diff --git a/examples/Cooling/ConstantCosmoTempEvolution/plot_thermal_history.py b/examples/Cooling/ConstantCosmoTempEvolution/plot_thermal_history.py
index 1494102531104b252e3edaa467920db7383ac6e6..1f9ae6557d1a55bd75d3440679ae42d653da3399 100644
--- a/examples/Cooling/ConstantCosmoTempEvolution/plot_thermal_history.py
+++ b/examples/Cooling/ConstantCosmoTempEvolution/plot_thermal_history.py
@@ -68,21 +68,21 @@ for snap in snap_list:
     z = np.append(z, data.metadata.z)
         
     # Convert gas temperatures and densities to right units
-    data.gas.temperature.convert_to_cgs()
+    data.gas.temperatures.convert_to_cgs()
 
     # Get mean and standard deviation of temperature
-    T_mean.append(np.mean(data.gas.temperature) * data.gas.temperature.units)
-    T_std.append(np.std(data.gas.temperature) * data.gas.temperature.units)
+    T_mean.append(np.mean(data.gas.temperatures) * data.gas.temperatures.units)
+    T_std.append(np.std(data.gas.temperatures) * data.gas.temperatures.units)
 
     # Get mean and standard deviation of density
-    rho_mean.append(np.mean(data.gas.density) * data.gas.density.units)
-    rho_std.append(np.std(data.gas.density) * data.gas.density.units)
+    rho_mean.append(np.mean(data.gas.densities) * data.gas.densities.units)
+    rho_std.append(np.std(data.gas.densities) * data.gas.densities.units)
     
 ## Turn into numpy arrays
-T_mean = np.array(T_mean) * data.gas.temperature.units
-T_std = np.array(T_std) * data.gas.temperature.units
-rho_mean = np.array(rho_mean) * data.gas.density.units
-rho_std = np.array(rho_std) * data.gas.density.units
+T_mean = np.array(T_mean) * data.gas.temperatures.units
+T_std = np.array(T_std) * data.gas.temperatures.units
+rho_mean = np.array(rho_mean) * data.gas.densities.units
+rho_std = np.array(rho_std) * data.gas.densities.units
 
 ## Put Density into units of mean baryon density today
 
diff --git a/examples/Cooling/CoolingBox/plotEnergy.py b/examples/Cooling/CoolingBox/plotEnergy.py
index 9c7af57d3d9dfdcfa222e9f77701f230d25f9ddc..6234c319a3001fa4e364639bb2c5480a31cf99dd 100644
--- a/examples/Cooling/CoolingBox/plotEnergy.py
+++ b/examples/Cooling/CoolingBox/plotEnergy.py
@@ -87,7 +87,7 @@ temp_snap = np.zeros(N)
 time_snap_cgs = np.zeros(N)
 for i in range(N):
     snap = File(files[i], 'r')
-    u = snap["/PartType0/InternalEnergy"][:] * snap["/PartType0/Masses"][:]
+    u = snap["/PartType0/InternalEnergies"][:] * snap["/PartType0/Masses"][:]
     u = sum(u) / total_mass[0]
     temp_snap[i] = energyUnits(u)
     time_snap_cgs[i] = snap["/Header"].attrs["Time"] * unit_time
diff --git a/examples/Cooling/CoolingRedshiftDependence/plotSolution.py b/examples/Cooling/CoolingRedshiftDependence/plotSolution.py
index 9cde36cb05b88e60b3bf3527f3857a3774bf5dca..cb624be3cfb1f0f803cfce7a14fb1a772cccf515 100644
--- a/examples/Cooling/CoolingRedshiftDependence/plotSolution.py
+++ b/examples/Cooling/CoolingRedshiftDependence/plotSolution.py
@@ -94,15 +94,17 @@ def get_data(handle: float, n_snaps: int):
                 t0 = data.metadata.t.to(Myr).value
 
             times.append(data.metadata.t.to(Myr).value - t0)
-            temps.append(np.mean(data.gas.temperature.to(K).value))
+            temps.append(np.mean(data.gas.temperatures.to(K).value))
             densities.append(
-                np.mean(data.gas.density.to(mh / cm ** 3).value)
+                np.mean(data.gas.densities.to(mh / cm ** 3).value)
                 / (data.metadata.scale_factor ** 3)
             )
 
             try:
                 energies.append(
-                    np.mean((data.gas.internal_energy * data.gas.masses).to(erg).value)
+                    np.mean(
+                        (data.gas.internal_energies * data.gas.masses).to(erg).value
+                    )
                     * data.metadata.scale_factor ** (2)
                 )
                 radiated_energies.append(
diff --git a/examples/Cooling/FeedbackEvent_3D/plotSolution.py b/examples/Cooling/FeedbackEvent_3D/plotSolution.py
index fe6f93996dafee2b6e81a70d4786374d86355f6f..6631fff2244e73244d0311f4e823c42dfcea7609 100644
--- a/examples/Cooling/FeedbackEvent_3D/plotSolution.py
+++ b/examples/Cooling/FeedbackEvent_3D/plotSolution.py
@@ -50,7 +50,6 @@ except:
     plt.rcParams.update(rcParams)
 
 
-
 def get_data_dump(metadata):
     """
     Gets a big data dump from the SWIFT metadata
@@ -104,10 +103,10 @@ r = r.to(kpc).value
 data = dict(
     x=r,
     v_r=v_r,
-    u=sim.gas.temperature.to(K).value,
-    S=sim.gas.entropy.to(keV / K).value,
-    P=sim.gas.pressure.to(kPa).value,
-    rho=sim.gas.density.to(mh / (cm ** 3)).value,
+    u=sim.gas.temperatures.to(K).value,
+    S=sim.gas.entropies.to(keV / K).value,
+    P=sim.gas.pressures.to(kPa).value,
+    rho=sim.gas.densities.to(mh / (cm ** 3)).value,
 )
 
 # Try to add on the viscosity and diffusion.
@@ -156,8 +155,13 @@ log = dict(
     v_r=False, v_phi=False, u=False, S=False, P=False, rho=False, visc=False, diff=False
 )
 ylim = dict(
-    v_r=[-4, 25], u=[4750, 6000], rho=[0.09, 0.16], visc=[0, 2.0], diff=[0, 0.25],
-    P=[3e-18, 10e-18], S=[-0.5e60, 4e60] 
+    v_r=[-4, 25],
+    u=[4750, 6000],
+    rho=[0.09, 0.16],
+    visc=[0, 2.0],
+    diff=[0, 0.25],
+    P=[3e-18, 10e-18],
+    S=[-0.5e60, 4e60],
 )
 
 current_axis = 0
diff --git a/examples/Cosmology/ComovingSodShock_1D/plotSolution.py b/examples/Cosmology/ComovingSodShock_1D/plotSolution.py
index 95674c04bfafd0cd549b69814df82f9a4f80a949..b09873339fc4ded024c70f66301c5cce762b97fc 100644
--- a/examples/Cosmology/ComovingSodShock_1D/plotSolution.py
+++ b/examples/Cosmology/ComovingSodShock_1D/plotSolution.py
@@ -82,12 +82,12 @@ git = str(sim["Code"].attrs["Git Revision"])
 
 x = sim["/PartType0/Coordinates"][:,0]
 v = sim["/PartType0/Velocities"][:,0] * anow
-u = sim["/PartType0/InternalEnergy"][:]
-S = sim["/PartType0/Entropy"][:]
-P = sim["/PartType0/Pressure"][:]
-rho = sim["/PartType0/Density"][:]
+u = sim["/PartType0/InternalEnergies"][:]
+S = sim["/PartType0/Entropies"][:]
+P = sim["/PartType0/Pressures"][:]
+rho = sim["/PartType0/Densities"][:]
 try:
-    alpha = sim["/PartType0/Viscosity"][:]
+    alpha = sim["/PartType0/ViscosityParameters"][:]
     plot_alpha = True 
 except:
     plot_alpha = False
diff --git a/examples/Cosmology/ComovingSodShock_2D/plotSolution.py b/examples/Cosmology/ComovingSodShock_2D/plotSolution.py
index 8adb3cf5c550ab9724f6a8f34c1a1260a25712e1..ec28b9449bfa6b00d3088952a6b1bf871462f86c 100644
--- a/examples/Cosmology/ComovingSodShock_2D/plotSolution.py
+++ b/examples/Cosmology/ComovingSodShock_2D/plotSolution.py
@@ -83,10 +83,10 @@ git = sim["Code"].attrs["Git Revision"]
 
 x = sim["/PartType0/Coordinates"][:,0]
 v = sim["/PartType0/Velocities"][:,0] * anow
-u = sim["/PartType0/InternalEnergy"][:]
-S = sim["/PartType0/Entropy"][:]
-P = sim["/PartType0/Pressure"][:]
-rho = sim["/PartType0/Density"][:]
+u = sim["/PartType0/InternalEnergies"][:]
+S = sim["/PartType0/Entropies"][:]
+P = sim["/PartType0/Pressures"][:]
+rho = sim["/PartType0/Densities"][:]
 
