bparts;
size_t Ndm_background = 0;
if (with_DM_background) {
Ndm_background = io_count_dm_background_gparts(gparts, Ntot);
}
/* Number of particles that we will write in this file.
* Recall that background particles are never inhibited and have no extras */
const size_t Ntot_written =
e->s->nr_gparts - e->s->nr_inhibited_gparts - e->s->nr_extra_gparts;
const size_t Ngas_written =
e->s->nr_parts - e->s->nr_inhibited_parts - e->s->nr_extra_parts;
const size_t Nsinks_written =
e->s->nr_sinks - e->s->nr_inhibited_sinks - e->s->nr_extra_sinks;
const size_t Nstars_written =
e->s->nr_sparts - e->s->nr_inhibited_sparts - e->s->nr_extra_sparts;
const size_t Nblackholes_written =
e->s->nr_bparts - e->s->nr_inhibited_bparts - e->s->nr_extra_bparts;
const size_t Nbaryons_written =
Ngas_written + Nstars_written + Nblackholes_written + Nsinks_written;
const size_t Ndm_written =
Ntot_written > 0 ? Ntot_written - Nbaryons_written - Ndm_background : 0;
int snap_count = -1;
if (e->snapshot_int_time_label_on)
snap_count = (int)round(e->time);
else if (e->snapshot_invoke_stf)
snap_count = e->stf_output_count;
else
snap_count = e->snapshot_output_count;
int number_digits = -1;
if (e->snapshot_int_time_label_on)
number_digits = 6;
else
number_digits = 4;
/* Directory and file name */
char dirName[1024];
char fileName[1024];
if (strnlen(e->snapshot_subdir, PARSER_MAX_LINE_SIZE) > 0) {
sprintf(dirName, "%s/%s_%0*d", e->snapshot_subdir, e->snapshot_base_name,
number_digits, snap_count);
sprintf(fileName, "%s/%s_%0*d/%s_%0*d.%d.hdf5", e->snapshot_subdir,
e->snapshot_base_name, number_digits, snap_count,
e->snapshot_base_name, number_digits, snap_count, mpi_rank);
} else {
sprintf(dirName, "%s_%0*d", e->snapshot_base_name, number_digits,
snap_count);
sprintf(fileName, "%s_%0*d/%s_%0*d.%d.hdf5", e->snapshot_base_name,
number_digits, snap_count, e->snapshot_base_name, number_digits,
snap_count, mpi_rank);
}
/* Create the directory */
if (mpi_rank == 0) safe_checkdir(dirName, /*create=*/1);
MPI_Barrier(comm);
/* Compute offset in the file and total number of particles */
const long long N[swift_type_count] = {Ngas_written, Ndm_written,
Ndm_background, Nsinks_written,
Nstars_written, Nblackholes_written};
/* Gather the total number of particles to write */
long long N_total[swift_type_count] = {0};
MPI_Allreduce(N, N_total, swift_type_count, MPI_LONG_LONG_INT, MPI_SUM, comm);
/* Open file */
/* message("Opening file '%s'.", fileName); */
h_file = H5Fcreate(fileName, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
if (h_file < 0) error("Error while opening file '%s'.", fileName);
/* Open header to write simulation properties */
/* message("Writing file header..."); */
h_grp = H5Gcreate(h_file, "/Header", H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
if (h_grp < 0) error("Error while creating file header\n");
/* Convert basic output information to snapshot units */
const double factor_time =
units_conversion_factor(internal_units, snapshot_units, UNIT_CONV_TIME);
const double factor_length =
units_conversion_factor(internal_units, snapshot_units, UNIT_CONV_LENGTH);
const double dblTime = e->time * factor_time;
const double dim[3] = {e->s->dim[0] * factor_length,
e->s->dim[1] * factor_length,
e->s->dim[2] * factor_length};
/* Determine if we are writing a reduced snapshot, and if so which
* output selection type to use */
char current_selection_name[FIELD_BUFFER_SIZE] =
select_output_header_default_name;
if (output_list) {
/* Users could have specified a different Select Output scheme for each
* snapshot. */
