/******************************************************************************* * This file is part of SWIFT. * Copyright (c) 2019 Matthieu Schaller (schaller@strw.leidenuniv.nl) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program. If not, see . * ******************************************************************************/ /* Config parameters. */ #include "../config.h" #if defined(HAVE_HDF5) && defined(WITH_MPI) /* Some standard headers. */ #include #include #include #include #include #include #include #include /* This object's header. */ #include "distributed_io.h" /* Local includes. */ #include "black_holes_io.h" #include "chemistry_io.h" #include "common_io.h" #include "cooling_io.h" #include "dimension.h" #include "engine.h" #include "error.h" #include "fof_io.h" #include "gravity_io.h" #include "gravity_properties.h" #include "hydro_io.h" #include "hydro_properties.h" #include "io_properties.h" #include "memuse.h" #include "output_list.h" #include "output_options.h" #include "part.h" #include "part_type.h" #include "sink_io.h" #include "star_formation_io.h" #include "stars_io.h" #include "tools.h" #include "tracers_io.h" #include "units.h" #include "velociraptor_io.h" #include "xmf.h" /** * @brief Writes a data array in given HDF5 group. * * @param e The #engine we are writing from. * @param grp The group in which to write. * @param fileName The name of the file in which the data is written * @param partTypeGroupName The name of the group containing the particles in * the HDF5 file. * @param props The #io_props of the field to read * @param N The number of particles to write. * @param internal_units The #unit_system used internally * @param snapshot_units The #unit_system used in the snapshots * * @todo A better version using HDF5 hyper-slabs to write the file directly from * the part array will be written once the structures have been stabilized. */ void write_distributed_array( const struct engine* e, hid_t grp, const char* fileName, const char* partTypeGroupName, const struct io_props props, const size_t N, const enum lossy_compression_schemes lossy_compression, const struct unit_system* internal_units, const struct unit_system* snapshot_units) { const size_t typeSize = io_sizeof_type(props.type); const size_t num_elements = N * props.dimension; /* message("Writing '%s' array...", props.name); */ /* Allocate temporary buffer */ void* temp = NULL; if (swift_memalign("writebuff", (void**)&temp, IO_BUFFER_ALIGNMENT, num_elements * typeSize) != 0) error("Unable to allocate temporary i/o buffer"); /* Copy the particle data to the temporary buffer */ io_copy_temp_buffer(temp, e, props, N, internal_units, snapshot_units); /* Create data space */ hid_t h_space; if (N > 0) h_space = H5Screate(H5S_SIMPLE); else h_space = H5Screate(H5S_NULL); if (h_space < 0) error("Error while creating data space for field '%s'.", props.name); /* Decide what chunk size to use based on compression */ int log2_chunk_size = 20; int rank; hsize_t shape[2]; hsize_t chunk_shape[2]; if (props.dimension > 1) { rank = 2; shape[0] = N; shape[1] = props.dimension; chunk_shape[0] = 1 << log2_chunk_size; chunk_shape[1] = props.dimension; } else { rank = 1; shape[0] = N; shape[1] = 0; chunk_shape[0] = 1 << log2_chunk_size; chunk_shape[1] = 0; } /* Make sure the chunks are not larger than the dataset */ if (chunk_shape[0] > N) chunk_shape[0] = N; /* Change shape of data space */ hid_t h_err = H5Sset_extent_simple(h_space, rank, shape, shape); if (h_err < 0) error("Error while changing data space shape for field '%s'.", props.name); /* Dataset type */ hid_t h_type = H5Tcopy(io_hdf5_type(props.type)); /* Dataset properties */ hid_t h_prop = H5Pcreate(H5P_DATASET_CREATE); /* Create filters and set compression level if we have something to write */ if (N > 0) { /* Set chunk size */ h_err = H5Pset_chunk(h_prop, rank, chunk_shape); if (h_err < 0) error("Error while setting chunk size (%llu, %llu) for field '%s'.", chunk_shape[0], chunk_shape[1], props.name); /* Are we imposing some form of lossy compression filter? */ if (lossy_compression != compression_write_lossless) set_hdf5_lossy_compression(&h_prop, &h_type, lossy_compression, props.name); /* Impose GZIP data compression */ if (e->snapshot_compression > 0) { h_err = H5Pset_shuffle(h_prop); if (h_err < 0) error("Error while setting shuffling options for field '%s'.", props.name); h_err = H5Pset_deflate(h_prop, e->snapshot_compression); if (h_err < 0) error("Error while setting compression options for field '%s'.", props.name); } /* Impose check-sum to verify data corruption */ h_err = H5Pset_fletcher32(h_prop); if (h_err < 0) error("Error while setting checksum options for field '%s'.", props.name); } /* Create dataset */ const hid_t h_data = H5Dcreate(grp, props.name, h_type, h_space, H5P_DEFAULT, h_prop, H5P_DEFAULT); if (h_data < 0) error("Error while creating dataspace '%s'.", props.name); /* Write temporary buffer to HDF5 dataspace */ h_err = H5Dwrite(h_data, io_hdf5_type(props.type), h_space, H5S_ALL, H5P_DEFAULT, temp); if (h_err < 0) error("Error while writing data array '%s'.", props.name); /* Write unit conversion factors for this data set */ char buffer[FIELD_BUFFER_SIZE] = {0}; units_cgs_conversion_string(buffer, snapshot_units, props.units, props.scale_factor_exponent); float baseUnitsExp[5]; units_get_base_unit_exponents_array(baseUnitsExp, props.units); io_write_attribute_f(h_data, "U_M exponent", baseUnitsExp[UNIT_MASS]); io_write_attribute_f(h_data, "U_L exponent", baseUnitsExp[UNIT_LENGTH]); io_write_attribute_f(h_data, "U_t exponent", baseUnitsExp[UNIT_TIME]); io_write_attribute_f(h_data, "U_I exponent", baseUnitsExp[UNIT_CURRENT]); io_write_attribute_f(h_data, "U_T exponent", baseUnitsExp[UNIT_TEMPERATURE]); io_write_attribute_f(h_data, "h-scale exponent", 0.f); io_write_attribute_f(h_data, "a-scale exponent", props.scale_factor_exponent); io_write_attribute_s(h_data, "Expression for physical CGS units", buffer); /* Write the actual number this conversion factor corresponds to */ const double factor = units_cgs_conversion_factor(snapshot_units, props.units); io_write_attribute_d( h_data, "Conversion factor to CGS (not including cosmological corrections)", factor); io_write_attribute_d( h_data, "Conversion factor to physical CGS (including cosmological corrections)", factor * pow(e->cosmology->a, props.scale_factor_exponent)); #ifdef SWIFT_DEBUG_CHECKS if (strlen(props.description) == 0) error("Invalid (empty) description of the field '%s'", props.name); #endif /* Write the full description */ io_write_attribute_s(h_data, "Description", props.description); /* Free and close everything */ swift_free("writebuff", temp); H5Tclose(h_type); H5Pclose(h_prop); H5Dclose(h_data); H5Sclose(h_space); } /** * @brief Writes a snapshot distributed into multiple files. * * @param e The engine containing all the system. * @param internal_units The #unit_system used internally * @param snapshot_units The #unit_system used in the snapshots * @param mpi_rank The rank number of the calling MPI rank. * @param mpi_size the number of MPI ranks. * @param comm The communicator used by the MPI ranks. * @param info The MPI information object. * * Creates a series of HDF5 output files (1 per MPI node) as a snapshot. * Writes the particles contained in the engine. * If such files already exist, it is erased and replaced by the new one. * The companion XMF file is also updated accordingly. */ void write_output_distributed(struct engine* e, const struct unit_system* internal_units, const struct unit_system* snapshot_units, const int