 N = 1000  # Number of points
 x_min = -1.
diff --git a/examples/Cosmology/ComovingSodShock_3D/plotSolution.py b/examples/Cosmology/ComovingSodShock_3D/plotSolution.py
index d85f4be9a49d108d133928a81ea4482fa9099792..34abae364f5421a0436352b9564537f2f31e8742 100644
--- a/examples/Cosmology/ComovingSodShock_3D/plotSolution.py
+++ b/examples/Cosmology/ComovingSodShock_3D/plotSolution.py
@@ -83,19 +83,19 @@ git = sim["Code"].attrs["Git Revision"]
 
 x = sim["/PartType0/Coordinates"][:,0]
 v = sim["/PartType0/Velocities"][:,0] * anow
-u = sim["/PartType0/InternalEnergy"][:]
-S = sim["/PartType0/Entropy"][:]
-P = sim["/PartType0/Pressure"][:]
-rho = sim["/PartType0/Density"][:]
+u = sim["/PartType0/InternalEnergies"][:]
+S = sim["/PartType0/Entropies"][:]
+P = sim["/PartType0/Pressures"][:]
+rho = sim["/PartType0/Densities"][:]
 
 try:
-    diffusion = sim["/PartType0/Diffusion"][:]
+    diffusion = sim["/PartType0/DiffusionParameters"][:]
     plot_diffusion = True
 except:
     plot_diffusion = False
 
 try:
-    viscosity = sim["/PartType0/Viscosity"][:]
+    viscosity = sim["/PartType0/ViscosityParameters"][:]
     plot_viscosity = True
 except:
     plot_viscosity = False
diff --git a/examples/Cosmology/ConstantCosmoVolume/plotSolution.py b/examples/Cosmology/ConstantCosmoVolume/plotSolution.py
index f77889d7cb19c230accf25290b88a321e0f59616..6df0bfa4e1f7c4932f652d82a8ca95f5c54b0e9f 100644
--- a/examples/Cosmology/ConstantCosmoVolume/plotSolution.py
+++ b/examples/Cosmology/ConstantCosmoVolume/plotSolution.py
@@ -109,19 +109,19 @@ for i in range(119):
     z[i] = sim["/Cosmology"].attrs["Redshift"][0]
     a[i] = sim["/Cosmology"].attrs["Scale-factor"][0]
     
-    S = sim["/PartType0/Entropy"][:]
+    S = sim["/PartType0/Entropies"][:]
     S_mean[i] = np.mean(S)
     S_std[i] = np.std(S)
     
-    u = sim["/PartType0/InternalEnergy"][:]
+    u = sim["/PartType0/InternalEnergies"][:]
     u_mean[i] = np.mean(u)
     u_std[i] = np.std(u)
 
-    P = sim["/PartType0/Pressure"][:]
+    P = sim["/PartType0/Pressures"][:]
     P_mean[i] = np.mean(P)
     P_std[i] = np.std(P)
 
-    rho = sim["/PartType0/Density"][:]
+    rho = sim["/PartType0/Densities"][:]
     rho_mean[i] = np.mean(rho)
     rho_std[i] = np.std(rho)
 
diff --git a/examples/Cosmology/ZeldovichPancake_3D/plotSolution.py b/examples/Cosmology/ZeldovichPancake_3D/plotSolution.py
index eef247fb761e75f8dde8e8abe84075efbd7cb46a..285ed3ae218549468c309e9109ef53f10a2f66ab 100644
--- a/examples/Cosmology/ZeldovichPancake_3D/plotSolution.py
+++ b/examples/Cosmology/ZeldovichPancake_3D/plotSolution.py
@@ -78,10 +78,10 @@ gas_gamma = sim["/HydroScheme"].attrs["Adiabatic index"][0]
 
 x = sim["/PartType0/Coordinates"][:,0]
 v = sim["/PartType0/Velocities"][:,0]
-u = sim["/PartType0/InternalEnergy"][:]
-S = sim["/PartType0/Entropy"][:]
-P = sim["/PartType0/Pressure"][:]
-rho = sim["/PartType0/Density"][:]
+u = sim["/PartType0/InternalEnergies"][:]
+S = sim["/PartType0/Entropies"][:]
+P = sim["/PartType0/Pressures"][:]
+rho = sim["/PartType0/Densities"][:]
 m = sim["/PartType0/Masses"][:]
 try:
     phi = sim["/PartType0/Potential"][:]
@@ -98,8 +98,8 @@ if os.path.exists(filename_g):
     sim_g = h5py.File(filename_g, "r")
     x_g = sim_g["/PartType0/Coordinates"][:,0]
     v_g = sim_g["/PartType0/Velocities"][:,0]
-    u_g = sim_g["/PartType0/InternalEnergy"][:]
-    rho_g = sim_g["/PartType0/Density"][:]
+    u_g = sim_g["/PartType0/InternalEnergies"][:]
+    rho_g = sim_g["/PartType0/Densities"][:]
     phi_g = sim_g["/PartType0/Potential"][:]
     a_g = sim_g["/Header"].attrs["Time"]
     print("Gadget Scale-factor:", a_g, "redshift:", 1/a_g - 1.)
diff --git a/examples/HydroTests/BlobTest_3D/makeMovie.py b/examples/HydroTests/BlobTest_3D/makeMovie.py
index 9ae4a538e000fa7006f093b67d325ff433e97089..55acdaab01e22ecf8bae0dd24967a348ceabf34b 100644
--- a/examples/HydroTests/BlobTest_3D/makeMovie.py
+++ b/examples/HydroTests/BlobTest_3D/makeMovie.py
@@ -24,7 +24,7 @@ resolution = 1024
 snapshot_name = "blob"
 cmap = "Spectral_r"
 text_args = dict(color="black")
-# plot = "pressure"
+# plot = "pressures"
 # name = "Pressure $P$"
 plot = "density"
 name = "Fluid Density $\\rho$"
diff --git a/examples/HydroTests/Diffusion_1D/plotSolution.py b/examples/HydroTests/Diffusion_1D/plotSolution.py
index 66c8ffc6418f06589a2918ae4d8ed460b0081972..a394e919b4e2e80728c97499c3c3544256a6ad2c 100644
--- a/examples/HydroTests/Diffusion_1D/plotSolution.py
+++ b/examples/HydroTests/Diffusion_1D/plotSolution.py
@@ -24,6 +24,7 @@ import numpy as np
 
 try:
     from scipy.integrate import solve_ivp
+
     solve_ode = True
 except:
     solve_ode = False
@@ -32,6 +33,7 @@ from swiftsimio import load
 
 matplotlib.use("Agg")
 
+
 def solve_analytic(u_0, u_1, t_0, t_1, alpha=0.1):
     """
     Solves the analytic equation:
@@ -63,7 +65,12 @@ def solve_analytic(u_0, u_1, t_0, t_1, alpha=0.1):
 
         return np.array([-1.0 * common, 1.0 * common])
 
-    ret = solve_ivp(gradient, t_span=[t_0.value, t_1.value], y0=[u_0.value, u_1.value], t_eval=np.linspace(t_0.value, t_1.value, 100))
+    ret = solve_ivp(
+        gradient,
+        t_span=[t_0.value, t_1.value],
+        y0=[u_0.value, u_1.value],
+        t_eval=np.linspace(t_0.value, t_1.value, 100),
+    )
 
     t = ret.t
     high = ret.y[1]
@@ -81,7 +88,7 @@ def get_data_dump(metadata):
         viscosity = metadata.viscosity_info
     except:
         viscosity = "No info"
-    
+
     try:
         diffusion = metadata.diffusion_info
     except:
@@ -136,6 +143,7 @@ def setup_axes(size=[8, 8], dpi=300):
 
     return fig, ax
 
+
 def mean_std_max_min(data):
     """
     Returns:
@@ -157,7 +165,7 @@ def extract_plottables_u(data_list):
     """
 
     data = [
-        np.diff(x.gas.internal_energy.value) / np.mean(x.gas.internal_energy.value)
+        np.diff(x.gas.internal_energies.value) / np.mean(x.gas.internal_energies.value)
         for x in data_list
     ]
 
