Commit fa504958 authored by James Willis's avatar James Willis
Browse files

Merge branch 'gadget2-part-update' into intrinsic-vectorisation

parents 77444460 46ea1a8b
......@@ -638,11 +638,11 @@ void cell_split(struct cell *c, ptrdiff_t parts_offset) {
*/
void cell_init_parts(struct cell *c, void *data) {
struct part *p = c->parts;
struct xpart *xp = c->xparts;
const int count = c->count;
struct part *restrict p = c->parts;
struct xpart *restrict xp = c->xparts;
const size_t count = c->count;
for (int i = 0; i < count; ++i) {
for (size_t i = 0; i < count; ++i) {
p[i].ti_begin = 0;
p[i].ti_end = 0;
xp[i].v_full[0] = p[i].v[0];
......@@ -665,13 +665,14 @@ void cell_init_parts(struct cell *c, void *data) {
*/
void cell_init_gparts(struct cell *c, void *data) {
struct gpart *gp = c->gparts;
const int gcount = c->gcount;
struct gpart *restrict gp = c->gparts;
const size_t gcount = c->gcount;
for (int i = 0; i < gcount; ++i) {
for (size_t i = 0; i < gcount; ++i) {
gp[i].ti_begin = 0;
gp[i].ti_end = 0;
gravity_first_init_gpart(&gp[i]);
gravity_init_gpart(&gp[i]);
}
c->ti_end_min = 0;
c->ti_end_max = 0;
......
......@@ -82,7 +82,7 @@ __attribute__((always_inline)) INLINE static void gravity_first_init_gpart(
*
* @param gp The particle to act upon
*/
__attribute__((always_inline)) INLINE static void gravity_init_part(
__attribute__((always_inline)) INLINE static void gravity_init_gpart(
struct gpart* gp) {
/* Zero the acceleration */
......
......@@ -136,15 +136,12 @@ __attribute__((always_inline)) INLINE static void hydro_prepare_force(
/* Some smoothing length multiples. */
const float h = p->h;
const float ih = 1.0f / h;
const float ih2 = ih * ih;
const float ih4 = ih2 * ih2;
/* Pre-compute some stuff for the balsara switch. */
const float normDiv_v = fabs(p->density.div_v / p->rho * ih4);
const float normDiv_v = fabs(p->density.div_v);
const float normRot_v = sqrtf(p->density.rot_v[0] * p->density.rot_v[0] +
p->density.rot_v[1] * p->density.rot_v[1] +
p->density.rot_v[2] * p->density.rot_v[2]) /
p->rho * ih4;
p->density.rot_v[2] * p->density.rot_v[2]);
/* Compute this particle's sound speed. */
const float u = p->u;
......
......@@ -42,7 +42,7 @@ void hydro_read_particles(struct part* parts, struct io_props* list,
list[3] = io_make_input_field("SmoothingLength", FLOAT, 1, COMPULSORY,
UNIT_CONV_LENGTH, parts, h);
list[4] = io_make_input_field("InternalEnergy", FLOAT, 1, COMPULSORY,
UNIT_CONV_ENERGY, parts, u);
UNIT_CONV_ENERGY_PER_UNIT_MASS, parts, u);
list[5] = io_make_input_field("ParticleIDs", ULONGLONG, 1, COMPULSORY,
UNIT_CONV_NO_UNITS, parts, id);
list[6] = io_make_input_field("Accelerations", FLOAT, 3, OPTIONAL,
......@@ -72,7 +72,7 @@ void hydro_write_particles(struct part* parts, struct io_props* list,
io_make_output_field("Masses", FLOAT, 1, UNIT_CONV_MASS, parts, mass);
list[3] = io_make_output_field("SmoothingLength", FLOAT, 1, UNIT_CONV_LENGTH,
parts, h);
list[4] = io_make_output_field("Entropy", FLOAT, 1,
list[4] = io_make_output_field("InternalEnergy", FLOAT, 1,
UNIT_CONV_ENERGY_PER_UNIT_MASS, parts, u);
list[5] = io_make_output_field("ParticleIDs", ULONGLONG, 1,
UNIT_CONV_NO_UNITS, parts, id);
......