mpi_rank, const int mpi_size, MPI_Comm comm, MPI_Info info) { hid_t h_file = 0, h_grp = 0; int numFiles = mpi_size; const struct part* parts = e->s->parts; const struct xpart* xparts = e->s->xparts; const struct gpart* gparts = e->s->gparts; const struct sink* sinks = e->s->sinks; const struct spart* sparts = e->s->sparts; const struct bpart* bparts = e->s->bparts; struct output_options* output_options = e->output_options; struct output_list* output_list = e->output_list_snapshots; const int with_cosmology = e->policy & engine_policy_cosmology; const int with_cooling = e->policy & engine_policy_cooling; const int with_temperature = e->policy & engine_policy_temperature; const int with_fof = e->policy & engine_policy_fof; const int with_DM_background = e->s->with_DM_background; #ifdef HAVE_VELOCIRAPTOR const int with_stf = (e->policy & engine_policy_structure_finding) && (e->s->gpart_group_data != NULL); #else const int with_stf = 0; #endif /* Number of particles currently in the arrays */ const size_t Ntot = e->s->nr_gparts; const size_t Ngas = e->s->nr_parts; const size_t Nsinks = e->s->nr_sinks; const size_t Nstars = e->s->nr_sparts; const size_t Nblackholes = e->s->nr_bparts; size_t Ndm_background = 0; if (with_DM_background) { Ndm_background = io_count_dm_background_gparts(gparts, Ntot); } /* Number of particles that we will write in this file. * Recall that background particles are never inhibited and have no extras */ const size_t Ntot_written = e->s->nr_gparts - e->s->nr_inhibited_gparts - e->s->nr_extra_gparts; const size_t Ngas_written = e->s->nr_parts - e->s->nr_inhibited_parts - e->s->nr_extra_parts; const size_t Nsinks_written = e->s->nr_sinks - e->s->nr_inhibited_sinks - e->s->nr_extra_sinks; const size_t Nstars_written = e->s->nr_sparts - e->s->nr_inhibited_sparts - e->s->nr_extra_sparts; const size_t Nblackholes_written = e->s->nr_bparts - e->s->nr_inhibited_bparts - e->s->nr_extra_bparts; const size_t Nbaryons_written = Ngas_written + Nstars_written + Nblackholes_written + Nsinks_written; const size_t Ndm_written = Ntot_written > 0 ? Ntot_written - Nbaryons_written - Ndm_background : 0; int snap_count = -1; if (e->snapshot_int_time_label_on) snap_count = (int)round(e->time); else if (e->snapshot_invoke_stf) snap_count = e->stf_output_count; else snap_count = e->snapshot_output_count; int number_digits = -1; if (e->snapshot_int_time_label_on) number_digits = 6; else number_digits = 4; /* Directory and file name */ char dirName[1024]; char fileName[1024]; if (strnlen(e->snapshot_subdir, PARSER_MAX_LINE_SIZE) > 0) { sprintf(dirName, "%s/%s_%0*d", e->snapshot_subdir, e->snapshot_base_name, number_digits, snap_count); sprintf(fileName, "%s/%s_%0*d/%s_%0*d.%d.hdf5", e->snapshot_subdir, e->snapshot_base_name, number_digits, snap_count, e->snapshot_base_name, number_digits, snap_count, mpi_rank); } else { sprintf(dirName, "%s_%0*d", e->snapshot_base_name, number_digits, snap_count); sprintf(fileName, "%s_%0*d/%s_%0*d.%d.hdf5", e->snapshot_base_name, number_digits, snap_count, e->snapshot_base_name, number_digits, snap_count, mpi_rank); } /* Create the directory */ if (mpi_rank == 0) safe_checkdir(dirName, /*create=*/1); MPI_Barrier(comm); /* Compute offset in the file and total number of particles */ const long long N[swift_type_count] = {Ngas_written, Ndm_written, Ndm_background, Nsinks_written, Nstars_written, Nblackholes_written}; /* Gather the total number of particles to write */ long long N_total[swift_type_count] = {0}; MPI_Allreduce(N, N_total, swift_type_count, MPI_LONG_LONG_INT, MPI_SUM, comm); /* Open file */ /* message("Opening file '%s'.", fileName); */ h_file = H5Fcreate(fileName, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); if (h_file < 0) error("Error while opening file '%s'.", fileName); /* Open