@@ -175,8 +183,10 @@ def extract_plottables_x(data_list):
     dx = boxsize / n_part
 
     original_x = np.arange(n_part, dtype=float) * dx + (0.5 * dx)
-    
-    deviations = [1e6 * abs(original_x - x.gas.coordinates.value[:, 0]) / dx for x in data_list]
+
+    deviations = [
+        1e6 * abs(original_x - x.gas.coordinates.value[:, 0]) / dx for x in data_list
+    ]
 
     return mean_std_max_min(deviations)
 
@@ -187,7 +197,7 @@ def extract_plottables_rho(data_list):
     mean, stdev, max, min * 1e6 deviations from mean density 
     """
 
-    P = [x.gas.density.value for x in data_list]
+    P = [x.gas.densities.value for x in data_list]
     mean_P = [np.mean(x) for x in P]
     deviations = [1e6 * (x - y) / x for x, y in zip(mean_P, P)]
 
@@ -241,28 +251,34 @@ def make_plot(start: int, stop: int, handle: str):
 
     if solve_ode:
         times_ode, diff = solve_analytic(
-            u_0=data_list[0].gas.internal_energy.min(),
-            u_1=data_list[0].gas.internal_energy.max(),
+            u_0=data_list[0].gas.internal_energies.min(),
+            u_1=data_list[0].gas.internal_energies.max(),
             t_0=t[0],
             t_1=t[-1],
             alpha=(
-                np.sqrt(5.0/3.0 * (5.0/3.0 - 1.0)) * 
-                alpha / data_list[0].gas.smoothing_length[0].value
-            )
+                np.sqrt(5.0 / 3.0 * (5.0 / 3.0 - 1.0))
+                * alpha
+                / data_list[0].gas.smoothing_length[0].value
+            ),
         )
 
         ax[1].plot(
             times_ode,
-            (diff) / np.mean(data_list[0].gas.internal_energy),
+            (diff) / np.mean(data_list[0].gas.internal_energies),
             label="Analytic",
             linestyle="dotted",
-            c="C3"
+            c="C3",
         )
 
-        #import pdb;pdb.set_trace()
+        # import pdb;pdb.set_trace()
 
     ax[2].fill_between(
-        t, x_means - x_stdevs, x_means + x_stdevs, color="C0", alpha=0.5, edgecolor="none"
+        t,
+        x_means - x_stdevs,
+        x_means + x_stdevs,
+        color="C0",
+        alpha=0.5,
+        edgecolor="none",
     )
     ax[2].plot(t, x_means, label="Mean", c="C0")
     ax[2].plot(t, x_maxs, label="Max", linestyle="dashed", c="C1")
@@ -270,11 +286,18 @@ def make_plot(start: int, stop: int, handle: str):
 
     try:
         # Give diffusion info a go; this may not be present
-        diff_means, diff_stdevs, diff_maxs, diff_mins = extract_plottables_diff(data_list)
+        diff_means, diff_stdevs, diff_maxs, diff_mins = extract_plottables_diff(
+            data_list
+        )
 
         ax[3].set_ylabel(r"Diffusion parameter $\alpha_{diff}$")
         ax[3].fill_between(
-            t, diff_means - diff_stdevs, diff_means + diff_stdevs, color="C0", alpha=0.5, edgecolor="none"
+            t,
+            diff_means - diff_stdevs,
+            diff_means + diff_stdevs,
+            color="C0",
+            alpha=0.5,
+            edgecolor="none",
         )
         ax[3].plot(t, diff_means, label="Mean", c="C0")
         ax[3].plot(t, diff_maxs, label="Max", linestyle="dashed", c="C1")
@@ -284,9 +307,16 @@ def make_plot(start: int, stop: int, handle: str):
         # Diffusion info must not be present.
         rho_means, rho_stdevs, rho_maxs, rho_mins = extract_plottables_rho(data_list)
 
-        ax[3].set_ylabel("Deviation from mean density $(\\rho_i - \\bar{\\rho}) / \\bar{\\rho}$ [$\\times 10^{6}$]")
+        ax[3].set_ylabel(
+            "Deviation from mean density $(\\rho_i - \\bar{\\rho}) / \\bar{\\rho}$ [$\\times 10^{6}$]"
+        )
         ax[3].fill_between(
-            t, rho_means - rho_stdevs, rho_means + rho_stdevs, color="C0", alpha=0.5, edgecolor="none"
+            t,
+            rho_means - rho_stdevs,
+            rho_means + rho_stdevs,
+            color="C0",
+            alpha=0.5,
+            edgecolor="none",
         )
         ax[3].plot(t, rho_means, label="Mean", c="C0")
         ax[3].plot(t, rho_maxs, label="Max", linestyle="dashed", c="C1")
diff --git a/examples/HydroTests/EvrardCollapse_3D/plotSolution.py b/examples/HydroTests/EvrardCollapse_3D/plotSolution.py
index 8422b9c45fd573f3d0ae36324d6e39ab23cceb25..b405771a4792e5ca4fef181b3787952bf0078d67 100644
--- a/examples/HydroTests/EvrardCollapse_3D/plotSolution.py
+++ b/examples/HydroTests/EvrardCollapse_3D/plotSolution.py
@@ -75,10 +75,10 @@ x = sqrt((coords[:,0] - 0.5 * boxSize)**2 + (coords[:,1] - 0.5 * boxSize)**2 + \
          (coords[:,2] - 0.5 * boxSize)**2)
 vels = sim["/PartType0/Velocities"]
 v = sqrt(vels[:,0]**2 + vels[:,1]**2 + vels[:,2]**2)
-u = sim["/PartType0/InternalEnergy"][:]
-S = sim["/PartType0/Entropy"][:]
-P = sim["/PartType0/Pressure"][:]
-rho = sim["/PartType0/Density"][:]
+u = sim["/PartType0/InternalEnergies"][:]
+S = sim["/PartType0/Entropies"][:]
+P = sim["/PartType0/Pressures"][:]
+rho = sim["/PartType0/Densities"][:]
 
 # Bin the data
 x_bin_edge = logspace(-3., log10(2.), 100)
diff --git a/examples/HydroTests/Gradients/plot.py b/examples/HydroTests/Gradients/plot.py
index d6750ffc581437ebbf402ec44bcb1d14cb82a698..7b4248c9fc9c9d6b9c5b15410185d6489849bed8 100644
--- a/examples/HydroTests/Gradients/plot.py
+++ b/examples/HydroTests/Gradients/plot.py
@@ -30,7 +30,7 @@ inputfile = sys.argv[1]
 outputfile = "gradients_{0}.png".format(sys.argv[2])
 
 f = h5py.File(inputfile, "r")
-rho = np.array(f["/PartType0/Density"])
+rho = np.array(f["/PartType0/Densities"])
 gradrho = np.array(f["/PartType0/GradDensity"])
 coords = np.array(f["/PartType0/Coordinates"])
 
diff --git a/examples/HydroTests/GreshoVortex_2D/plotSolution.py b/examples/HydroTests/GreshoVortex_2D/plotSolution.py
index d497a6b297bf38b39cf85a9107a769c20f815b77..2d4697b6ffaac0639da67ee90d824c75791ea573 100644
--- a/examples/HydroTests/GreshoVortex_2D/plotSolution.py
+++ b/examples/HydroTests/GreshoVortex_2D/plotSolution.py
@@ -100,10 +100,10 @@ r = sqrt(x**2 + y**2)
 v_r = (x * vel[:,0] + y * vel[:,1]) / r
 v_phi = (-y * vel[:,0] + x * vel[:,1]) / r
 v_norm = sqrt(vel[:,0]**2 + vel[:,1]**2)
-rho = sim["/PartType0/Density"][:]
-u = sim["/PartType0/InternalEnergy"][:]
-S = sim["/PartType0/Entropy"][:]
-P = sim["/PartType0/Pressure"][:]
+rho = sim["/PartType0/Densities"][:]
+u = sim["/PartType0/InternalEnergies"][:]
+S = sim["/PartType0/Entropies"][:]
+P = sim["/PartType0/Pressures"][:]
 