......@@ -69,43 +69,43 @@ struct part {
float alpha;
/* Store density/force specific stuff. */
// union {
union {
struct {
struct {
/* Particle velocity divergence. */
float div_v;
/* Particle velocity divergence. */
float div_v;
/* Derivative of particle number density. */
float wcount_dh;
/* Derivative of particle number density. */
float wcount_dh;
/* Particle velocity curl. */
float rot_v[3];
/* Particle velocity curl. */
float rot_v[3];
/* Particle number density. */
float wcount;
/* Particle number density. */
float wcount;
} density;
} density;
struct {
struct {
/* Balsara switch */
float balsara;
/* Balsara switch */
float balsara;
/* Aggregate quantities. */
float POrho2;
/* Aggregate quantities. */
float POrho2;
/* Change in particle energy over time. */
float u_dt;
/* Change in particle energy over time. */
float u_dt;
/* Signal velocity */
float v_sig;
/* Signal velocity */
float v_sig;
/* Sound speed */
float c;
/* Sound speed */
float c;
} force;
//};
} force;
};
/* Particle mass. */
float mass;
......
......@@ -65,7 +65,7 @@ __attribute__((always_inline)) INLINE static void hydro_init_part(
p->density.wcount_dh = 0.f;
p->rho = 0.f;
p->rho_dh = 0.f;
p->div_v = 0.f;
p->density.div_v = 0.f;
p->density.rot_v[0] = 0.f;
p->density.rot_v[1] = 0.f;
p->density.rot_v[2] = 0.f;
......@@ -111,7 +111,7 @@ __attribute__((always_inline)) INLINE static void hydro_end_density(
p->density.rot_v[2] *= ih4 * irho;
/* Finish calculation of the velocity divergence */
p->div_v *= ih4 * irho;
p->density.div_v *= ih4 * irho;
}
/**
......@@ -128,17 +128,31 @@ __attribute__((always_inline)) INLINE static void hydro_prepare_force(
struct part *restrict p, struct xpart *restrict xp, int ti_current,
double timeBase) {
const float fac_mu = 1.f; /* Will change with cosmological integration */
/* Compute the norm of the curl */
p->force.curl_v = sqrtf(p->density.rot_v[0] * p->density.rot_v[0] +
p->density.rot_v[1] * p->density.rot_v[1] +
p->density.rot_v[2] * p->density.rot_v[2]);
const float curl_v = sqrtf(p->density.rot_v[0] * p->density.rot_v[0] +
p->density.rot_v[1] * p->density.rot_v[1] +
p->density.rot_v[2] * p->density.rot_v[2]);
/* Compute the pressure */
const float dt = (ti_current - (p->ti_begin + p->ti_end) / 2) * timeBase;
p->force.pressure = (p->entropy + p->entropy_dt * dt) * pow_gamma(p->rho);
const float dt = (ti_current - (p->ti_begin + p->ti_end) * 0.5f) * timeBase;
const float pressure = (p->entropy + p->force.entropy_dt * dt) * pow_gamma(p->rho);
/* Divide the pressure by the density and density gradient */
const float P_over_rho = pressure / (p->rho * p->rho) * p->rho_dh;
/* Compute the sound speed */
p->force.soundspeed = sqrtf(hydro_gamma * p->force.pressure / p->rho);
const float soundspeed = sqrtf(hydro_gamma * pressure / p->rho);
/* Compute the Balsara switch */
float balsara = fabsf(p->density.div_v) /
(fabsf(p->density.div_v) + curl_v + 0.0001f * p->force.soundspeed / fac_mu / p->h);
/* Update variables. */
p->force.P_over_rho = P_over_rho;
p->force.soundspeed = soundspeed;
p->force.balsara = balsara;
}
/**
......@@ -160,7 +174,7 @@ __attribute__((always_inline)) INLINE static void hydro_reset_acceleration(
p->h_dt = 0.0f;
/* Reset the time derivatives. */
p->entropy_dt = 0.0f;
p->force.entropy_dt = 0.0f;
/* Reset maximal signal velocity */
p->force.v_sig = 0.0f;
......@@ -181,11 +195,18 @@ __attribute__((always_inline)) INLINE static void hydro_predict_extra(
