diff --git a/src/equation_of_state.c b/src/equation_of_state.c index a792bc58cf13fa5f710dc1cd80713ff90e700b18..67557d604ae74d24a19b8049cfdf86bd5cc238ad 100644 --- a/src/equation_of_state.c +++ b/src/equation_of_state.c @@ -20,48 +20,7 @@ /* This object's header. */ #include "equation_of_state.h" -/* local headers */ -#include "common_io.h" - /* Equation of state for the physics model * (temporary ugly solution as a global variable) */ struct eos_parameters eos; -void eos_init(struct eos_parameters *e, const struct swift_params *params) { - -#if defined(EOS_IDEAL_GAS) -/* nothing to do here */ -#elif defined(EOS_ISOTHERMAL_GAS) - e->isothermal_internal_energy = - parser_get_param_float(params, "EoS:isothermal_internal_energy"); -#endif -} - -void eos_print(const struct eos_parameters *e) { - -#if defined(EOS_IDEAL_GAS) - message("Equation of state: Ideal gas."); -#elif defined(EOS_ISOTHERMAL_GAS) - message( - "Equation of state: Isothermal with internal energy " - "per unit mass set to %f.", - e->isothermal_internal_energy); -#endif - - message("Adiabatic index gamma: %f.", hydro_gamma); -} - -#if defined(HAVE_HDF5) -void eos_print_snapshot(hid_t h_grpsph, const struct eos_parameters *e) { - - io_write_attribute_f(h_grpsph, "Adiabatic index", hydro_gamma); - -#if defined(EOS_IDEAL_GAS) - io_write_attribute_s(h_grpsph, "Equation of state", "Ideal gas"); -#elif defined(EOS_ISOTHERMAL_GAS) - io_write_attribute_s(h_grpsph, "Equation of state", "Isothermal gas"); - io_write_attribute_f(h_grpsph, "Thermal energy per unit mass", - e->isothermal_internal_energy); -#endif -} -#endif diff --git a/src/equation_of_state.h b/src/equation_of_state.h index 76b8bb922133c9c4f29453a14068fe3f9044d66f..c678a90e3ffa5e29d964b00303cadbb8554778df 100644 --- a/src/equation_of_state.h +++ b/src/equation_of_state.h @@ -19,325 +19,16 @@ #ifndef SWIFT_EQUATION_OF_STATE_H #define SWIFT_EQUATION_OF_STATE_H -/** - * @file equation_of_state.h - * @brief Defines the equation of state of the gas we simulate in the form of - * relations between thermodynamic quantities. These are later used internally - * by all hydro schemes - */ - /* Config parameters. */ #include "../config.h" -/* Some standard headers. */ -#include <math.h> - -/* Local headers. */ -#include "adiabatic_index.h" -#include "debug.h" -#include "inline.h" - -extern struct eos_parameters eos; - -/* ------------------------------------------------------------------------- */ +/* Import the right functions */ #if defined(EOS_IDEAL_GAS) - -struct eos_parameters {}; - -/** - * @brief Returns the internal energy given density and entropy - * - * Computes \f$u = \frac{S\rho^{\gamma-1} }{\gamma - 1}\f$. - * - * @param density The density \f$\rho\f$. - * @param entropy The entropy \f$S\f$. - */ -__attribute__((always_inline)) INLINE static float -gas_internal_energy_from_entropy(float density, float entropy) { - - return entropy * pow_gamma_minus_one(density) * - hydro_one_over_gamma_minus_one; -} - -/** - * @brief Returns the pressure given density and entropy - * - * Computes \f$P = S\rho^\gamma\f$. - * - * @param density The density \f$\rho\f$. - * @param entropy The entropy \f$S\f$. - */ -__attribute__((always_inline)) INLINE static float gas_pressure_from_entropy( - float density, float entropy) { - - return entropy * pow_gamma(density); -} - -/** - * @brief Returns the entropy given density and pressure. - * - * Computes \f$A = \frac{P}{\rho^\gamma}\f$. - * - * @param density The density \f$\rho\f$. - * @param pressure The pressure \f$P\f$. - * @return The entropy \f$A\f$. - */ -__attribute__((always_inline)) INLINE static float gas_entropy_from_pressure( - float density, float pressure) { - - return pressure * pow_minus_gamma(density); -} - -/** - * @brief Returns the sound speed given density and entropy - * - * Computes \f$c = \sqrt{\gamma S \rho^{\gamma-1}}\f$. - * - * @param density The density \f$\rho\f$. - * @param entropy The entropy \f$S\f$. - */ -__attribute__((always_inline)) INLINE static float gas_soundspeed_from_entropy( - float density, float entropy) { - - return sqrtf(hydro_gamma * pow_gamma_minus_one(density) * entropy); -} - -/** - * @brief Returns the entropy given density and internal