 # Bin te data
 r_bin_edge = np.arange(0., 1., 0.02)
diff --git a/examples/HydroTests/GreshoVortex_3D/plotSolution.py b/examples/HydroTests/GreshoVortex_3D/plotSolution.py
index 545440c997d9ebc3ab11562d0a7d9fa143e23ed2..20beab7514759c764f5ca7c379183506b764a819 100644
--- a/examples/HydroTests/GreshoVortex_3D/plotSolution.py
+++ b/examples/HydroTests/GreshoVortex_3D/plotSolution.py
@@ -103,19 +103,19 @@ r = sqrt(x**2 + y**2)
 v_r = (x * vel[:,0] + y * vel[:,1]) / r
 v_phi = (-y * vel[:,0] + x * vel[:,1]) / r
 v_norm = sqrt(vel[:,0]**2 + vel[:,1]**2)
-rho = sim["/PartType0/Density"][:]
-u = sim["/PartType0/InternalEnergy"][:]
-S = sim["/PartType0/Entropy"][:]
-P = sim["/PartType0/Pressure"][:]
+rho = sim["/PartType0/Densities"][:]
+u = sim["/PartType0/InternalEnergies"][:]
+S = sim["/PartType0/Entropies"][:]
+P = sim["/PartType0/Pressures"][:]
 
 try:
-    diffusion = sim["/PartType0/Diffusion"][:]
+    diffusion = sim["/PartType0/DiffusionParameters"][:]
     plot_diffusion = True
 except:
     plot_diffusion = False
 
 try:
-    viscosity = sim["/PartType0/Viscosity"][:]
+    viscosity = sim["/PartType0/ViscosityParameters"][:]
     plot_viscosity = True
 except:
     plot_viscosity = False
diff --git a/examples/HydroTests/InteractingBlastWaves_1D/plotSolution.py b/examples/HydroTests/InteractingBlastWaves_1D/plotSolution.py
index 1719162dec34626d6f4ecb8267c4d06f85b3db26..d617fb239ce21acab73b5cb057dd3cdf4b260d59 100644
--- a/examples/HydroTests/InteractingBlastWaves_1D/plotSolution.py
+++ b/examples/HydroTests/InteractingBlastWaves_1D/plotSolution.py
@@ -55,11 +55,11 @@ snap = int(sys.argv[1])
 # Open the file and read the relevant data
 file = h5py.File("interactingBlastWaves_{0:04d}.hdf5".format(snap), "r")
 x = file["/PartType0/Coordinates"][:,0]
-rho = file["/PartType0/Density"]
+rho = file["/PartType0/Densities"]
 v = file["/PartType0/Velocities"][:,0]
-u = file["/PartType0/InternalEnergy"]
-S = file["/PartType0/Entropy"]
-P = file["/PartType0/Pressure"]
+u = file["/PartType0/InternalEnergies"]
+S = file["/PartType0/Entropies"]
+P = file["/PartType0/Pressures"]
 time = file["/Header"].attrs["Time"][0]
 
 scheme = file["/HydroScheme"].attrs["Scheme"]
diff --git a/examples/HydroTests/KelvinHelmholtz_2D/plotSolution.py b/examples/HydroTests/KelvinHelmholtz_2D/plotSolution.py
index 77ab6fb244da25d13760f90653fac7eac11a0ee7..f599fcb784633b2d6765ea79767fc658196faa5f 100644
--- a/examples/HydroTests/KelvinHelmholtz_2D/plotSolution.py
+++ b/examples/HydroTests/KelvinHelmholtz_2D/plotSolution.py
@@ -77,10 +77,10 @@ x = pos[:,0] - boxSize / 2
 y = pos[:,1] - boxSize / 2
 vel = sim["/PartType0/Velocities"][:,:]
 v_norm = sqrt(vel[:,0]**2 + vel[:,1]**2)
-rho = sim["/PartType0/Density"][:]
-u = sim["/PartType0/InternalEnergy"][:]
-S = sim["/PartType0/Entropy"][:]
-P = sim["/PartType0/Pressure"][:]
+rho = sim["/PartType0/Densities"][:]
+u = sim["/PartType0/InternalEnergies"][:]
+S = sim["/PartType0/Entropies"][:]
+P = sim["/PartType0/Pressures"][:]
 
 # Plot the interesting quantities
 figure()
diff --git a/examples/HydroTests/Noh_1D/plotSolution.py b/examples/HydroTests/Noh_1D/plotSolution.py
index 25b9b2f16b24cba5def592a5cf00dbae82195ef7..7f0b5d403ef816b0dda57823010472476a7ecc32 100644
--- a/examples/HydroTests/Noh_1D/plotSolution.py
+++ b/examples/HydroTests/Noh_1D/plotSolution.py
@@ -69,10 +69,10 @@ git = sim["Code"].attrs["Git Revision"]
 
 x = sim["/PartType0/Coordinates"][:,0]
 v = sim["/PartType0/Velocities"][:,0]
-u = sim["/PartType0/InternalEnergy"][:]
-S = sim["/PartType0/Entropy"][:]
-P = sim["/PartType0/Pressure"][:]
-rho = sim["/PartType0/Density"][:]
+u = sim["/PartType0/InternalEnergies"][:]
+S = sim["/PartType0/Entropies"][:]
+P = sim["/PartType0/Pressures"][:]
+rho = sim["/PartType0/Densities"][:]
 
 N = 1001  # Number of points
 x_min = -1
diff --git a/examples/HydroTests/Noh_2D/plotSolution.py b/examples/HydroTests/Noh_2D/plotSolution.py
index 775ddf4e8a7954c14034ad51a6b66622c41a6996..b53212c4688ec790ad8f3f83f81243f9ec52266d 100644
--- a/examples/HydroTests/Noh_2D/plotSolution.py
+++ b/examples/HydroTests/Noh_2D/plotSolution.py
@@ -71,10 +71,10 @@ x = sim["/PartType0/Coordinates"][:,0]
 y = sim["/PartType0/Coordinates"][:,1]
 vx = sim["/PartType0/Velocities"][:,0]
 vy = sim["/PartType0/Velocities"][:,1]
-u = sim["/PartType0/InternalEnergy"][:]
-S = sim["/PartType0/Entropy"][:]
-P = sim["/PartType0/Pressure"][:]
-rho = sim["/PartType0/Density"][:]
+u = sim["/PartType0/InternalEnergies"][:]
+S = sim["/PartType0/Entropies"][:]
+P = sim["/PartType0/Pressures"][:]
+rho = sim["/PartType0/Densities"][:]
 
 r = np.sqrt((x-1)**2 + (y-1)**2)
 v = -np.sqrt(vx**2 + vy**2)
diff --git a/examples/HydroTests/Noh_3D/plotSolution.py b/examples/HydroTests/Noh_3D/plotSolution.py
index 386b9f728b5e8d8e38fb7ec9aeaa336d194e35dd..20e8ca805de1cb700b8b462ae27495080f5d3268 100644
--- a/examples/HydroTests/Noh_3D/plotSolution.py
+++ b/examples/HydroTests/Noh_3D/plotSolution.py
@@ -74,10 +74,10 @@ z = sim["/PartType0/Coordinates"][:,2]
 vx = sim["/PartType0/Velocities"][:,0]
 vy = sim["/PartType0/Velocities"][:,1]
 vz = sim["/PartType0/Velocities"][:,2]
-u = sim["/PartType0/InternalEnergy"][:]
-S = sim["/PartType0/Entropy"][:]
-P = sim["/PartType0/Pressure"][:]
-rho = sim["/PartType0/Density"][:]
+u = sim["/PartType0/InternalEnergies"][:]
+S = sim["/PartType0/Entropies"][:]
+P = sim["/PartType0/Pressures"][:]
+rho = sim["/PartType0/Densities"][:]
 
 r = np.sqrt((x-1)**2 + (y-1)**2 + (z-1)**2)
 v = -np.sqrt(vx**2 + vy**2 + vz**2)
diff --git a/examples/HydroTests/Rayleigh-Taylor_2D/plotInitialProfile.py b/examples/HydroTests/Rayleigh-Taylor_2D/plotInitialProfile.py
index e89c4e8525fe4c88e517acbd453b0941f8f573c8..8928a6e597adbe4e52f905ba95fa68f424b6cabb 100644
--- a/examples/HydroTests/Rayleigh-Taylor_2D/plotInitialProfile.py
+++ b/examples/HydroTests/Rayleigh-Taylor_2D/plotInitialProfile.py
@@ -12,8 +12,8 @@ f = load(filename)
 
