/*******************************************************************************
* This file is part of SWIFT.
* Coypright (c) 2015 Matthieu Schaller (matthieu.schaller@durham.ac.uk)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see .
*
******************************************************************************/
#ifndef SWIFT_DEFAULT_HYDRO_H
#define SWIFT_DEFAULT_HYDRO_H
#include "adiabatic_index.h"
#include "approx_math.h"
#include "equation_of_state.h"
#include "hydro_space.h"
#include "minmax.h"
#include
/**
* @brief Returns the internal energy of a particle
*
* @param p The particle of interest
* @param dt Time since the last kick
*/
__attribute__((always_inline)) INLINE static float hydro_get_internal_energy(
const struct part *restrict p) {
return p->u;
}
/**
* @brief Returns the pressure of a particle
*
* @param p The particle of interest
* @param dt Time since the last kick
*/
__attribute__((always_inline)) INLINE static float hydro_get_pressure(
const struct part *restrict p) {
return gas_pressure_from_internal_energy(p->rho, p->u);
}
/**
* @brief Returns the entropy of a particle
*
* @param p The particle of interest
* @param dt Time since the last kick
*/
__attribute__((always_inline)) INLINE static float hydro_get_entropy(
const struct part *restrict p) {
return gas_entropy_from_internal_energy(p->rho, p->u);
}
/**
* @brief Returns the sound speed of a particle
*
* @param p The particle of interest
* @param dt Time since the last kick
*/
__attribute__((always_inline)) INLINE static float hydro_get_soundspeed(
const struct part *restrict p) {
return p->force.soundspeed;
}
/**
* @brief Returns the density of a particle
*
* @param p The particle of interest
*/
__attribute__((always_inline)) INLINE static float hydro_get_density(
const struct part *restrict p) {
return p->rho;
}
/**
* @brief Returns the mass of a particle
*
* @param p The particle of interest
*/
__attribute__((always_inline)) INLINE static float hydro_get_mass(
const struct part *restrict p) {
return p->mass;
}
/**
* @brief Returns the velocities drifted to the current time of a particle.
*
* @param p The particle of interest
* @param xp The extended data of the particle.
* @param dt The time since the last kick.
* @param v (return) The velocities at the current time.
*/
__attribute__((always_inline)) INLINE static void hydro_get_drifted_velocities(
const struct part *restrict p, const struct xpart *xp, float dt,
float v[3]) {
v[0] = xp->v_full[0] + p->a_hydro[0] * dt;
v[1] = xp->v_full[1] + p->a_hydro[1] * dt;
v[2] = xp->v_full[2] + p->a_hydro[2] * dt;
}
/**
* @brief Returns the time derivative of internal energy of a particle
*
* We assume a constant density.
*
* @param p The particle of interest
*/
__attribute__((always_inline)) INLINE static float hydro_get_internal_energy_dt(
const struct part *restrict p) {
return p->force.u_dt;
}
/**
* @brief Returns the time derivative of internal energy of a particle
*
* We assume a constant density.
*
* @param p The particle of interest.
* @param du_dt The new time derivative of the internal energy.
*/
__attribute__((always_inline)) INLINE static void hydro_set_internal_energy_dt(
struct part *restrict p, float du_dt) {
p->force.u_dt = du_dt;
}
/**
* @brief Computes the hydro time-step of a given particle
*
* @param p Pointer to the particle data
* @param xp Pointer to the extended particle data
*
*/
__attribute__((always_inline)) INLINE static float hydro_compute_timestep(
const struct part *restrict p, const struct xpart *restrict xp,
const struct hydro_props *restrict hydro_properties) {
const float CFL_condition = hydro_properties->CFL_condition;
/* CFL condition */
const float dt_cfl =
2.f * kernel_gamma * CFL_condition * p->h / p->force.v_sig;
/* Limit change in u */
const float dt_u_change =
(p->force.u_dt != 0.0f) ? fabsf(const_max_u_change * p->u / p->force.u_dt)
: FLT_MAX;
return min(dt_cfl, dt_u_change);
}
/**
* @brief Does some extra hydro operations once the actual physical time step
* for the particle is known.
*
* @param p The particle to act upon.
* @param dt Physical time step of the particle during the next step.
*/
__attribute__((always_inline)) INLINE static void hydro_timestep_extra(
struct part *p, float dt) {}
/**
* @brief Prepares a particle for the density calculation.
*
* Zeroes all the relevant arrays in preparation for the sums taking place in
* the variaous density tasks
*
* @param p The particle to act upon
* @param hs #hydro_space containing hydro specific space information.