energy - * - * Computes \f$S = \frac{(\gamma - 1)u}{\rho^{\gamma-1}}\f$. - * - * @param density The density \f$\rho\f$ - * @param u The internal energy \f$u\f$ - */ -__attribute__((always_inline)) INLINE static float -gas_entropy_from_internal_energy(float density, float u) { - - return hydro_gamma_minus_one * u * pow_minus_gamma_minus_one(density); -} - -/** - * @brief Returns the pressure given density and internal energy - * - * Computes \f$P = (\gamma - 1)u\rho\f$. - * - * @param density The density \f$\rho\f$ - * @param u The internal energy \f$u\f$ - */ -__attribute__((always_inline)) INLINE static float -gas_pressure_from_internal_energy(float density, float u) { - - return hydro_gamma_minus_one * u * density; -} - -/** - * @brief Returns the internal energy given density and pressure. - * - * Computes \f$u = \frac{1}{\gamma - 1}\frac{P}{\rho}\f$. - * - * @param density The density \f$\rho\f$. - * @param pressure The pressure \f$P\f$. - * @return The internal energy \f$u\f$. - */ -__attribute__((always_inline)) INLINE static float -gas_internal_energy_from_pressure(float density, float pressure) { - return hydro_one_over_gamma_minus_one * pressure / density; -} - -/** - * @brief Returns the sound speed given density and internal energy - * - * Computes \f$c = \sqrt{\gamma (\gamma - 1) u }\f$. - * - * @param density The density \f$\rho\f$ - * @param u The internal energy \f$u\f$ - */ -__attribute__((always_inline)) INLINE static float -gas_soundspeed_from_internal_energy(float density, float u) { - - return sqrtf(u * hydro_gamma * hydro_gamma_minus_one); -} - -/** - * @brief Returns the sound speed given density and pressure - * - * Computes \f$c = \sqrt{\frac{\gamma P}{\rho} }\f$. - * - * @param density The density \f$\rho\f$ - * @param P The pressure \f$P\f$ - */ -__attribute__((always_inline)) INLINE static float gas_soundspeed_from_pressure( - float density, float P) { - - const float density_inv = 1.f / density; - return sqrtf(hydro_gamma * P * density_inv); -} - -/* ------------------------------------------------------------------------- */ +#include "./equation_of_state/ideal_gas/equation_of_state.h" #elif defined(EOS_ISOTHERMAL_GAS) - -struct eos_parameters { - - /*! Thermal energy per unit mass */ - float isothermal_internal_energy; -}; - -/** - * @brief Returns the internal energy given density and entropy - * - * Since we are using an isothermal EoS, the entropy and density values are - * ignored. - * Computes \f$u = u_{cst}\f$. - * - * @param density The density \f$\rho\f$. - * @param entropy The entropy \f$S\f$. - */ -__attribute__((always_inline)) INLINE static float -gas_internal_energy_from_entropy(float density, float entropy) { - - return eos.isothermal_internal_energy; -} - -/** - * @brief Returns the pressure given density and entropy - * - * Since we are using an isothermal EoS, the entropy value is ignored. - * Computes \f$P = (\gamma - 1)u_{cst}\rho\f$. - * - * @param density The density \f$\rho\f$. - * @param entropy The entropy \f$S\f$. - */ -__attribute__((always_inline)) INLINE static float gas_pressure_from_entropy( - float density, float entropy) { - - return hydro_gamma_minus_one * eos.isothermal_internal_energy * density; -} - -/** - * @brief Returns the entropy given density and pressure. - * - * Since we are using an isothermal EoS, the pressure value is ignored. - * Computes \f$A = (\gamma - 1)u_{cst}\rho^{-(\gamma-1)}\f$. - * - * @param density The density \f$\rho\f$. - * @param pressure The pressure \f$P\f$ (ignored). - * @return The entropy \f$A\f$. - */ -__attribute__((always_inline)) INLINE static float gas_entropy_from_pressure( - float density, float pressure) { - - return hydro_gamma_minus_one * eos.isothermal_internal_energy * - pow_minus_gamma_minus_one(density); -} - -/** - * @brief Returns the sound speed given density and entropy - * - * Since we are using an isothermal EoS, the entropy and density values are - * ignored. - * Computes \f$c = \sqrt{u_{cst} \gamma (\gamma-1)}\f$. - * - * @param density The density \f$\rho\f$. - * @param entropy The entropy \f$S\f$. - */ -__attribute__((always_inline)) INLINE static float gas_soundspeed_from_entropy( - float density, float entropy) { - - return