output_list_get_current_select_output(output_list, current_selection_name);
}
/* Print the relevant information and print status */
io_write_attribute(h_grp, "BoxSize", DOUBLE, dim, 3);
io_write_attribute(h_grp, "Time", DOUBLE, &dblTime, 1);
const int dimension = (int)hydro_dimension;
io_write_attribute(h_grp, "Dimension", INT, &dimension, 1);
io_write_attribute(h_grp, "Redshift", DOUBLE, &e->cosmology->z, 1);
io_write_attribute(h_grp, "Scale-factor", DOUBLE, &e->cosmology->a, 1);
io_write_attribute_s(h_grp, "Code", "SWIFT");
io_write_attribute_s(h_grp, "RunName", e->run_name);
/* Store the time at which the snapshot was written */
time_t tm = time(NULL);
struct tm* timeinfo = localtime(&tm);
char snapshot_date[64];
strftime(snapshot_date, 64, "%T %F %Z", timeinfo);
io_write_attribute_s(h_grp, "Snapshot date", snapshot_date);
/* GADGET-2 legacy values: Number of particles of each type */
unsigned int numParticles[swift_type_count] = {0};
unsigned int numParticlesHighWord[swift_type_count] = {0};
/* Total number of fields to write per ptype */
int numFields[swift_type_count] = {0};
for (int ptype = 0; ptype < swift_type_count; ++ptype) {
numParticles[ptype] = (unsigned int)N_total[ptype];
numParticlesHighWord[ptype] = (unsigned int)(N_total[ptype] >> 32);
numFields[ptype] = output_options_get_num_fields_to_write(
output_options, current_selection_name, ptype);
}
io_write_attribute(h_grp, "NumPart_ThisFile", LONGLONG, N, swift_type_count);
io_write_attribute(h_grp, "NumPart_Total", UINT, numParticles,
swift_type_count);
io_write_attribute(h_grp, "NumPart_Total_HighWord", UINT,
numParticlesHighWord, swift_type_count);
double MassTable[swift_type_count] = {0};
io_write_attribute(h_grp, "MassTable", DOUBLE, MassTable, swift_type_count);
unsigned int flagEntropy[swift_type_count] = {0};
flagEntropy[0] = writeEntropyFlag();
io_write_attribute(h_grp, "Flag_Entropy_ICs", UINT, flagEntropy,
swift_type_count);
io_write_attribute_i(h_grp, "NumFilesPerSnapshot", numFiles);
io_write_attribute_i(h_grp, "ThisFile", mpi_rank);
io_write_attribute_s(h_grp, "OutputType", "FullVolume");
io_write_attribute_s(h_grp, "SelectOutput", current_selection_name);
/* Close header */
H5Gclose(h_grp);
/* Write all the meta-data */
io_write_meta_data(h_file, e, internal_units, snapshot_units);
/* Now write the top-level cell structure
* We use a global offset of 0 here. This means that the cells will write
* their offset with respect to the start of the file they belong to and
* not a global offset */
long long global_offsets[swift_type_count] = {0};
h_grp = H5Gcreate(h_file, "/Cells", H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
if (h_grp < 0) error("Error while creating cells group");
/* Write the location of the particles in the arrays */
io_write_cell_offsets(h_grp, e->s->cdim, e->s->dim, e->s->pos_dithering,
e->s->cells_top, e->s->nr_cells, e->s->width, mpi_rank,
/*distributed=*/1, N_total, global_offsets, numFields,
internal_units, snapshot_units);
H5Gclose(h_grp);
/* Loop over all particle types */
for (int ptype = 0; ptype < swift_type_count; ptype++) {
/* Don't do anything if there are (a) no particles of this kind, or (b)
* if we have disabled every field of this particle type. */
if (numParticles[ptype] == 0 || numFields[ptype] == 0) continue;
/* Open the particle group in the file */
char partTypeGroupName[PARTICLE_GROUP_BUFFER_SIZE];
snprintf(partTypeGroupName, PARTICLE_GROUP_BUFFER_SIZE, "/PartType%d",
ptype);
h_grp = H5Gcreate(h_file, partTypeGroupName, H5P_DEFAULT, H5P_DEFAULT,
H5P_DEFAULT);