/* Drift the pressure */
const float dt_entr = (t1 - (p->ti_begin + p->ti_end) / 2) * timeBase;
p->force.pressure =
(p->entropy + p->entropy_dt * dt_entr) * pow_gamma(p->rho);
const float pressure =
(p->entropy + p->force.entropy_dt * dt_entr) * pow_gamma(p->rho);
/* Divide the pressure by the density and density gradient */
const float P_over_rho = pressure / (p->rho * p->rho) * p->rho_dh;
/* Compute the new sound speed */
p->force.soundspeed = sqrtf(hydro_gamma * p->force.pressure / p->rho);
const float soundspeed = sqrtf(hydro_gamma * pressure / p->rho);
/* Update variables */
p->force.P_over_rho = P_over_rho;
p->force.soundspeed = soundspeed;
}
/**
......@@ -198,7 +219,7 @@ __attribute__((always_inline)) INLINE static void hydro_predict_extra(
__attribute__((always_inline)) INLINE static void hydro_end_force(
struct part *restrict p) {
p->entropy_dt *= hydro_gamma_minus_one * pow_minus_gamma_minus_one(p->rho);
p->force.entropy_dt *= hydro_gamma_minus_one * pow_minus_gamma_minus_one(p->rho);
}
/**
......@@ -214,15 +235,15 @@ __attribute__((always_inline)) INLINE static void hydro_kick_extra(
float half_dt) {
/* Do not decrease the entropy (temperature) by more than a factor of 2*/
const float entropy_change = p->entropy_dt * dt;
const float entropy_change = p->force.entropy_dt * dt;
if (entropy_change > -0.5f * p->entropy)
p->entropy += entropy_change;
else
p->entropy *= 0.5f;
/* Do not 'overcool' when timestep increases */
if (p->entropy + 0.5f * p->entropy_dt * dt < 0.5f * p->entropy)
p->entropy_dt = -0.5f * p->entropy / dt;
if (p->entropy + 0.5f * p->force.entropy_dt * dt < 0.5f * p->entropy)
p->force.entropy_dt = -0.5f * p->entropy / dt;
}
/**
......@@ -248,7 +269,7 @@ __attribute__((always_inline)) INLINE static void hydro_convert_quantities(
__attribute__((always_inline)) INLINE static float hydro_get_internal_energy(
const struct part *restrict p, float dt) {
const float entropy = p->entropy + p->entropy_dt * dt;
const float entropy = p->entropy + p->force.entropy_dt * dt;
return entropy * pow_gamma_minus_one(p->rho) * hydro_one_over_gamma_minus_one;
}
......@@ -23,15 +23,15 @@ __attribute__((always_inline)) INLINE static void hydro_debug_particle(
"x=[%.3e,%.3e,%.3e], "
"v=[%.3e,%.3e,%.3e],v_full=[%.3e,%.3e,%.3e] \n a=[%.3e,%.3e,%.3e],\n "
"h=%.3e, "
"wcount=%d, wcount_dh=%.3e, m=%.3e, dh_drho=%.3e, rho=%.3e, P=%.3e, "
"wcount=%d, wcount_dh=%.3e, m=%.3e, dh_drho=%.3e, rho=%.3e, P_over_rho=%.3e, "
"S=%.3e, "
"dS/dt=%.3e, c=%.3e\n"
"divV=%.3e, curlV=%.3e, rotV=[%.3e,%.3e,%.3e] \n "
"divV=%.3e, rotV=[%.3e,%.3e,%.3e], balsara=%.3e \n "
"v_sig=%e dh/dt=%.3e t_begin=%d, t_end=%d\n",
p->x[0], p->x[1], p->x[2], p->v[0], p->v[1], p->v[2], xp->v_full[0],
xp->v_full[1], xp->v_full[2], p->a_hydro[0], p->a_hydro[1], p->a_hydro[2],
p->h, (int)p->density.wcount, p->density.wcount_dh, p->mass, p->rho_dh,
p->rho, p->force.pressure, p->entropy, p->entropy_dt, p->force.soundspeed,
p->div_v, p->force.curl_v, p->density.rot_v[0], p->density.rot_v[1],
p->density.rot_v[2], p->force.v_sig, p->h_dt, p->ti_begin, p->ti_end);
p->rho, p->force.P_over_rho, p->entropy, p->force.entropy_dt, p->force.soundspeed,
p->density.div_v, p->density.rot_v[0], p->density.rot_v[1],
p->density.rot_v[2], p->force.balsara, p->force.v_sig, p->h_dt, p->ti_begin, p->ti_end);
}
......@@ -86,8 +86,8 @@ __attribute__((always_inline)) INLINE static void runner_iact_density(
dv[2] = pi->v[2] - pj->v[2];