*/
__attribute__((always_inline)) INLINE static void hydro_init_part(
struct part *restrict p, const struct hydro_space *hs) {
p->density.wcount = 0.f;
p->density.wcount_dh = 0.f;
p->rho = 0.f;
p->rho_dh = 0.f;
p->density.div_v = 0.f;
p->density.rot_v[0] = 0.f;
p->density.rot_v[1] = 0.f;
p->density.rot_v[2] = 0.f;
}
/**
* @brief Finishes the density calculation.
*
* Multiplies the density and number of neighbours by the appropiate constants
* and add the self-contribution term.
*
* @param p The particle to act upon
*/
__attribute__((always_inline)) INLINE static void hydro_end_density(
struct part *restrict p) {
/* Some smoothing length multiples. */
const float h = p->h;
const float h_inv = 1.0f / h; /* 1/h */
const float h_inv_dim = pow_dimension(h_inv); /* 1/h^d */
const float h_inv_dim_plus_one = h_inv_dim * h_inv; /* 1/h^(d+1) */
/* Final operation on the density (add self-contribution). */
p->rho += p->mass * kernel_root;
p->rho_dh -= hydro_dimension * p->mass * kernel_root;
p->density.wcount += kernel_root;
/* Finish the calculation by inserting the missing h-factors */
p->rho *= h_inv_dim;
p->rho_dh *= h_inv_dim_plus_one;
p->density.wcount *= kernel_norm;
p->density.wcount_dh *= h_inv * kernel_gamma * kernel_norm;
const float irho = 1.f / p->rho;
/* Finish calculation of the velocity curl components */
p->density.rot_v[0] *= h_inv_dim_plus_one * irho;
p->density.rot_v[1] *= h_inv_dim_plus_one * irho;
p->density.rot_v[2] *= h_inv_dim_plus_one * irho;
/* Finish calculation of the velocity divergence */
p->density.div_v *= h_inv_dim_plus_one * irho;
}
/**
* @brief Sets all particle fields to sensible values when the #part has 0 ngbs.
*
* @param p The particle to act upon
* @param xp The extended particle data to act upon
*/
__attribute__((always_inline)) INLINE static void hydro_part_has_no_neighbours(
struct part *restrict p, struct xpart *restrict xp) {
/* Some smoothing length multiples. */
const float h = p->h;
const float h_inv = 1.0f / h; /* 1/h */
const float h_inv_dim = pow_dimension(h_inv); /* 1/h^d */
/* Re-set problematic values */
p->rho = p->mass * kernel_root * h_inv_dim;
p->density.wcount = kernel_root * kernel_norm * h_inv_dim;
p->rho_dh = 0.f;
p->density.wcount_dh = 0.f;
p->density.div_v = 0.f;
p->density.rot_v[0] = 0.f;
p->density.rot_v[1] = 0.f;
p->density.rot_v[2] = 0.f;
}
/**
* @brief Prepare a particle for the force calculation.
*
* Computes viscosity term, conduction term and smoothing length gradient terms.
*
* @param p The particle to act upon
* @param xp The extended particle data to act upon
* @param time The current time
*/
__attribute__((always_inline)) INLINE static void hydro_prepare_force(
struct part *restrict p, struct xpart *restrict xp) {
/* Some smoothing length multiples. */
const float h = p->h;
const float h_inv = 1.0f / h;
/* Pre-compute some stuff for the balsara switch. */
const float normDiv_v = fabs(p->density.div_v);
const float normRot_v = sqrtf(p->density.rot_v[0] * p->density.rot_v[0] +
p->density.rot_v[1] * p->density.rot_v[1] +
p->density.rot_v[2] * p->density.rot_v[2]);
/* Compute this particle's sound speed. */
const float u = p->u;
const float fc = p->force.soundspeed =
sqrtf(hydro_gamma * hydro_gamma_minus_one * u);
/* Compute the derivative term */
p->rho_dh = 1.f / (1.f + hydro_dimension_inv * p->h * p->rho_dh / p->rho);
/* Compute the P/Omega/rho2. */
xp->omega = 1.0f + hydro_dimension_inv * h * p->rho_dh / p->rho;
p->force.P_over_rho2 = u * hydro_gamma_minus_one / (p->rho * xp->omega);
/* Balsara switch */
p->force.balsara = normDiv_v / (normDiv_v + normRot_v + 0.0001f * fc * h_inv);
/* Viscosity parameter decay time */
/* const float tau = h / (2.f * const_viscosity_length * p->force.soundspeed);
*/
/* Viscosity source term */
/* const float S = max(-normDiv_v, 0.f); */
/* Compute the particle's viscosity parameter time derivative */
/* const float alpha_dot = (const_viscosity_alpha_min - p->alpha) / tau + */
/* (const_viscosity_alpha_max - p->alpha) * S; */
/* Update particle's viscosity paramter */
/* p->alpha += alpha_dot * (p->ti_end - p->ti_begin) * timeBase; */ // MATTHIEU
}
/**
* @brief Reset acceleration fields of a particle
*
* Resets all hydro acceleration and time derivative fields in preparation
* for the sums taking place in the variaous force tasks
*
* @param p The particle to act upon
*/
__attribute__((always_inline)) INLINE static void hydro_reset_acceleration(
struct part *restrict p) {
/* Reset the acceleration. */
p->a_hydro[0] = 0.0f;
p->a_hydro[1] = 0.0f;
p->a_hydro[2] = 0.0f;
/* Reset the time derivatives. */
p->force.u_dt = 0.0f;
p->force.h_dt = 0.0f;
p->force.v_sig = 0.0f;
}
/**
* @brief Sets the values to be predicted in the drifts to their values at a
* kick time
*
* @param p The particle.