header to write simulation properties */ /* message("Writing file header..."); */ h_grp = H5Gcreate(h_file, "/Header", H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); if (h_grp < 0) error("Error while creating file header\n"); /* Convert basic output information to snapshot units */ const double factor_time = units_conversion_factor(internal_units, snapshot_units, UNIT_CONV_TIME); const double factor_length = units_conversion_factor(internal_units, snapshot_units, UNIT_CONV_LENGTH); const double dblTime = e->time * factor_time; const double dim[3] = {e->s->dim[0] * factor_length, e->s->dim[1] * factor_length, e->s->dim[2] * factor_length}; /* Determine if we are writing a reduced snapshot, and if so which * output selection type to use */ char current_selection_name[FIELD_BUFFER_SIZE] = select_output_header_default_name; if (output_list) { /* Users could have specified a different Select Output scheme for each * snapshot. */ output_list_get_current_select_output(output_list, current_selection_name); } /* Print the relevant information and print status */ io_write_attribute(h_grp, "BoxSize", DOUBLE, dim, 3); io_write_attribute(h_grp, "Time", DOUBLE, &dblTime, 1); const int dimension = (int)hydro_dimension; io_write_attribute(h_grp, "Dimension", INT, &dimension, 1); io_write_attribute(h_grp, "Redshift", DOUBLE, &e->cosmology->z, 1); io_write_attribute(h_grp, "Scale-factor", DOUBLE, &e->cosmology->a, 1); io_write_attribute_s(h_grp, "Code", "SWIFT"); io_write_attribute_s(h_grp, "RunName", e->run_name); /* Store the time at which the snapshot was written */ time_t tm = time(NULL); struct tm* timeinfo = localtime(&tm); char snapshot_date[64]; strftime(snapshot_date, 64, "%T %F %Z", timeinfo); io_write_attribute_s(h_grp, "Snapshot date", snapshot_date); /* GADGET-2 legacy values: Number of particles of each type */ unsigned int numParticles[swift_type_count] = {0}; unsigned int numParticlesHighWord[swift_type_count] = {0}; /* Total number of fields to write per ptype */ int numFields[swift_type_count] = {0}; for (int ptype = 0; ptype < swift_type_count; ++ptype) { numParticles[ptype] = (unsigned int)N_total[ptype]; numParticlesHighWord[ptype] = (unsigned int)(N_total[ptype] >> 32); numFields[ptype] = output_options_get_num_fields_to_write( output_options, current_selection_name, ptype); } io_write_attribute(h_grp, "NumPart_ThisFile", LONGLONG, N, swift_type_count); io_write_attribute(h_grp, "NumPart_Total", UINT, numParticles, swift_type_count); io_write_attribute(h_grp, "NumPart_Total_HighWord", UINT, numParticlesHighWord, swift_type_count); double MassTable[swift_type_count] = {0}; io_write_attribute(h_grp, "MassTable", DOUBLE, MassTable, swift_type_count); unsigned int flagEntropy[swift_type_count] = {0}; flagEntropy[0] = writeEntropyFlag(); io_write_attribute(h_grp, "Flag_Entropy_ICs", UINT, flagEntropy, swift_type_count); io_write_attribute_i(h_grp, "NumFilesPerSnapshot", numFiles); io_write_attribute_i(h_grp, "ThisFile", mpi_rank); io_write_attribute_s(h_grp, "OutputType", "FullVolume"); io_write_attribute_s(h_grp, "SelectOutput", current_selection_name); /* Close header */ H5Gclose(h_grp); /* Write all the meta-data */ io_write_meta_data(h_file, e, internal_units, snapshot_units); /* Now write the top-level cell structure * We use a global offset of 0 here. This means that the cells will write * their offset with respect to the start of the file they belong to and * not a global offset */ long long global_offsets[swift_type_count] = {0}; h_grp = H5Gcreate(h_file, "/Cells", H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); if (h_grp < 0) error("Error while creating cells group"); /* Write the location of the particles in the arrays */ io_write_cell_offsets(h_grp, e->s->cdim, e->s->dim, e->s->pos_dithering, e->s->cells_top, e->s->nr_cells, e->s->width, mpi_rank, /*distributed=*/1, N_total, global_offsets, numFields, internal_units, snapshot_units); H5Gclose(h_grp); /* Loop over all particle types */ for (int ptype = 0; ptype < swift_type_count; ptype++) { /* Don't do anything if there are (a) no particles of this kind, or (b) * if we have disabled every field of this particle type. */ if (numParticles[ptype] == 0 || numFields[ptype] == 0) continue; /* Open the particle group in the file */ char partTypeGroupName[PARTICLE_GROUP_BUFFER_SIZE]; snprintf(partTypeGroupName, PARTICLE_GROUP_BUFFER_SIZE, "/PartType%d", ptype); h_grp = H5Gcreate(h_file, partTypeGroupName, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); if (h_grp < 0) error("Error while creating particle group.\n"); /* Add an alias name for convenience */ char aliasName[PARTICLE_GROUP_BUFFER_SIZE]; snprintf(aliasName, PARTICLE_GROUP_BUFFER_SIZE, "/%sParticles", part_type_names[ptype]); hid_t h_err = H5Lcreate_soft(partTypeGroupName, h_grp, aliasName, H5P_DEFAULT, H5P_DEFAULT); if (h_err < 0) error("Error while creating alias for particle group.\n"); /* Write the number of particles as an attribute */ io_write_attribute_l(h_grp, "NumberOfParticles", N[ptype]); int num_fields = 0; struct io_props list[100]; size_t Nparticles = 0; struct part* parts_written = NULL; struct xpart* xparts_written = NULL; struct gpart* gparts_written = NULL; struct velociraptor_gpart_data* gpart_group_data_written = NULL; struct sink* sinks_written = NULL; struct spart* sparts_written = NULL; struct bpart* bparts_written = NULL; /* Write particle fields from the particle structure */ switch (ptype) { case swift_type_gas: { if (Ngas == Ngas_written) { /* No inhibted particles: easy case */ Nparticles = Ngas; hydro_write_particles(parts, xparts, list, &num_fields); num_fields += chemistry_write_particles(parts, list + num_fields); if (with_cooling || with_temperature) { num_fields += cooling_write_particles( parts, xparts, list + num_fields, e->cooling_func); } if (with_fof) { num_fields += fof_write_parts(parts, xparts, list + num_fields); } if (with_stf) { num_fields += velociraptor_write_parts(parts, xparts, list + num_fields); } num_fields += tracers_write_particles( parts, xparts, list + num_fields, with_cosmology); num_fields += star_formation_write_particles(parts, xparts, list + num_fields); } else { /* Ok, we need to fish out the particles we want */ Nparticles = Ngas_written; /* Allocate temporary arrays */ if (swift_memalign("parts_written", (void**)&parts_written, part_align, Ngas_written * sizeof(struct part)) != 0) error("Error while allocating temporary memory for parts"); if (swift_memalign("xparts_written", (void**)&xparts_written, xpart_align, Ngas_written * sizeof(struct xpart)) != 0) error("Error while allocating temporary memory for xparts"); /* Collect the particles we want to write */ io_collect_parts_to_write(parts, xparts, parts_written, xparts_written, Ngas, Ngas_written); /* Select the fields to write */ hydro_write_particles(parts_written, xparts_written, list, &num_fields); num_fields += chemistry_write_particles(parts_written, list + num_fields); if (with_cooling || with_temperature) { num_fields += cooling_write_particles(parts_written, xparts_written, list + num_fields, e->cooling_func); } if (with_fof) { num_fields += fof_write_parts(parts_written, xparts_written, list + num_fields); } if (with_stf) { num_fields += velociraptor_write_parts( parts_written, xparts_written, list + num_fields); } num_fields += tracers_write_particles( parts_written, xparts_written, list + num_fields, with_cosmology); num_fields += star_formation_write_particles( parts_written, xparts_written, list + num_fields); } } break; case swift_type_dark_matter: { if (Ntot == Ndm_written) { /* This