 # Get data from snapshot
 x, y, _ = f.gas.coordinates.value.T
-rho = f.gas.density.value
-a = f.gas.entropy.value
+rho = f.gas.densities.value
+a = f.gas.entropies.value
 
 # Get analytical solution
 y_an = np.linspace(0, makeIC.box_size[1], N)
diff --git a/examples/HydroTests/SedovBlast_1D/plotSolution.py b/examples/HydroTests/SedovBlast_1D/plotSolution.py
index c6d4a989da7493f7b500946610eea8832696bf6f..d82ad9e94610a916d900ea93863b2881757e73b3 100644
--- a/examples/HydroTests/SedovBlast_1D/plotSolution.py
+++ b/examples/HydroTests/SedovBlast_1D/plotSolution.py
@@ -78,13 +78,13 @@ x = pos[:,0] - boxSize / 2
 vel = sim["/PartType0/Velocities"][:,:]
 r = abs(x)
 v_r = x * vel[:,0] / r
-u = sim["/PartType0/InternalEnergy"][:]
-S = sim["/PartType0/Entropy"][:]
-P = sim["/PartType0/Pressure"][:]
-rho = sim["/PartType0/Density"][:]
+u = sim["/PartType0/InternalEnergies"][:]
+S = sim["/PartType0/Entropies"][:]
+P = sim["/PartType0/Pressures"][:]
+rho = sim["/PartType0/Densities"][:]
 
 try:
-    alpha = sim["/PartType0/Viscosity"][:]
+    alpha = sim["/PartType0/ViscosityParameters"][:]
     plot_alpha = True 
 except:
     plot_alpha = False
diff --git a/examples/HydroTests/SedovBlast_2D/plotSolution.py b/examples/HydroTests/SedovBlast_2D/plotSolution.py
index 2b5de6f32b8673bbc825fbb5236f4e2ab3b4f408..6f504a09c9432368ce141ec0d28c28699f5ba7f3 100644
--- a/examples/HydroTests/SedovBlast_2D/plotSolution.py
+++ b/examples/HydroTests/SedovBlast_2D/plotSolution.py
@@ -80,10 +80,10 @@ y = pos[:,1] - boxSize / 2
 vel = sim["/PartType0/Velocities"][:,:]
 r = sqrt(x**2 + y**2)
 v_r = (x * vel[:,0] + y * vel[:,1]) / r
-u = sim["/PartType0/InternalEnergy"][:]
-S = sim["/PartType0/Entropy"][:]
-P = sim["/PartType0/Pressure"][:]
-rho = sim["/PartType0/Density"][:]
+u = sim["/PartType0/InternalEnergies"][:]
+S = sim["/PartType0/Entropies"][:]
+P = sim["/PartType0/Pressures"][:]
+rho = sim["/PartType0/Densities"][:]
 
 # Bin te data
 r_bin_edge = np.arange(0., 0.5, 0.01)
diff --git a/examples/HydroTests/SedovBlast_3D/plotSolution.py b/examples/HydroTests/SedovBlast_3D/plotSolution.py
index b0f2e08441b3fa550e61602ba852228a04362fbc..fec4f1101406be5803a3f1601812d1cb85275409 100644
--- a/examples/HydroTests/SedovBlast_3D/plotSolution.py
+++ b/examples/HydroTests/SedovBlast_3D/plotSolution.py
@@ -81,19 +81,19 @@ z = pos[:,2] - boxSize / 2
 vel = sim["/PartType0/Velocities"][:,:]
 r = sqrt(x**2 + y**2 + z**2)
 v_r = (x * vel[:,0] + y * vel[:,1] + z * vel[:,2]) / r
-u = sim["/PartType0/InternalEnergy"][:]
-S = sim["/PartType0/Entropy"][:]
-P = sim["/PartType0/Pressure"][:]
-rho = sim["/PartType0/Density"][:]
+u = sim["/PartType0/InternalEnergies"][:]
+S = sim["/PartType0/Entropies"][:]
+P = sim["/PartType0/Pressures"][:]
+rho = sim["/PartType0/Densities"][:]
 
 try:
-    diffusion = sim["/PartType0/Diffusion"][:]
+    diffusion = sim["/PartType0/DiffusionParameters"][:]
     plot_diffusion = True
 except:
     plot_diffusion = False
 
 try:
-    viscosity = sim["/PartType0/Viscosity"][:]
+    viscosity = sim["/PartType0/ViscosityParameters"][:]
     plot_viscosity = True
 except:
     plot_viscosity = False
diff --git a/examples/HydroTests/SineWavePotential_1D/plotSolution.py b/examples/HydroTests/SineWavePotential_1D/plotSolution.py
index 3bb889aaabd3cdac0274afb09647d0e3aebb02cc..ae99d98aaaa11d9c68473b74106054963a075895 100644
--- a/examples/HydroTests/SineWavePotential_1D/plotSolution.py
+++ b/examples/HydroTests/SineWavePotential_1D/plotSolution.py
@@ -43,9 +43,9 @@ fileName = sys.argv[1]
 
 file = h5py.File(fileName, 'r')
 coords = np.array(file["/PartType0/Coordinates"])
-rho = np.array(file["/PartType0/Density"])
-P = np.array(file["/PartType0/Pressure"])
-u = np.array(file["/PartType0/InternalEnergy"])
+rho = np.array(file["/PartType0/Densities"])
+P = np.array(file["/PartType0/Pressures"])
+u = np.array(file["/PartType0/InternalEnergies"])
 m = np.array(file["/PartType0/Masses"])
 vs = np.array(file["/PartType0/Velocities"])
 ids = np.array(file["/PartType0/ParticleIDs"])
diff --git a/examples/HydroTests/SineWavePotential_2D/plotSolution.py b/examples/HydroTests/SineWavePotential_2D/plotSolution.py
index ee02f59c404db87a790465d2786e6296525e36b0..5c87b0f4f3682d486063522715517763b1035567 100644
--- a/examples/HydroTests/SineWavePotential_2D/plotSolution.py
+++ b/examples/HydroTests/SineWavePotential_2D/plotSolution.py
@@ -38,8 +38,8 @@ fileName = sys.argv[1]
 
 file = h5py.File(fileName, 'r')
 coords = np.array(file["/PartType0/Coordinates"])
-rho = np.array(file["/PartType0/Density"])
-u = np.array(file["/PartType0/InternalEnergy"])
+rho = np.array(file["/PartType0/Densities"])
+u = np.array(file["/PartType0/InternalEnergies"])
 agrav = np.array(file["/PartType0/GravAcceleration"])
 m = np.array(file["/PartType0/Masses"])
 ids = np.array(file["/PartType0/ParticleIDs"])
diff --git a/examples/HydroTests/SineWavePotential_3D/plotSolution.py b/examples/HydroTests/SineWavePotential_3D/plotSolution.py
index 13cae037b64eff4ad4fec0003bf0f5ad3ce94896..7bfa82a5990572c478976614c50107e5254f0e00 100644
--- a/examples/HydroTests/SineWavePotential_3D/plotSolution.py
+++ b/examples/HydroTests/SineWavePotential_3D/plotSolution.py
@@ -38,8 +38,8 @@ fileName = sys.argv[1]
 
 file = h5py.File(fileName, 'r')
 coords = np.array(file["/PartType0/Coordinates"])
-rho = np.array(file["/PartType0/Density"])
-u = np.array(file["/PartType0/InternalEnergy"])
+rho = np.array(file["/PartType0/Densities"])
+u = np.array(file["/PartType0/InternalEnergies"])
 agrav = np.array(file["/PartType0/GravAcceleration"])
 m = np.array(file["/PartType0/Masses"])
 ids = np.array(file["/PartType0/ParticleIDs"])
diff --git a/examples/HydroTests/SodShockSpherical_2D/plotSolution.py b/examples/HydroTests/SodShockSpherical_2D/plotSolution.py
index 57b7f7ddc64bc25df031eb0cba7547f40d46b31a..61060631eea1a7320ef207457d35031318bceccf 100644
--- a/examples/HydroTests/SodShockSpherical_2D/plotSolution.py
+++ b/examples/HydroTests/SodShockSpherical_2D/plotSolution.py
@@ -74,10 +74,10 @@ coords = sim["/PartType0/Coordinates"]
 x = sqrt((coords[:,0] - 0.5)**2 + (coords[:,1] - 0.5)**2)
 vels = sim["/PartType0/Velocities"]
 v = sqrt(vels[:,0]**2 + vels[:,1]**2)
-u = sim["/PartType0/InternalEnergy"][:]
-S = sim["/PartType0/Entropy"][:]
-P = sim["/PartType0/Pressure"][:]
-rho = sim["/PartType0/Density"][:]
+u = sim["/PartType0/InternalEnergies"][:]
+S = sim["/PartType0/Entropies"][:]
+P = sim["/PartType0/Pressures"][:]
+rho = sim["/PartType0/Densities"][:]
 