const float dvdr = dv[0] * dx[0] + dv[1] * dx[1] + dv[2] * dx[2];
pi->div_v -= faci * dvdr;
pj->div_v -= facj * dvdr;
pi->density.div_v -= faci * dvdr;
pj->density.div_v -= facj * dvdr;
/* Compute dv cross r */
curlvr[0] = dv[1] * dx[2] - dv[2] * dx[1];
......@@ -209,13 +209,13 @@ __attribute__((always_inline)) INLINE static void runner_iact_vec_density(
pi[k]->rho_dh -= rhoi_dh.f[k];
pi[k]->density.wcount += wcounti.f[k];
pi[k]->density.wcount_dh -= wcounti_dh.f[k];
pi[k]->div_v -= div_vi.f[k];
pi[k]->density.div_v -= div_vi.f[k];
for (j = 0; j < 3; j++) pi[k]->density.rot_v[j] += curl_vi[j].f[k];
pj[k]->rho += rhoj.f[k];
pj[k]->rho_dh -= rhoj_dh.f[k];
pj[k]->density.wcount += wcountj.f[k];
pj[k]->density.wcount_dh -= wcountj_dh.f[k];
pj[k]->div_v -= div_vj.f[k];
pj[k]->density.div_v -= div_vj.f[k];
for (j = 0; j < 3; j++) pj[k]->density.rot_v[j] += curl_vj[j].f[k];
}
......@@ -263,7 +263,7 @@ __attribute__((always_inline)) INLINE static void runner_iact_nonsym_density(
dv[1] = pi->v[1] - pj->v[1];
dv[2] = pi->v[2] - pj->v[2];
const float dvdr = dv[0] * dx[0] + dv[1] * dx[1] + dv[2] * dx[2];
pi->div_v -= fac * dvdr;
pi->density.div_v -= fac * dvdr;
/* Compute dv cross r */
curlvr[0] = dv[1] * dx[2] - dv[2] * dx[1];
......@@ -363,7 +363,7 @@ runner_iact_nonsym_vec_density(float *R2, float *Dx, float *Hi, float *Hj,
pi[k]->rho_dh -= rhoi_dh.f[k];
pi[k]->density.wcount += wcounti.f[k];
pi[k]->density.wcount_dh -= wcounti_dh.f[k];
pi[k]->div_v -= div_vi.f[k];
pi[k]->density.div_v -= div_vi.f[k];
for (j = 0; j < 3; j++) pi[k]->density.rot_v[j] += curl_vi[j].f[k];
}
......@@ -393,8 +393,6 @@ __attribute__((always_inline)) INLINE static void runner_iact_force(
const float mj = pj->mass;
const float rhoi = pi->rho;
const float rhoj = pj->rho;
const float pressurei = pi->force.pressure;
const float pressurej = pj->force.pressure;
/* Get the kernel for hi. */
const float hi_inv = 1.0f / hi;
......@@ -411,8 +409,8 @@ __attribute__((always_inline)) INLINE static void runner_iact_force(
const float wj_dr = hj2_inv * hj2_inv * wj_dx;
/* Compute gradient terms */
const float P_over_rho_i = pressurei / (rhoi * rhoi) * pi->rho_dh;
const float P_over_rho_j = pressurej / (rhoj * rhoj) * pj->rho_dh;
const float P_over_rho_i = pi->force.P_over_rho;
const float P_over_rho_j = pj->force.P_over_rho;
/* Compute sound speeds */
const float ci = pi->force.soundspeed;
......@@ -424,13 +422,9 @@ __attribute__((always_inline)) INLINE static void runner_iact_force(
(pi->v[2] - pj->v[2]) * dx[2];
/* Balsara term */
const float balsara_i =
fabsf(pi->div_v) /
(fabsf(pi->div_v) + pi->force.curl_v + 0.0001f * ci / fac_mu / hi);
const float balsara_j =
fabsf(pj->div_v) /
(fabsf(pj->div_v) + pj->force.curl_v + 0.0001f * cj / fac_mu / hj);
const float balsara_i = pi->force.balsara;
const float balsara_j = pj->force.balsara;
/* Are the particles moving towards each others ? */
const float omega_ij = fminf(dvdr, 0.f);
const float mu_ij = fac_mu * r_inv * omega_ij; /* This is 0 or negative */
......@@ -468,8 +462,8 @@ __attribute__((always_inline)) INLINE static void runner_iact_force(
pj->force.v_sig = fmaxf(pj->force.v_sig, v_sig);
/* Change in entropy */
pi->entropy_dt += 0.5f * mj * visc_term * dvdr;
pj->entropy_dt -= 0.5f * mi * visc_term * dvdr;
pi->force.entropy_dt += 0.5f * mj * visc_term * dvdr;
pj->force.entropy_dt -= 0.5f * mi * visc_term * dvdr;
}
/**
......@@ -501,8 +495,6 @@ __attribute__((always_inline)) INLINE static void runner_iact_nonsym_force(