is a DM-only run without background or inhibited particles */ Nparticles = Ntot; darkmatter_write_particles(gparts, list, &num_fields); if (with_fof) { num_fields += fof_write_gparts(gparts, list + num_fields); } if (with_stf) { num_fields += velociraptor_write_gparts(e->s->gpart_group_data, list + num_fields); } } else { /* Ok, we need to fish out the particles we want */ Nparticles = Ndm_written; /* Allocate temporary array */ if (swift_memalign("gparts_written", (void**)&gparts_written, gpart_align, Ndm_written * sizeof(struct gpart)) != 0) error("Error while allocating temporary memory for gparts"); if (with_stf) { if (swift_memalign( "gpart_group_written", (void**)&gpart_group_data_written, gpart_align, Ndm_written * sizeof(struct velociraptor_gpart_data)) != 0) error( "Error while allocating temporary memory for gparts STF " "data"); } /* Collect the non-inhibited DM particles from gpart */ io_collect_gparts_to_write(gparts, e->s->gpart_group_data, gparts_written, gpart_group_data_written, Ntot, Ndm_written, with_stf); /* Select the fields to write */ darkmatter_write_particles(gparts_written, list, &num_fields); if (with_fof) { num_fields += fof_write_gparts(gparts_written, list + num_fields); } if (with_stf) { num_fields += velociraptor_write_gparts(gpart_group_data_written, list + num_fields); } } } break; case swift_type_dark_matter_background: { /* Ok, we need to fish out the particles we want */ Nparticles = Ndm_background; /* Allocate temporary array */ if (swift_memalign("gparts_written", (void**)&gparts_written, gpart_align, Ndm_background * sizeof(struct gpart)) != 0) error("Error while allocating temporart memory for gparts"); if (with_stf) { if (swift_memalign( "gpart_group_written", (void**)&gpart_group_data_written, gpart_align, Ndm_background * sizeof(struct velociraptor_gpart_data)) != 0) error( "Error while allocating temporart memory for gparts STF " "data"); } /* Collect the non-inhibited DM particles from gpart */ io_collect_gparts_background_to_write( gparts, e->s->gpart_group_data, gparts_written, gpart_group_data_written, Ntot, Ndm_background, with_stf); /* Select the fields to write */ darkmatter_write_particles(gparts_written, list, &num_fields); if (with_fof) { num_fields += fof_write_gparts(gparts_written, list + num_fields); } if (with_stf) { num_fields += velociraptor_write_gparts(gpart_group_data_written, list + num_fields); } } break; case swift_type_sink: { if (Nsinks == Nsinks_written) { /* No inhibted particles: easy case */ Nparticles = Nsinks; sink_write_particles(sinks, list, &num_fields, with_cosmology); } else { /* Ok, we need to fish out the particles we want */ Nparticles = Nsinks_written; /* Allocate temporary arrays */ if (swift_memalign("sinks_written", (void**)&sinks_written, sink_align, Nsinks_written * sizeof(struct sink)) != 0) error("Error while allocating temporary memory for sinks"); /* Collect the particles we want to write */ io_collect_sinks_to_write(sinks, sinks_written, Nsinks, Nsinks_written); /* Select the fields to write */ sink_write_particles(sinks_written, list, &num_fields, with_cosmology); } } break; case swift_type_stars: { if (Nstars == Nstars_written) { /* No inhibted particles: easy case */ Nparticles = Nstars; stars_write_particles(sparts, list, &num_fields, with_cosmology); num_fields += chemistry_write_sparticles(sparts, list + num_fields); num_fields += tracers_write_sparticles(sparts, list + num_fields, with_cosmology); if (with_fof) { num_fields += fof_write_sparts(sparts, list + num_fields); } if (with_stf) { num_fields += velociraptor_write_sparts(sparts, list + num_fields); } } else { /* Ok, we need to fish out the particles we want */ Nparticles = Nstars_written; /* Allocate temporary arrays */ if (swift_memalign("sparts_written", (void**)&sparts_written, spart_align, Nstars_written * sizeof(struct spart)) != 0) error("Error while allocating temporary memory for sparts"); /* Collect the particles we want to write */ io_collect_sparts_to_write(sparts, sparts_written, Nstars, Nstars_written); /* Select the fields to write */ stars_write_particles(sparts_written, list, &num_fields, with_cosmology); num_fields += chemistry_write_sparticles(sparts_written, list + num_fields); num_fields += tracers_write_sparticles( sparts_written, list + num_fields, with_cosmology); if (with_fof) { num_fields += fof_write_sparts(sparts_written, list + num_fields); } if (with_stf) { num_fields += velociraptor_write_sparts(sparts_written, list + num_fields); } } } break; case swift_type_black_hole: { if (Nblackholes == Nblackholes_written) { /* No inhibted particles: easy case */ Nparticles = Nblackholes; black_holes_write_particles(bparts, list, &num_fields, with_cosmology); num_fields += chemistry_write_bparticles(bparts, list + num_fields); if (with_fof) { num_fields += fof_write_bparts(bparts, list + num_fields); } if (with_stf) { num_fields += velociraptor_write_bparts(bparts, list + num_fields); } } else { /* Ok, we need to fish out the particles we want */ Nparticles = Nblackholes_written; /* Allocate temporary arrays */ if (swift_memalign("bparts_written", (void**)&bparts_written, bpart_align, Nblackholes_written * sizeof(struct bpart)) != 0) error("Error while allocating temporary memory for bparts"); /* Collect the particles we want to write */ io_collect_bparts_to_write(bparts, bparts_written, Nblackholes, Nblackholes_written); /* Select the fields to write */ black_holes_write_particles(bparts_written, list, &num_fields, with_cosmology); num_fields += chemistry_write_bparticles(bparts_written, list + num_fields); if (with_fof) { num_fields += fof_write_bparts(bparts_written, list + num_fields); } if (with_stf) { num_fields += velociraptor_write_bparts(bparts_written, list + num_fields); } } } break; default: error("Particle Type %d not yet supported. Aborting", ptype); } /* Did the user specify a non-standard default for the entire particle * type? */ const enum lossy_compression_schemes compression_level_current_default = output_options_get_ptype_default_compression( output_options->select_output, current_selection_name, (enum part_type)ptype); /* Write everything that is not cancelled */ int num_fields_written = 0; for (int i = 0; i < num_fields; ++i) { /* Did the user cancel this field? */ const enum lossy_compression_schemes compression_level = output_options_get_field_compression( output_options, current_selection_name, list[i].name, (enum part_type)ptype, compression_level_current_default); if (compression_level != compression_do_not_write) { write_distributed_array(e, h_grp, fileName, partTypeGroupName, list[i], Nparticles, compression_level, internal_units, snapshot_units); num_fields_written++; } } /* Only write this now that we know exactly how many fields there are. */ io_write_attribute_i(h_grp, "NumberOfFields", num_fields_written); /* Free temporary arrays */ if (parts_written) swift_free("parts_written", parts_written); if (xparts_written) swift_free("xparts_written", xparts_written); if (gparts_written) swift_free("gparts_written", gparts_written); if (gpart_group_data_written) swift_free("gpart_group_written", gpart_group_data_written); if (sinks_written) swift_free("sinks_written", sinks_written); if (sparts_written) swift_free("sparts_written", sparts_written); if (bparts_written) swift_free("bparts_written", bparts_written); /* Close particle group */ H5Gclose(h_grp); } /* message("Done writing particles..."); */ /* Close file */ H5Fclose(h_file); e->snapshot_output_count++; if (e->snapshot_invoke_stf) e->stf_output_count++; } #endif /* HAVE_HDF5 && WITH_MPI */