 # Bin the data
 rho_bin,x_bin_edge,_ = \
diff --git a/examples/HydroTests/SodShockSpherical_3D/plotSolution.py b/examples/HydroTests/SodShockSpherical_3D/plotSolution.py
index 539bfba799e3231bd26ae2eb39c271baa1fa6a4b..0a92f3aaf1831d67cb59dd71bc08cd8d973d9def 100644
--- a/examples/HydroTests/SodShockSpherical_3D/plotSolution.py
+++ b/examples/HydroTests/SodShockSpherical_3D/plotSolution.py
@@ -75,10 +75,10 @@ x = sqrt((coords[:,0] - 0.5)**2 + (coords[:,1] - 0.5)**2 + \
          (coords[:,2] - 0.5)**2)
 vels = sim["/PartType0/Velocities"]
 v = sqrt(vels[:,0]**2 + vels[:,1]**2 + vels[:,2]**2)
-u = sim["/PartType0/InternalEnergy"][:]
-S = sim["/PartType0/Entropy"][:]
-P = sim["/PartType0/Pressure"][:]
-rho = sim["/PartType0/Density"][:]
+u = sim["/PartType0/InternalEnergies"][:]
+S = sim["/PartType0/Entropies"][:]
+P = sim["/PartType0/Pressures"][:]
+rho = sim["/PartType0/Densities"][:]
 
 # Bin the data
 rho_bin,x_bin_edge,_ = \
diff --git a/examples/HydroTests/SodShock_1D/plotSolution.py b/examples/HydroTests/SodShock_1D/plotSolution.py
index a7e6d374bac616440dace666b85c3e7ade479bcd..770d05ac0493323c2cdd0f5905e409113d1a9eae 100644
--- a/examples/HydroTests/SodShock_1D/plotSolution.py
+++ b/examples/HydroTests/SodShock_1D/plotSolution.py
@@ -79,12 +79,12 @@ git = str(sim["Code"].attrs["Git Revision"])
 
 x = sim["/PartType0/Coordinates"][:,0]
 v = sim["/PartType0/Velocities"][:,0]
-u = sim["/PartType0/InternalEnergy"][:]
-S = sim["/PartType0/Entropy"][:]
-P = sim["/PartType0/Pressure"][:]
-rho = sim["/PartType0/Density"][:]
+u = sim["/PartType0/InternalEnergies"][:]
+S = sim["/PartType0/Entropies"][:]
+P = sim["/PartType0/Pressures"][:]
+rho = sim["/PartType0/Densities"][:]
 try:
-    alpha = sim["/PartType0/Viscosity"][:]
+    alpha = sim["/PartType0/ViscosityParameters"][:]
     plot_alpha = True 
 except:
     plot_alpha = False
diff --git a/examples/HydroTests/SodShock_2D/plotSolution.py b/examples/HydroTests/SodShock_2D/plotSolution.py
index 19cbe0ffb766845c051ffb6cea81bd918d890e36..769079da8824d58535e239bd8b54b592ce981a37 100644
--- a/examples/HydroTests/SodShock_2D/plotSolution.py
+++ b/examples/HydroTests/SodShock_2D/plotSolution.py
@@ -79,10 +79,10 @@ git = sim["Code"].attrs["Git Revision"]
 
 x = sim["/PartType0/Coordinates"][:,0]
 v = sim["/PartType0/Velocities"][:,0]
-u = sim["/PartType0/InternalEnergy"][:]
-S = sim["/PartType0/Entropy"][:]
-P = sim["/PartType0/Pressure"][:]
-rho = sim["/PartType0/Density"][:]
+u = sim["/PartType0/InternalEnergies"][:]
+S = sim["/PartType0/Entropies"][:]
+P = sim["/PartType0/Pressures"][:]
+rho = sim["/PartType0/Densities"][:]
 
 N = 1000  # Number of points
 x_min = -1.
diff --git a/examples/HydroTests/SodShock_3D/plotSolution.py b/examples/HydroTests/SodShock_3D/plotSolution.py
index 69b2fe4887e986156ed01e0f4177d01ccbed6035..c2028cedcea820e56c07962fe3ca2f1fe1347d40 100644
--- a/examples/HydroTests/SodShock_3D/plotSolution.py
+++ b/examples/HydroTests/SodShock_3D/plotSolution.py
@@ -79,19 +79,19 @@ git = sim["Code"].attrs["Git Revision"]
 
 x = sim["/PartType0/Coordinates"][:,0]
 v = sim["/PartType0/Velocities"][:,0]
-u = sim["/PartType0/InternalEnergy"][:]
-S = sim["/PartType0/Entropy"][:]
-P = sim["/PartType0/Pressure"][:]
-rho = sim["/PartType0/Density"][:]
+u = sim["/PartType0/InternalEnergies"][:]
+S = sim["/PartType0/Entropies"][:]
+P = sim["/PartType0/Pressures"][:]
+rho = sim["/PartType0/Densities"][:]
 
 try:
-    diffusion = sim["/PartType0/Diffusion"][:]
+    diffusion = sim["/PartType0/DiffusionParameters"][:]
     plot_diffusion = True
 except:
     plot_diffusion = False
 
 try:
-    viscosity = sim["/PartType0/Viscosity"][:]
+    viscosity = sim["/PartType0/ViscosityParameters"][:]
     plot_viscosity = True
 except:
     plot_viscosity = False
diff --git a/examples/HydroTests/SodShock_BCC_3D/plotSolution.py b/examples/HydroTests/SodShock_BCC_3D/plotSolution.py
index 365b679991e9a3a5bbb9e9d5108066c04e497c2f..9660e12a3d226bd6b0e3c152031c93cedb345933 100644
--- a/examples/HydroTests/SodShock_BCC_3D/plotSolution.py
+++ b/examples/HydroTests/SodShock_BCC_3D/plotSolution.py
@@ -94,10 +94,10 @@ time = sim.metadata.t.value
 data = dict(
     x=sim.gas.coordinates.value[:, 0],
     v=sim.gas.velocities.value[:, 0],
-    u=sim.gas.internal_energy.value,
-    S=sim.gas.entropy.value,
-    P=sim.gas.pressure.value,
-    rho=sim.gas.density.value,
+    u=sim.gas.internal_energies.value,
+    S=sim.gas.entropies.value,
+    P=sim.gas.pressures.value,
+    rho=sim.gas.densities.value,
     y=sim.gas.coordinates.value[:, 1],
     z=sim.gas.coordinates.value[:, 2],
 )
@@ -164,12 +164,9 @@ for key, label in plot.items():
             zorder=-1,
         )
 
-        mask_noraster = np.logical_and.reduce([
-            data["y"] < 0.52,
-            data["y"] > 0.48,
-            data["z"] < 0.52,
-            data["z"] > 0.48
-        ])
+        mask_noraster = np.logical_and.reduce(
+            [data["y"] < 0.52, data["y"] > 0.48, data["z"] < 0.52, data["z"] > 0.48]
+        )
 
         axis.plot(
             data["x"][mask_noraster],
diff --git a/examples/HydroTests/SquareTest_2D/plotSolutionLegacy.py b/examples/HydroTests/SquareTest_2D/plotSolutionLegacy.py
index 956da800c9096232d2e82cf4cff4c780672e0a8f..d8701c3d44390f1d2637f798c0e9af23531c4600 100644
--- a/examples/HydroTests/SquareTest_2D/plotSolutionLegacy.py
+++ b/examples/HydroTests/SquareTest_2D/plotSolutionLegacy.py
@@ -88,10 +88,10 @@ while centre_y < 0.:
 pos = sim["/PartType0/Coordinates"][:,:]
 vel = sim["/PartType0/Velocities"][:,:]
 v_norm = sqrt(vel[:,0]**2 + vel[:,1]**2)
-rho = sim["/PartType0/Density"][:]
-u = sim["/PartType0/InternalEnergy"][:]
-S = sim["/PartType0/Entropy"][:]
-P = sim["/PartType0/Pressure"][:]
+rho = sim["/PartType0/Densities"][:]
+u = sim["/PartType0/InternalEnergies"][:]
+S = sim["/PartType0/Entropies"][:]
+P = sim["/PartType0/Pressures"][:]
 x = pos[:,0] - centre_x
 y = pos[:,1] - centre_y
 