sqrtf(eos.isothermal_internal_energy * hydro_gamma * - hydro_gamma_minus_one); -} - -/** - * @brief Returns the entropy given density and internal energy - * - * Since we are using an isothermal EoS, the energy value is ignored. - * Computes \f$S = \frac{(\gamma - 1)u_{cst}}{\rho^{\gamma-1}}\f$. - * - * @param density The density \f$\rho\f$ - * @param u The internal energy \f$u\f$ - */ -__attribute__((always_inline)) INLINE static float -gas_entropy_from_internal_energy(float density, float u) { - - return hydro_gamma_minus_one * eos.isothermal_internal_energy * - pow_minus_gamma_minus_one(density); -} - -/** - * @brief Returns the pressure given density and internal energy - * - * Since we are using an isothermal EoS, the energy value is ignored. - * Computes \f$P = (\gamma - 1)u_{cst}\rho\f$. - * - * @param density The density \f$\rho\f$ - * @param u The internal energy \f$u\f$ - */ -__attribute__((always_inline)) INLINE static float -gas_pressure_from_internal_energy(float density, float u) { - - return hydro_gamma_minus_one * eos.isothermal_internal_energy * density; -} - -/** - * @brief Returns the internal energy given density and pressure. - * - * Just returns the constant internal energy. - * - * @param density The density \f$\rho\f$ (ignored). - * @param pressure The pressure \f$P\f$ (ignored). - * @return The internal energy \f$u\f$ (which is constant). - */ -__attribute__((always_inline)) INLINE static float -gas_internal_energy_from_pressure(float density, float pressure) { - return eos.isothermal_internal_energy; -} - -/** - * @brief Returns the sound speed given density and internal energy - * - * Since we are using an isothermal EoS, the energy and density values are - * ignored. - * Computes \f$c = \sqrt{u_{cst} \gamma (\gamma-1)}\f$. - * - * @param density The density \f$\rho\f$ - * @param u The internal energy \f$u\f$ - */ -__attribute__((always_inline)) INLINE static float -gas_soundspeed_from_internal_energy(float density, float u) { - - return sqrtf(eos.isothermal_internal_energy * hydro_gamma * - hydro_gamma_minus_one); -} - -/** - * @brief Returns the sound speed given density and pressure - * - * Since we are using an isothermal EoS, the pressure and density values are - * ignored. - * Computes \f$c = \sqrt{u_{cst} \gamma (\gamma-1)}\f$. - * - * @param density The density \f$\rho\f$ - * @param P The pressure \f$P\f$ - */ -__attribute__((always_inline)) INLINE static float gas_soundspeed_from_pressure( - float density, float P) { - - return sqrtf(eos.isothermal_internal_energy * hydro_gamma * - hydro_gamma_minus_one); -} - -/* ------------------------------------------------------------------------- */ +#include "./equation_of_state/isothermal/equation_of_state.h" #else - -#error "An Equation of state needs to be chosen in const.h !" - -#endif - -void eos_init(struct eos_parameters *e, const struct swift_params *params); -void eos_print(const struct eos_parameters *e); - -#if defined(HAVE_HDF5) -void eos_print_snapshot(hid_t h_grpsph, const struct eos_parameters *e); +#error "Invalid choice of equation of state" #endif #endif /* SWIFT_EQUATION_OF_STATE_H */ diff --git a/src/equation_of_state/ideal_gas/equation_of_state.h b/src/equation_of_state/ideal_gas/equation_of_state.h new file mode 100644 index 0000000000000000000000000000000000000000..e668f65580c50191cf53dac567e60019b11b7066 --- /dev/null +++ b/src/equation_of_state/ideal_gas/equation_of_state.h @@ -0,0 +1,218 @@ +/******************************************************************************* + * This file is part of SWIFT. + * Copyright (c) 2016 Matthieu Schaller (matthieu.schaller@durham.ac.uk). + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU Lesser General Public License as published + * by the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. + * + ******************************************************************************/ +#ifndef SWIFT_IDEAL_GAS_EQUATION_OF_STATE_H +#define SWIFT_IDEAL_GAS_EQUATION_OF_STATE_H + +/** + * @file equation_of_state.h + * @brief Defines the equation of state of the gas we simulate in the form of + * relations between thermodynamic quantities. These are later used internally + * by all hydro