if (h_grp < 0) error("Error while creating particle group.\n");
/* Add an alias name for convenience */
char aliasName[PARTICLE_GROUP_BUFFER_SIZE];
snprintf(aliasName, PARTICLE_GROUP_BUFFER_SIZE, "/%sParticles",
part_type_names[ptype]);
hid_t h_err = H5Lcreate_soft(partTypeGroupName, h_grp, aliasName,
H5P_DEFAULT, H5P_DEFAULT);
if (h_err < 0) error("Error while creating alias for particle group.\n");
/* Write the number of particles as an attribute */
io_write_attribute_l(h_grp, "NumberOfParticles", N[ptype]);
int num_fields = 0;
struct io_props list[100];
size_t Nparticles = 0;
struct part* parts_written = NULL;
struct xpart* xparts_written = NULL;
struct gpart* gparts_written = NULL;
struct velociraptor_gpart_data* gpart_group_data_written = NULL;
struct sink* sinks_written = NULL;
struct spart* sparts_written = NULL;
struct bpart* bparts_written = NULL;
/* Write particle fields from the particle structure */
switch (ptype) {
case swift_type_gas: {
if (Ngas == Ngas_written) {
/* No inhibted particles: easy case */
Nparticles = Ngas;
hydro_write_particles(parts, xparts, list, &num_fields);
num_fields += chemistry_write_particles(parts, list + num_fields);
if (with_cooling || with_temperature) {
num_fields += cooling_write_particles(
parts, xparts, list + num_fields, e->cooling_func);
}
if (with_fof) {
num_fields += fof_write_parts(parts, xparts, list + num_fields);
}
if (with_stf) {
num_fields +=
velociraptor_write_parts(parts, xparts, list + num_fields);
}
num_fields += tracers_write_particles(
parts, xparts, list + num_fields, with_cosmology);
num_fields +=
star_formation_write_particles(parts, xparts, list + num_fields);
} else {
/* Ok, we need to fish out the particles we want */
Nparticles = Ngas_written;
/* Allocate temporary arrays */
if (swift_memalign("parts_written", (void**)&parts_written,
part_align,
Ngas_written * sizeof(struct part)) != 0)
error("Error while allocating temporary memory for parts");
if (swift_memalign("xparts_written", (void**)&xparts_written,
xpart_align,
Ngas_written * sizeof(struct xpart)) != 0)
error("Error while allocating temporary memory for xparts");
/* Collect the particles we want to write */
io_collect_parts_to_write(parts, xparts, parts_written,
xparts_written, Ngas, Ngas_written);
/* Select the fields to write */
hydro_write_particles(parts_written, xparts_written, list,
&num_fields);
num_fields +=
chemistry_write_particles(parts_written, list + num_fields);
if (with_cooling || with_temperature) {
num_fields +=
cooling_write_particles(parts_written, xparts_written,
list + num_fields, e->cooling_func);
}
if (with_fof) {
num_fields += fof_write_parts(parts_written, xparts_written,
list + num_fields);
}
if (with_stf) {
num_fields += velociraptor_write_parts(
parts_written, xparts_written, list + num_fields);
}
num_fields += tracers_write_particles(
parts_written, xparts_written, list + num_fields, with_cosmology);
num_fields += star_formation_write_particles(
parts_written, xparts_written, list + num_fields);
}
} break;
case swift_type_dark_matter: {
if (Ntot == Ndm_written) {
/* This is a DM-only run without background or inhibited particles */
Nparticles = Ntot;
darkmatter_write_particles(gparts, list, &num_fields);
if (with_fof) {
num_fields += fof_write_gparts(gparts, list + num_fields);
}
if (with_stf) {
num_fields += velociraptor_write_gparts(e->s->gpart_group_data,
list + num_fields);
}
} else {
/* Ok, we need to fish out the particles we want */
Nparticles = Ndm_written;
/* Allocate temporary array */
if (swift_memalign("gparts_written", (void**)&gparts_written,