diff --git a/examples/HydroTests/VacuumSpherical_2D/plotSolution.py b/examples/HydroTests/VacuumSpherical_2D/plotSolution.py
index 6a65206ae20ccf79392054d047ba6be04f169f3e..de551c0ef4a5f4e027402c881069b7b4780f43d8 100644
--- a/examples/HydroTests/VacuumSpherical_2D/plotSolution.py
+++ b/examples/HydroTests/VacuumSpherical_2D/plotSolution.py
@@ -63,12 +63,12 @@ snap = int(sys.argv[1])
 file = h5py.File("vacuum_{0:04d}.hdf5".format(snap), "r")
 coords = file["/PartType0/Coordinates"]
 x = np.sqrt((coords[:,0] - 0.5)**2 + (coords[:,1] - 0.5)**2)
-rho = file["/PartType0/Density"][:]
+rho = file["/PartType0/Densities"][:]
 vels = file["/PartType0/Velocities"]
 v = np.sqrt(vels[:,0]**2 + vels[:,1]**2)
-u = file["/PartType0/InternalEnergy"][:]
-S = file["/PartType0/Entropy"][:]
-P = file["/PartType0/Pressure"][:]
+u = file["/PartType0/InternalEnergies"][:]
+S = file["/PartType0/Entropies"][:]
+P = file["/PartType0/Pressures"][:]
 time = file["/Header"].attrs["Time"][0]
 
 scheme = file["/HydroScheme"].attrs["Scheme"]
diff --git a/examples/HydroTests/VacuumSpherical_3D/plotSolution.py b/examples/HydroTests/VacuumSpherical_3D/plotSolution.py
index c73e48ee2d311692cdf4aa3b0e52f4766b339df8..4a04acde575eae46de67c70b536b8774befd96ae 100644
--- a/examples/HydroTests/VacuumSpherical_3D/plotSolution.py
+++ b/examples/HydroTests/VacuumSpherical_3D/plotSolution.py
@@ -64,12 +64,12 @@ file = h5py.File("vacuum_{0:04d}.hdf5".format(snap), "r")
 coords = file["/PartType0/Coordinates"]
 x = np.sqrt((coords[:,0] - 0.5)**2 + (coords[:,1] - 0.5)**2 + \
             (coords[:,2] - 0.5)**2)
-rho = file["/PartType0/Density"][:]
+rho = file["/PartType0/Densities"][:]
 vels = file["/PartType0/Velocities"]
 v = np.sqrt(vels[:,0]**2 + vels[:,1]**2 + vels[:,2]**2)
-u = file["/PartType0/InternalEnergy"][:]
-S = file["/PartType0/Entropy"][:]
-P = file["/PartType0/Pressure"][:]
+u = file["/PartType0/InternalEnergies"][:]
+S = file["/PartType0/Entropies"][:]
+P = file["/PartType0/Pressures"][:]
 time = file["/Header"].attrs["Time"][0]
 
 scheme = file["/HydroScheme"].attrs["Scheme"]
diff --git a/examples/HydroTests/Vacuum_1D/plotSolution.py b/examples/HydroTests/Vacuum_1D/plotSolution.py
index fceac10c25fd58b5bbcb6e31884cd62b4cfd61f5..eac7dc9e3ac43822ad167372f9f33bf2f5af0e2a 100644
--- a/examples/HydroTests/Vacuum_1D/plotSolution.py
+++ b/examples/HydroTests/Vacuum_1D/plotSolution.py
@@ -61,11 +61,11 @@ snap = int(sys.argv[1])
 # Open the file and read the relevant data
 file = h5py.File("vacuum_{0:04d}.hdf5".format(snap), "r")
 x = file["/PartType0/Coordinates"][:,0]
-rho = file["/PartType0/Density"]
+rho = file["/PartType0/Densities"]
 v = file["/PartType0/Velocities"][:,0]
-u = file["/PartType0/InternalEnergy"]
-S = file["/PartType0/Entropy"]
-P = file["/PartType0/Pressure"]
+u = file["/PartType0/InternalEnergies"]
+S = file["/PartType0/Entropies"]
+P = file["/PartType0/Pressures"]
 time = file["/Header"].attrs["Time"][0]
 
 scheme = file["/HydroScheme"].attrs["Scheme"]
diff --git a/examples/HydroTests/Vacuum_2D/plotSolution.py b/examples/HydroTests/Vacuum_2D/plotSolution.py
index 4d197234237df10b8cdbf197048a65991da023cf..ffd0eb1cdd857764f7ecc4e2d0c93fee3c5f29e8 100644
--- a/examples/HydroTests/Vacuum_2D/plotSolution.py
+++ b/examples/HydroTests/Vacuum_2D/plotSolution.py
@@ -62,11 +62,11 @@ snap = int(sys.argv[1])
 # Open the file and read the relevant data
 file = h5py.File("vacuum_{0:04d}.hdf5".format(snap), "r")
 x = file["/PartType0/Coordinates"][:,0]
-rho = file["/PartType0/Density"][:]
+rho = file["/PartType0/Densities"][:]
 v = file["/PartType0/Velocities"][:,0]
-u = file["/PartType0/InternalEnergy"][:]
-S = file["/PartType0/Entropy"][:]
-P = file["/PartType0/Pressure"][:]
+u = file["/PartType0/InternalEnergies"][:]
+S = file["/PartType0/Entropies"][:]
+P = file["/PartType0/Pressures"][:]
 time = file["/Header"].attrs["Time"][0]
 
 scheme = file["/HydroScheme"].attrs["Scheme"]
diff --git a/examples/HydroTests/Vacuum_3D/plotSolution.py b/examples/HydroTests/Vacuum_3D/plotSolution.py
index 4d197234237df10b8cdbf197048a65991da023cf..ffd0eb1cdd857764f7ecc4e2d0c93fee3c5f29e8 100644
--- a/examples/HydroTests/Vacuum_3D/plotSolution.py
+++ b/examples/HydroTests/Vacuum_3D/plotSolution.py
@@ -62,11 +62,11 @@ snap = int(sys.argv[1])
 # Open the file and read the relevant data
 file = h5py.File("vacuum_{0:04d}.hdf5".format(snap), "r")
 x = file["/PartType0/Coordinates"][:,0]
-rho = file["/PartType0/Density"][:]
+rho = file["/PartType0/Densities"][:]
 v = file["/PartType0/Velocities"][:,0]
-u = file["/PartType0/InternalEnergy"][:]
-S = file["/PartType0/Entropy"][:]
-P = file["/PartType0/Pressure"][:]
+u = file["/PartType0/InternalEnergies"][:]
+S = file["/PartType0/Entropies"][:]
+P = file["/PartType0/Pressures"][:]
 time = file["/Header"].attrs["Time"][0]
 
 scheme = file["/HydroScheme"].attrs["Scheme"]
diff --git a/examples/IsolatedGalaxy/IsolatedGalaxy_feedback/plotSolution.py b/examples/IsolatedGalaxy/IsolatedGalaxy_feedback/plotSolution.py
index 89a87923148cb6872ab17b6d7229aef597ef3287..1ff8df3569f25590e5acb8046edeca0a1333d556 100644
--- a/examples/IsolatedGalaxy/IsolatedGalaxy_feedback/plotSolution.py
+++ b/examples/IsolatedGalaxy/IsolatedGalaxy_feedback/plotSolution.py
@@ -29,7 +29,7 @@ rcParams.update(params)
 rc("font", **{"family": "sans-serif", "sans-serif": ["Times"]})
 
 snap = int(sys.argv[1])
-filename = "output_%.4d.hdf5"%snap
+filename = "output_%.4d.hdf5" % snap
 
 f = h5.File(filename, "r")
 
@@ -40,7 +40,7 @@ year_in_cgs = 3600.0 * 24 * 365.0
 Msun_in_cgs = 1.98848e33
 G_in_cgs = 6.67259e-8
 pc_in_cgs = 3.08567758e18
-Msun_p_pc2 = Msun_in_cgs / pc_in_cgs**2
+Msun_p_pc2 = Msun_in_cgs / pc_in_cgs ** 2
 