const float mj = pj->mass;
const float rhoi = pi->rho;
const float rhoj = pj->rho;
const float pressurei = pi->force.pressure;
const float pressurej = pj->force.pressure;
/* Get the kernel for hi. */
const float hi_inv = 1.0f / hi;
......@@ -519,8 +511,8 @@ __attribute__((always_inline)) INLINE static void runner_iact_nonsym_force(
const float wj_dr = hj2_inv * hj2_inv * wj_dx;
/* Compute gradient terms */
const float P_over_rho_i = pressurei / (rhoi * rhoi) * pi->rho_dh;
const float P_over_rho_j = pressurej / (rhoj * rhoj) * pj->rho_dh;
const float P_over_rho_i = pi->force.P_over_rho;
const float P_over_rho_j = pj->force.P_over_rho;
/* Compute sound speeds */
const float ci = pi->force.soundspeed;
......@@ -532,12 +524,8 @@ __attribute__((always_inline)) INLINE static void runner_iact_nonsym_force(
(pi->v[2] - pj->v[2]) * dx[2];
/* Balsara term */
const float balsara_i =
fabsf(pi->div_v) /
(fabsf(pi->div_v) + pi->force.curl_v + 0.0001f * ci / fac_mu / hi);
const float balsara_j =
fabsf(pj->div_v) /
(fabsf(pj->div_v) + pj->force.curl_v + 0.0001f * cj / fac_mu / hj);
const float balsara_i = pi->force.balsara;
const float balsara_j = pj->force.balsara;
/* Are the particles moving towards each others ? */
const float omega_ij = fminf(dvdr, 0.f);
......@@ -570,7 +558,7 @@ __attribute__((always_inline)) INLINE static void runner_iact_nonsym_force(
pi->force.v_sig = fmaxf(pi->force.v_sig, v_sig);
/* Change in entropy */
pi->entropy_dt += 0.5f * mj * visc_term * dvdr;
pi->force.entropy_dt += 0.5f * mj * visc_term * dvdr;
}
/**
......
......@@ -17,6 +17,7 @@
*
******************************************************************************/
#include "adiabatic_index.h"
#include "io_properties.h"
#include "kernel_hydro.h"
......@@ -42,7 +43,7 @@ void hydro_read_particles(struct part* parts, struct io_props* list,
list[3] = io_make_input_field("SmoothingLength", FLOAT, 1, COMPULSORY,
UNIT_CONV_LENGTH, parts, h);
list[4] = io_make_input_field("InternalEnergy", FLOAT, 1, COMPULSORY,
UNIT_CONV_ENERGY, parts, entropy);
UNIT_CONV_ENERGY_PER_UNIT_MASS, parts, entropy);
list[5] = io_make_input_field("ParticleIDs", ULONGLONG, 1, COMPULSORY,
UNIT_CONV_NO_UNITS, parts, id);
list[6] = io_make_input_field("Accelerations", FLOAT, 3, OPTIONAL,
......@@ -51,6 +52,12 @@ void hydro_read_particles(struct part* parts, struct io_props* list,
UNIT_CONV_DENSITY, parts, rho);
}
float convert_u(struct engine* e, struct part* p) {
return p->entropy * pow_gamma_minus_one(p->rho) *
hydro_one_over_gamma_minus_one;
}
/**
* @brief Specifies which particle fields to write to a dataset
*
......@@ -61,7 +68,7 @@ void hydro_read_particles(struct part* parts, struct io_props* list,
void hydro_write_particles(struct part* parts, struct io_props* list,
int* num_fields) {
*num_fields = 8;
*num_fields = 9;
/* List what we want to write */
list[0] = io_make_output_field("Coordinates", DOUBLE, 3, UNIT_CONV_LENGTH,
......@@ -80,6 +87,9 @@ void hydro_write_particles(struct part* parts, struct io_props* list,
UNIT_CONV_ACCELERATION, parts, a_hydro);
list[7] =
io_make_output_field("Density", FLOAT, 1, UNIT_CONV_DENSITY, parts, rho);
list[8] = io_make_output_field_convert_part("InternalEnergy", FLOAT, 1,
UNIT_CONV_ENERGY_PER_UNIT_MASS,
parts, rho, convert_u);
}
/**
......@@ -102,4 +112,4 @@ void writeSPHflavour(hid_t h_grpsph) {
*
* @return 1 if entropy is in 'internal energy', 0 otherwise.