schemes + */ + +/* Config parameters. */ +#include "../config.h" + +/* Some standard headers. */ +#include <math.h> + +/* Local headers. */ +#include "adiabatic_index.h" +#include "common_io.h" +#include "debug.h" +#include "inline.h" + +extern struct eos_parameters eos; +/* ------------------------------------------------------------------------- */ + +struct eos_parameters {}; + +/** + * @brief Returns the internal energy given density and entropy + * + * Computes \f$u = \frac{S\rho^{\gamma-1} }{\gamma - 1}\f$. + * + * @param density The density \f$\rho\f$. + * @param entropy The entropy \f$S\f$. + */ +__attribute__((always_inline)) INLINE static float +gas_internal_energy_from_entropy(float density, float entropy) { + + return entropy * pow_gamma_minus_one(density) * + hydro_one_over_gamma_minus_one; +} + +/** + * @brief Returns the pressure given density and entropy + * + * Computes \f$P = S\rho^\gamma\f$. + * + * @param density The density \f$\rho\f$. + * @param entropy The entropy \f$S\f$. + */ +__attribute__((always_inline)) INLINE static float gas_pressure_from_entropy( + float density, float entropy) { + + return entropy * pow_gamma(density); +} + +/** + * @brief Returns the entropy given density and pressure. + * + * Computes \f$A = \frac{P}{\rho^\gamma}\f$. + * + * @param density The density \f$\rho\f$. + * @param pressure The pressure \f$P\f$. + * @return The entropy \f$A\f$. + */ +__attribute__((always_inline)) INLINE static float gas_entropy_from_pressure( + float density, float pressure) { + + return pressure * pow_minus_gamma(density); +} + +/** + * @brief Returns the sound speed given density and entropy + * + * Computes \f$c = \sqrt{\gamma S \rho^{\gamma-1}}\f$. + * + * @param density The density \f$\rho\f$. + * @param entropy The entropy \f$S\f$. + */ +__attribute__((always_inline)) INLINE static float gas_soundspeed_from_entropy( + float density, float entropy) { + + return sqrtf(hydro_gamma * pow_gamma_minus_one(density) * entropy); +} + +/** + * @brief Returns the entropy given density and internal energy + * + * Computes \f$S = \frac{(\gamma - 1)u}{\rho^{\gamma-1}}\f$. + * + * @param density The density \f$\rho\f$ + * @param u The internal energy \f$u\f$ + */ +__attribute__((always_inline)) INLINE static float +gas_entropy_from_internal_energy( + float density, float u) { + + return hydro_gamma_minus_one * u * pow_minus_gamma_minus_one(density); +} + +/** + * @brief Returns the pressure given density and internal energy + * + * Computes \f$P = (\gamma - 1)u\rho\f$. + * + * @param density The density \f$\rho\f$ + * @param u The internal energy \f$u\f$ + */ +__attribute__((always_inline)) INLINE static float +gas_pressure_from_internal_energy( + float density, float u) { + + return hydro_gamma_minus_one * u * density; +} + +/** + * @brief Returns the internal energy given density and pressure. + * + * Computes \f$u = \frac{1}{\gamma - 1}\frac{P}{\rho}\f$. + * + * @param density The density \f$\rho\f$. + * @param pressure The pressure \f$P\f$. + * @return The internal energy \f$u\f$. + */ +__attribute__((always_inline)) INLINE static float +gas_internal_energy_from_pressure( + float density, float pressure) { + return hydro_one_over_gamma_minus_one * pressure / density; +} + +/** + * @brief Returns the sound speed given density and internal energy + * + * Computes \f$c = \sqrt{\gamma (\gamma - 1) u }\f$. + * + * @param density The density \f$\rho\f$ + * @param u The internal energy \f$u\f$ + */ +__attribute__((always_inline)) INLINE static float +gas_soundspeed_from_internal_energy( + float density, float u) { + + return sqrtf(u * hydro_gamma * hydro_gamma_minus_one); +} + +/** + * @brief Returns the sound speed given density and pressure + * + * Computes \f$c = \sqrt{\frac{\gamma P}{\rho} }\f$. + * + * @param density The density \f$\rho\f$ + * @param P The pressure \f$P\f$ + */ +__attribute__((always_inline)) INLINE static float gas_soundspeed_from_pressure( + float density, float P) { + + const float density_inv = 1.f / density; + return sqrtf(hydro_gamma * P * density_inv); +} + +/** + * @brief Initialize the eos parameters + * + * @param e The #eos_paramters + * @param params The parsed parameters + */ +__attribute__((always_inline)) INLINE static void eos_init( + struct eos_parameters *e, const struct swift_params *params) {} + +/** + * @brief Print the equation of state + * + * @param e The #eos_parameters + */ +__attribute__((always_inline)) INLINE static void eos_print( + const struct eos_parameters *e) { + + message("Equation of state: Ideal gas."); + + message("Adiabatic index gamma: %f.", hydro_gamma); +} + + +#if defined(HAVE_HDF5) +/** + * @brief Write equation of state information to the snapshot + * + * @param h_grpsph The HDF5 group in which to write + * @param e The #eos_parameters + */ +__attribute__((always_inline)) INLINE static void eos_print_snapshot( + hid_t h_grpsph, const struct eos_parameters *e ) { + + io_write_attribute_f(h_grpsph, "Adiabatic index", hydro_gamma); + + io_write_attribute_s(h_grpsph, "Equation of state", "Ideal gas"); +} +#endif + +#endif /* SWIFT_IDEAL_GAS_EQUATION_OF_STATE_H */ diff --git a/src/equation_of_state/isothermal/equation_of_state.h b/src/equation_of_state/isothermal/equation_of_state.h new file mode 100644 index 0000000000000000000000000000000000000000..ccd1450e3e5b29d53d787762114343f633050753 --- /dev/null +++ b/src/equation_of_state/isothermal/equation_of_state.h @@ -0,0 +1,247 @@ +/******************************************************************************* + * This file is part of SWIFT. + * Copyright (c) 2016 Matthieu Schaller (matthieu.schaller@durham.ac.uk). + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU Lesser General Public License as published + * by the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. + * + ******************************************************************************/ +#ifndef SWIFT_ISOTHERMAL_EQUATION_OF_STATE_H +#define SWIFT_ISOTHERMAL_EQUATION_OF_STATE_H + +/** + * @file equation_of_state.h + * @brief Defines the equation of state of the gas we simulate in the form of + * relations between thermodynamic quantities. These are later used internally + * by all hydro schemes + */ + +/* Config parameters. */ +#include "../config.h" + +/* Some standard headers. */ +#include <math.h> + +/* Local headers. */ +#include "adiabatic_index.h" +#include "common_io.h" +#include "debug.h" +#include "inline.h" + +extern struct eos_parameters eos; +/* ------------------------------------------------------------------------- */ + +struct eos_parameters { + + /*! Thermal energy per unit mass */ + float isothermal_internal_energy; +}; + +/** + * @brief Returns the internal energy given density and entropy + * + * Since we are using an isothermal EoS, the entropy and density values are + * ignored. + * Computes \f$u = u_{cst}\f$. + * + * @param density The density \f$\rho\f$. + * @param entropy The entropy \f$S\f$. + */ +__attribute__((always_inline)) INLINE static float +gas_internal_energy_from_entropy(float density, float entropy) { + + return eos.isothermal_internal_energy; +} + +/** + * @brief Returns the pressure given density and entropy + * + * Since we are using an isothermal EoS, the entropy value is ignored. + * Computes \f$P = (\gamma - 1)u_{cst}\rho\f$. + * + * @param density The density \f$\rho\f$. + * @param entropy The entropy \f$S\f$. + */ +__attribute__((always_inline)) INLINE static float gas_pressure_from_entropy( + float density, float entropy) { + + return hydro_gamma_minus_one * eos.isothermal_internal_energy * density; +} + +/** + * @brief Returns the entropy given density and pressure. + * + * Since we are using an isothermal EoS, the pressure value is ignored. + * Computes \f$A = (\gamma - 1)u_{cst}\rho^{-(\gamma-1)}\f$. + * + * @param density The density \f$\rho\f$. + * @param pressure The pressure \f$P\f$ (ignored). + * @return The entropy \f$A\f$. + */ +__attribute__((always_inline)) INLINE static float gas_entropy_from_pressure( + float density, float pressure) { + + return hydro_gamma_minus_one * eos.isothermal_internal_energy * + pow_minus_gamma_minus_one(density); +} + +/** + * @brief Returns the sound speed given density and entropy + * + * Since we are using an isothermal EoS, the entropy and density values are + * ignored. + * Computes \f$c = \sqrt{u_{cst} \gamma (\gamma-1)}\f$. + * + * @param density The density \f$\rho\f$. + * @param