* @param xp The extended data of this particle.
*/
__attribute__((always_inline)) INLINE static void hydro_reset_predicted_values(
struct part *restrict p, const struct xpart *restrict xp) {
/* Re-set the predicted velocities */
p->v[0] = xp->v_full[0];
p->v[1] = xp->v_full[1];
p->v[2] = xp->v_full[2];
}
/**
* @brief Predict additional particle fields forward in time when drifting
*
* @param p The particle
* @param xp The extended data of the particle
* @param dt The drift time-step.
* @param t0 The time at the start of the drift
* @param t1 The time at the end of the drift
* @param timeBase The minimal time-step size
*/
__attribute__((always_inline)) INLINE static void hydro_predict_extra(
struct part *restrict p, struct xpart *restrict xp, float dt) {
float u, w;
const float h_inv = 1.f / p->h;
/* Predict smoothing length */
const float w1 = p->force.h_dt * h_inv * dt;
if (fabsf(w1) < 0.2f)
p->h *= approx_expf(w1); /* 4th order expansion of exp(w) */
else
p->h *= expf(w1);
/* Predict density */
const float w2 = -hydro_dimension * w1;
if (fabsf(w2) < 0.2f)
p->rho *= approx_expf(w2); /* 4th order expansion of exp(w) */
else
p->rho *= expf(w2);
/* Predict internal energy */
w = p->force.u_dt / p->u * dt;
if (fabsf(w) < 0.2f)
u = p->u *= approx_expf(w);
else
u = p->u *= expf(w);
/* Predict gradient term */
p->force.P_over_rho2 = u * hydro_gamma_minus_one / (p->rho * xp->omega);
}
/**
* @brief Finishes the force calculation.
*
* Multiplies the forces and accelerationsby the appropiate constants
*
* @param p The particle to act upon
*/
__attribute__((always_inline)) INLINE static void hydro_end_force(
struct part *restrict p) {
p->force.h_dt *= p->h * hydro_dimension_inv;
}
/**
* @brief Kick the additional variables
*
* @param p The particle to act upon
* @param xp The particle extended data to act upon
* @param dt The time-step for this kick
* @param half_dt The half time-step for this kick
*/
__attribute__((always_inline)) INLINE static void hydro_kick_extra(
struct part *restrict p, struct xpart *restrict xp, float dt) {}
/**
* @brief Converts hydro quantity of a particle at the start of a run
*
* Requires the density to be known
*
* @param p The particle to act upon
*/
__attribute__((always_inline)) INLINE static void hydro_convert_quantities(
struct part *restrict p, struct xpart *restrict xp) {}
/**
* @brief Initialises the particles for the first time
*
* This function is called only once just after the ICs have been
* read in to do some conversions.
*
* @param p The particle to act upon
* @param xp The extended particle data to act upon
*/
__attribute__((always_inline)) INLINE static void hydro_first_init_part(
struct part *restrict p, struct xpart *restrict xp) {
p->time_bin = 0;
xp->v_full[0] = p->v[0];
xp->v_full[1] = p->v[1];
xp->v_full[2] = p->v[2];
xp->u_full = p->u;
hydro_reset_acceleration(p);
hydro_init_part(p, NULL);
}
#endif /* SWIFT_DEFAULT_HYDRO_H */