*/
int writeEntropyFlag() { return 1; }
int writeEntropyFlag() { return 0; }
......@@ -25,6 +25,8 @@ struct xpart {
/* Velocity at the last full step. */
float v_full[3];
} __attribute__((aligned(xpart_align)));
......@@ -55,15 +57,12 @@ struct part {
/* Particle density. */
float rho;
/* Derivative of the density with respect to this particle's smoothing length.
*/
float rho_dh;
/* Particle entropy. */
float entropy;
/* Entropy time derivative */
float entropy_dt;
/* Derivative of the density with respect to this particle's smoothing length.
*/
float rho_dh;
/* Particle mass. */
float mass;
......@@ -72,37 +71,40 @@ struct part {
struct {
/* Number of neighbours */
/* Number of neighbours. */
float wcount;
/* Number of neighbours spatial derivative */
/* Number of neighbours spatial derivative. */
float wcount_dh;
/* Velocity curl components */
/* Particle velocity curl. */
float rot_v[3];
/* Particle velocity divergence. */
float div_v;
} density;
struct {
/* Velocity curl norm*/
float curl_v;
/* Balsara switch */
float balsara;
/* Signal velocity */
/* Signal velocity. */
float v_sig;
/* Particle pressure */
float pressure;
/* Pressure over density*/
float P_over_rho;
/* Particle sound speed */
/* Particle sound speed. */
float soundspeed;
/* Entropy time derivative */
float entropy_dt;
} force;
};
/* Velocity divergence */
float div_v;
/* Particle ID. */
long long id;
......
......@@ -42,7 +42,7 @@ void hydro_read_particles(struct part* parts, struct io_props* list,
list[3] = io_make_input_field("SmoothingLength", FLOAT, 1, COMPULSORY,
UNIT_CONV_LENGTH, parts, h);
list[4] = io_make_input_field("InternalEnergy", FLOAT, 1, COMPULSORY,
UNIT_CONV_ENERGY, parts, u);
UNIT_CONV_ENERGY_PER_UNIT_MASS, parts, u);
list[5] = io_make_input_field("ParticleIDs", ULONGLONG, 1, COMPULSORY,
UNIT_CONV_NO_UNITS, parts, id);
list[6] = io_make_input_field("Accelerations", FLOAT, 3, OPTIONAL,
......@@ -72,7 +72,7 @@ void hydro_write_particles(struct part* parts, struct io_props* list,
io_make_output_field("Masses", FLOAT, 1, UNIT_CONV_MASS, parts, mass);
list[3] = io_make_output_field("SmoothingLength", FLOAT, 1, UNIT_CONV_LENGTH,
parts, h);
list[4] = io_make_output_field("Entropy", FLOAT, 1,
list[4] = io_make_output_field("InternalEnergy", FLOAT, 1,
UNIT_CONV_ENERGY_PER_UNIT_MASS, parts, u);
list[5] = io_make_output_field("ParticleIDs", ULONGLONG, 1,
UNIT_CONV_NO_UNITS, parts, id);
......
......@@ -54,6 +54,16 @@ struct io_props {
/* The size of the particles */
size_t partSize;
/* The particle arrays */
struct part* parts;
struct gpart* gparts;
/* Conversion function for part */
float (*convert_part)(struct engine*, struct part*);
/* Conversion function for gpart */
float (*convert_gpart)(struct engine*, struct gpart*);
};
/**
......@@ -68,7 +78,7 @@ struct io_props {
*
* @param name Name of the field to read
* @param type The type of the data