gpart_align,
Ndm_written * sizeof(struct gpart)) != 0)
error("Error while allocating temporary memory for gparts");
if (with_stf) {
if (swift_memalign(
"gpart_group_written", (void**)&gpart_group_data_written,
gpart_align,
Ndm_written * sizeof(struct velociraptor_gpart_data)) != 0)
error(
"Error while allocating temporary memory for gparts STF "
"data");
}
/* Collect the non-inhibited DM particles from gpart */
io_collect_gparts_to_write(gparts, e->s->gpart_group_data,
gparts_written, gpart_group_data_written,
Ntot, Ndm_written, with_stf);
/* Select the fields to write */
darkmatter_write_particles(gparts_written, list, &num_fields);
if (with_fof) {
num_fields += fof_write_gparts(gparts_written, list + num_fields);
}
if (with_stf) {
num_fields += velociraptor_write_gparts(gpart_group_data_written,
list + num_fields);
}
}
} break;
case swift_type_dark_matter_background: {
/* Ok, we need to fish out the particles we want */
Nparticles = Ndm_background;
/* Allocate temporary array */
if (swift_memalign("gparts_written", (void**)&gparts_written,
gpart_align,
Ndm_background * sizeof(struct gpart)) != 0)
error("Error while allocating temporart memory for gparts");
if (with_stf) {
if (swift_memalign(
"gpart_group_written", (void**)&gpart_group_data_written,
gpart_align,
Ndm_background * sizeof(struct velociraptor_gpart_data)) != 0)
error(
"Error while allocating temporart memory for gparts STF "
"data");
}
/* Collect the non-inhibited DM particles from gpart */
io_collect_gparts_background_to_write(
gparts, e->s->gpart_group_data, gparts_written,
gpart_group_data_written, Ntot, Ndm_background, with_stf);
/* Select the fields to write */
darkmatter_write_particles(gparts_written, list, &num_fields);
if (with_fof) {
num_fields += fof_write_gparts(gparts_written, list + num_fields);
}
if (with_stf) {
num_fields += velociraptor_write_gparts(gpart_group_data_written,
list + num_fields);
}
} break;
case swift_type_sink: {
if (Nsinks == Nsinks_written) {
/* No inhibted particles: easy case */
Nparticles = Nsinks;
sink_write_particles(sinks, list, &num_fields, with_cosmology);
} else {
/* Ok, we need to fish out the particles we want */
Nparticles = Nsinks_written;
/* Allocate temporary arrays */
if (swift_memalign("sinks_written", (void**)&sinks_written,
sink_align,
Nsinks_written * sizeof(struct sink)) != 0)
error("Error while allocating temporary memory for sinks");
/* Collect the particles we want to write */
io_collect_sinks_to_write(sinks, sinks_written, Nsinks,
Nsinks_written);
/* Select the fields to write */
sink_write_particles(sinks_written, list, &num_fields,
with_cosmology);
}
} break;
case swift_type_stars: {
if (Nstars == Nstars_written) {
/* No inhibted particles: easy case */
Nparticles = Nstars;
stars_write_particles(sparts, list, &num_fields, with_cosmology);
num_fields += chemistry_write_sparticles(sparts, list + num_fields);
num_fields += tracers_write_sparticles(sparts, list + num_fields,
with_cosmology);
if (with_fof) {
num_fields += fof_write_sparts(sparts, list + num_fields);
}
if (with_stf) {
num_fields += velociraptor_write_sparts(sparts, list + num_fields);
}
} else {
/* Ok, we need to fish out the particles we want */
Nparticles = Nstars_written;
/* Allocate temporary arrays */
if (swift_memalign("sparts_written", (void**)&sparts_written,
spart_align,
Nstars_written * sizeof(struct spart)) != 0)
error("Error while allocating temporary memory for sparts");
/* Collect the particles we want to write */
io_collect_sparts_to_write(sparts, sparts_written, Nstars,
