Commit d50a7bb1 by Matthieu Schaller

### Added expressions for the 5th order derivatives to the documentation.

parent bb5ea549
 ... ... @@ -60,12 +60,14 @@ reproduced here for completeness), we can now build all the relevent derivatives \mathsf{\tilde{D}}_{1}(r, u, H) \nonumber \end{align} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \noindent\rule{6cm}{0.4pt} \begin{align} \mathsf{D}_{100}(\mathbf{r}) = \frac{\partial}{\partial r_x} \varphi (\mathbf{r},H) = r_x \mathsf{\tilde{D}}_{3}(r, u, H) \nonumber \end{align} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \noindent\rule{6cm}{0.4pt} \begin{align} \mathsf{D}_{200}(\mathbf{r}) = \frac{\partial^2}{\partial r_x^2} \varphi (\mathbf{r},H) = ... ... @@ -78,6 +80,7 @@ r_x^2 \mathsf{\tilde{D}}_{5}(r, u, H) + r_x r_y \mathsf{\tilde{D}}_{5}(r, u, H) \nonumber \end{align} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \noindent\rule{6cm}{0.4pt} \begin{align} \mathsf{D}_{300}(\mathbf{r}) = \frac{\partial^3}{\partial r_x^3} \varphi (\mathbf{r},H) = ... ... @@ -96,6 +99,7 @@ r_y \mathsf{\tilde{D}}_{5}(r, u, H) \nonumber r_x r_y r_z \mathsf{\tilde{D}}_{7}(r, u, H) \nonumber \end{align} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \noindent\rule{6cm}{0.4pt} \begin{align} \mathsf{D}_{400}(\mathbf{r}) &= \frac{\partial^4}{\partial r_x^4} ... ... @@ -132,8 +136,75 @@ r_y \mathsf{\tilde{D}}_{5}(r, u, H) \nonumber \nonumber \end{align} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \noindent\rule{6cm}{0.4pt} \begin{align} \mathsf{D}_{500}(\mathbf{r}) &= \frac{\partial^5}{\partial r_x^5} \varphi (\mathbf{r},H) = r_x^5 \mathsf{\tilde{D}}_{11}(r, u, H) + 10r_x^3\mathsf{\tilde{D}}_{9}(r, u, H) + 15r_x\mathsf{\tilde{D}}_{7}(r, u, H) \nonumber \end{align} \begin{align} \mathsf{D}_{410}(\mathbf{r}) &= \frac{\partial^5}{\partial r_x^4 \partial r_y} \varphi (\mathbf{r},H) = r_x^4 r_y \mathsf{\tilde{D}}_{11}(r, u, H) + 6 r_x^2 r_y \mathsf{\tilde{D}}_{9}(r, u, H) + 3 r_y \mathsf{\tilde{D}}_{7}(r, u, H) \nonumber \end{align} \begin{align} \mathsf{D}_{320}(\mathbf{r}) &= \frac{\partial^5}{\partial r_x^3 \partial r_y^2} \varphi (\mathbf{r},H) = r_x^3 r_y^2 \mathsf{\tilde{D}}_{11}(r, u, H) + r_x^3 \mathsf{\tilde{D}}_{9}(r, u, H) + 3 r_x r_y^2 \mathsf{\tilde{D}}_{9}(r, u, H) + 3 r_x \mathsf{\tilde{D}}_{7}(r, u, H) \nonumber \end{align} \begin{align} \mathsf{D}_{311}(\mathbf{r}) &= \frac{\partial^5}{\partial r_x^3 \partial r_y \partial r_z} \varphi (\mathbf{r},H) = r_x^3 r_y r_z \mathsf{\tilde{D}}_{11}(r, u, H) + 3 r_x r_y r_z \mathsf{\tilde{D}}_{9}(r, u, H) \nonumber \end{align} \begin{align} \mathsf{D}_{221}(\mathbf{r}) &= \frac{\partial^5}{\partial r_x^2 \partial r_y^2 \partial r_z} \varphi (\mathbf{r},H) = r_x^2 r_y^2 r_z \mathsf{\tilde{D}}_{11}(r, u, H) + r_x^2 r_z \mathsf{\tilde{D}}_{9}(r, u, H) + r_y^2 r_z \mathsf{\tilde{D}}_{9}(r, u, H) + r_z \mathsf{\tilde{D}}_{y}(r, u, H) \nonumber \end{align} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{comment} \noindent\rule{6cm}{0.4pt} ... ...
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!