entropy The entropy \f$S\f$. + */ +__attribute__((always_inline)) INLINE static float gas_soundspeed_from_entropy( + float density, float entropy) { + + return sqrtf(eos.isothermal_internal_energy * hydro_gamma * + hydro_gamma_minus_one); +} + +/** + * @brief Returns the entropy given density and internal energy + * + * Since we are using an isothermal EoS, the energy value is ignored. + * Computes \f$S = \frac{(\gamma - 1)u_{cst}}{\rho^{\gamma-1}}\f$. + * + * @param density The density \f$\rho\f$ + * @param u The internal energy \f$u\f$ + */ +__attribute__((always_inline)) INLINE static float +gas_entropy_from_internal_energy( + float density, float u) { + + return hydro_gamma_minus_one * eos.isothermal_internal_energy * + pow_minus_gamma_minus_one(density); +} + +/** + * @brief Returns the pressure given density and internal energy + * + * Since we are using an isothermal EoS, the energy value is ignored. + * Computes \f$P = (\gamma - 1)u_{cst}\rho\f$. + * + * @param density The density \f$\rho\f$ + * @param u The internal energy \f$u\f$ + */ +__attribute__((always_inline)) INLINE static float +gas_pressure_from_internal_energy( + float density, float u) { + + return hydro_gamma_minus_one * eos.isothermal_internal_energy * density; +} + +/** + * @brief Returns the internal energy given density and pressure. + * + * Just returns the constant internal energy. + * + * @param density The density \f$\rho\f$ (ignored). + * @param pressure The pressure \f$P\f$ (ignored). + * @return The internal energy \f$u\f$ (which is constant). + */ +__attribute__((always_inline)) INLINE static float +gas_internal_energy_from_pressure( + float density, float pressure) { + return eos.isothermal_internal_energy; +} + +/** + * @brief Returns the sound speed given density and internal energy + * + * Since we are using an isothermal EoS, the energy and density values are + * ignored. + * Computes \f$c = \sqrt{u_{cst} \gamma (\gamma-1)}\f$. + * + * @param density The density \f$\rho\f$ + * @param u The internal energy \f$u\f$ + */ +__attribute__((always_inline)) INLINE static float +gas_soundspeed_from_internal_energy( + float density, float u) { + + return sqrtf(eos.isothermal_internal_energy * hydro_gamma * + hydro_gamma_minus_one); +} + +/** + * @brief Returns the sound speed given density and pressure + * + * Since we are using an isothermal EoS, the pressure and density values are + * ignored. + * Computes \f$c = \sqrt{u_{cst} \gamma (\gamma-1)}\f$. + * + * @param density The density \f$\rho\f$ + * @param P The pressure \f$P\f$ + */ +__attribute__((always_inline)) INLINE static float gas_soundspeed_from_pressure( + float density, float P) { + + return sqrtf(eos.isothermal_internal_energy * hydro_gamma * + hydro_gamma_minus_one); +} + +/* ------------------------------------------------------------------------- */ + +/** + * @brief Initialize the eos parameters + * + * @param e The #eos_paramters + * @param params The parsed parameters + */ +__attribute__((always_inline)) INLINE static void eos_init( + struct eos_parameters *e, const struct swift_params *params) { + + e->isothermal_internal_energy = + parser_get_param_float(params, "EoS:isothermal_internal_energy"); +} + +/** + * @brief Print the equation of state + * + * @param e The #eos_parameters + */ +__attribute__((always_inline)) INLINE static void eos_print( + const struct eos_parameters *e) { + + message( + "Equation of state: Isothermal with internal energy " + "per unit mass set to %f.", + e->isothermal_internal_energy); + + message("Adiabatic index gamma: %f.", hydro_gamma); +} + +#if defined(HAVE_HDF5) +/** + * @brief Write equation of state information to the snapshot + * + * @param h_grpsph The HDF5 group in which to write + * @param e The #eos_parameters + */ +__attribute__((always_inline)) INLINE static void eos_print_snapshot( + hid_t h_grpsph, const struct eos_parameters *e) { + + io_write_attribute_f(h_grpsph, "Adiabatic index", hydro_gamma); + + io_write_attribute_s(h_grpsph, "Equation of state", "Isothermal gas"); + io_write_attribute_f(h_grpsph, "Thermal energy per unit mass", + e->isothermal_internal_energy); +} +#endif + +#endif /* SWIFT_ISOTHERMAL_EQUATION_OF_STATE_H */