Nstars_written);
/* Select the fields to write */
stars_write_particles(sparts_written, list, &num_fields,
with_cosmology);
num_fields +=
chemistry_write_sparticles(sparts_written, list + num_fields);
num_fields += tracers_write_sparticles(
sparts_written, list + num_fields, with_cosmology);
if (with_fof) {
num_fields += fof_write_sparts(sparts_written, list + num_fields);
}
if (with_stf) {
num_fields +=
velociraptor_write_sparts(sparts_written, list + num_fields);
}
}
} break;
case swift_type_black_hole: {
if (Nblackholes == Nblackholes_written) {
/* No inhibted particles: easy case */
Nparticles = Nblackholes;
black_holes_write_particles(bparts, list, &num_fields,
with_cosmology);
num_fields += chemistry_write_bparticles(bparts, list + num_fields);
if (with_fof) {
num_fields += fof_write_bparts(bparts, list + num_fields);
}
if (with_stf) {
num_fields += velociraptor_write_bparts(bparts, list + num_fields);
}
} else {
/* Ok, we need to fish out the particles we want */
Nparticles = Nblackholes_written;
/* Allocate temporary arrays */
if (swift_memalign("bparts_written", (void**)&bparts_written,
bpart_align,
Nblackholes_written * sizeof(struct bpart)) != 0)
error("Error while allocating temporary memory for bparts");
/* Collect the particles we want to write */
io_collect_bparts_to_write(bparts, bparts_written, Nblackholes,
Nblackholes_written);
/* Select the fields to write */
black_holes_write_particles(bparts_written, list, &num_fields,
with_cosmology);
num_fields +=
chemistry_write_bparticles(bparts_written, list + num_fields);
if (with_fof) {
num_fields += fof_write_bparts(bparts_written, list + num_fields);
}
if (with_stf) {
num_fields +=
velociraptor_write_bparts(bparts_written, list + num_fields);
}
}
} break;
default:
error("Particle Type %d not yet supported. Aborting", ptype);
}
/* Did the user specify a non-standard default for the entire particle
* type? */
const enum lossy_compression_schemes compression_level_current_default =
output_options_get_ptype_default_compression(
output_options->select_output, current_selection_name,
(enum part_type)ptype);
/* Write everything that is not cancelled */
int num_fields_written = 0;
for (int i = 0; i < num_fields; ++i) {
/* Did the user cancel this field? */
const enum lossy_compression_schemes compression_level =
output_options_get_field_compression(
output_options, current_selection_name, list[i].name,
(enum part_type)ptype, compression_level_current_default);
if (compression_level != compression_do_not_write) {
write_distributed_array(e, h_grp, fileName, partTypeGroupName, list[i],
Nparticles, compression_level, internal_units,
snapshot_units);
num_fields_written++;
}
}
/* Only write this now that we know exactly how many fields there are. */
io_write_attribute_i(h_grp, "NumberOfFields", num_fields_written);
/* Free temporary arrays */
if (parts_written) swift_free("parts_written", parts_written);
if (xparts_written) swift_free("xparts_written", xparts_written);
if (gparts_written) swift_free("gparts_written", gparts_written);
if (gpart_group_data_written)
swift_free("gpart_group_written", gpart_group_data_written);
if (sinks_written) swift_free("sinks_written", sinks_written);
if (sparts_written) swift_free("sparts_written", sparts_written);
if (bparts_written) swift_free("bparts_written", bparts_written);
/* Close particle group */
H5Gclose(h_grp);
}
/* message("Done writing particles..."); */
/* Close file */
H5Fclose(h_file);
e->snapshot_output_count++;
if (e->snapshot_invoke_stf) e->stf_output_count++;
}
#endif /* HAVE_HDF5 && WITH_MPI */