 # Gemoetry info
 boxsize = f["/Header"].attrs["BoxSize"]
@@ -52,66 +52,94 @@ unit_mass_in_cgs = f["/Units"].attrs["Unit mass in cgs (U_M)"]
 unit_time_in_cgs = f["/Units"].attrs["Unit time in cgs (U_t)"]
 
 # Calculate Gravitational constant in internal units
-G = G_in_cgs * ( unit_length_in_cgs**3 / unit_mass_in_cgs / unit_time_in_cgs**2)**(-1)
+G = G_in_cgs * (unit_length_in_cgs ** 3 / unit_mass_in_cgs / unit_time_in_cgs ** 2) ** (
+    -1
+)
 
 # Read parameters of the SF model
 KS_law_slope = float(f["/Parameters"].attrs["EAGLEStarFormation:KS_exponent"])
 KS_law_norm = float(f["/Parameters"].attrs["EAGLEStarFormation:KS_normalisation"])
 KS_thresh_Z0 = float(f["/Parameters"].attrs["EAGLEStarFormation:threshold_Z0"])
 KS_thresh_slope = float(f["/Parameters"].attrs["EAGLEStarFormation:threshold_slope"])
-KS_thresh_norm = float(f["/Parameters"].attrs["EAGLEStarFormation:threshold_norm_H_p_cm3"])
+KS_thresh_norm = float(
+    f["/Parameters"].attrs["EAGLEStarFormation:threshold_norm_H_p_cm3"]
+)
 KS_gas_fraction = float(f["/Parameters"].attrs["EAGLEStarFormation:gas_fraction"])
-KS_thresh_max_norm = float(f["/Parameters"].attrs["EAGLEStarFormation:threshold_max_density_H_p_cm3"])
-KS_high_den_thresh = float(f["/Parameters"].attrs["EAGLEStarFormation:KS_high_density_threshold_H_p_cm3"])
-KS_law_slope_high_den = float(f["/Parameters"].attrs["EAGLEStarFormation:KS_high_density_exponent"])
-EOS_gamma_effective = float(f["/Parameters"].attrs["EAGLEStarFormation:EOS_gamma_effective"])                           
-EOS_density_norm = float(f["/Parameters"].attrs["EAGLEStarFormation:EOS_density_norm_H_p_cm3"])                           
-EOS_temp_norm = float(f["/Parameters"].attrs["EAGLEStarFormation:EOS_temperature_norm_K"])                           
+KS_thresh_max_norm = float(
+    f["/Parameters"].attrs["EAGLEStarFormation:threshold_max_density_H_p_cm3"]
+)
+KS_high_den_thresh = float(
+    f["/Parameters"].attrs["EAGLEStarFormation:KS_high_density_threshold_H_p_cm3"]
+)
+KS_law_slope_high_den = float(
+    f["/Parameters"].attrs["EAGLEStarFormation:KS_high_density_exponent"]
+)
+EOS_gamma_effective = float(
+    f["/Parameters"].attrs["EAGLEStarFormation:EOS_gamma_effective"]
+)
+EOS_density_norm = float(
+    f["/Parameters"].attrs["EAGLEStarFormation:EOS_density_norm_H_p_cm3"]
+)
+EOS_temp_norm = float(
+    f["/Parameters"].attrs["EAGLEStarFormation:EOS_temperature_norm_K"]
+)
 
 # Read reference metallicity
 EAGLE_Z = float(f["/Parameters"].attrs["EAGLEChemistry:init_abundance_metal"])
 
 # Read parameters of the entropy floor
-EAGLEfloor_Jeans_rho_norm = float(f["/Parameters"].attrs["EAGLEEntropyFloor:Jeans_density_threshold_H_p_cm3"])
-EAGLEfloor_Jeans_temperature_norm_K = float(f["/Parameters"].attrs["EAGLEEntropyFloor:Jeans_temperature_norm_K"])
-EAGLEfloor_Jeans_gamma_effective = float(f["/Parameters"].attrs["EAGLEEntropyFloor:Jeans_gamma_effective"])
-EAGLEfloor_cool_rho_norm = float(f["/Parameters"].attrs["EAGLEEntropyFloor:Cool_density_threshold_H_p_cm3"])
-EAGLEfloor_cool_temperature_norm_K = float(f["/Parameters"].attrs["EAGLEEntropyFloor:Cool_temperature_norm_K"])
-EAGLEfloor_cool_gamma_effective = float(f["/Parameters"].attrs["EAGLEEntropyFloor:Cool_gamma_effective"])
+EAGLEfloor_Jeans_rho_norm = float(
+    f["/Parameters"].attrs["EAGLEEntropyFloor:Jeans_density_threshold_H_p_cm3"]
+)
+EAGLEfloor_Jeans_temperature_norm_K = float(
+    f["/Parameters"].attrs["EAGLEEntropyFloor:Jeans_temperature_norm_K"]
+)
+EAGLEfloor_Jeans_gamma_effective = float(
+    f["/Parameters"].attrs["EAGLEEntropyFloor:Jeans_gamma_effective"]
+)
+EAGLEfloor_cool_rho_norm = float(
+    f["/Parameters"].attrs["EAGLEEntropyFloor:Cool_density_threshold_H_p_cm3"]
+)
+EAGLEfloor_cool_temperature_norm_K = float(
+    f["/Parameters"].attrs["EAGLEEntropyFloor:Cool_temperature_norm_K"]
+)
+EAGLEfloor_cool_gamma_effective = float(
+    f["/Parameters"].attrs["EAGLEEntropyFloor:Cool_gamma_effective"]
+)
 
 # Properties of the KS law
-KS_law_norm_cgs = KS_law_norm * Msun_in_cgs / ( 1e6 * pc_in_cgs**2 * year_in_cgs )
-gamma = 5./3.
+KS_law_norm_cgs = KS_law_norm * Msun_in_cgs / (1e6 * pc_in_cgs ** 2 * year_in_cgs)
+gamma = 5.0 / 3.0
 EOS_press_norm = k_in_cgs * EOS_temp_norm * EOS_density_norm
 
 # Star formation threshold
-SF_thresh = KS_thresh_norm * (EAGLE_Z / KS_thresh_Z0)**(KS_thresh_slope)
+SF_thresh = KS_thresh_norm * (EAGLE_Z / KS_thresh_Z0) ** (KS_thresh_slope)
 
 # Read gas properties
 gas_pos = f["/PartType0/Coordinates"][:, :]
 gas_mass = f["/PartType0/Masses"][:]
-gas_rho = f["/PartType0/Density"][:]
+gas_rho = f["/PartType0/Densities"][:]
 gas_T = f["/PartType0/Temperature"][:]
 gas_SFR = f["/PartType0/SFR"][:]
-gas_XH = f["/PartType0/ElementAbundance"][:, 0]
-gas_Z = f["/PartType0/Metallicity"][:]
-gas_hsml = f["/PartType0/SmoothingLength"][:]
+gas_XH = f["/PartType0/ElementMassFractions"][:, 0]
+gas_Z = f["/PartType0/Metallicities"][:]
+gas_hsml = f["/PartType0/SmoothingLengths"][:]
 gas_sSFR = gas_SFR / gas_mass
 
 # Read the Star properties
 stars_pos = f["/PartType4/Coordinates"][:, :]
 stars_BirthDensity = f["/PartType4/BirthDensity"][:]
 stars_BirthTime = f["/PartType4/BirthTime"][:]
-stars_XH = f["/PartType4/ElementAbundance"][:,0]
+stars_XH = f["/PartType4/ElementAbundance"][:, 0]
 
 # Centre the box
 gas_pos[:, 0] -= centre[0]
 gas_pos[:, 1] -= centre[1]
 gas_pos[:, 2] -= centre[2]
 
-stars_pos[:,0] -= centre[0]
-stars_pos[:,1] -= centre[1]
-stars_pos[:,2] -= centre[2]
+stars_pos[:, 0] -= centre[0]
+stars_pos[:, 1] -= centre[1]
+stars_pos[:, 2] -= centre[2]
 
 # Turn the mass into better units
 gas_mass *= unit_mass_in_cgs / Msun_in_cgs
@@ -132,9 +160,13 @@ stars_BirthDensity *= stars_XH
 
 # Equations of state
 eos_cool_rho = np.logspace(-5, 5, 1000)
-eos_cool_T = EAGLEfloor_cool_temperature_norm_K * (eos_cool_rho / EAGLEfloor_cool_rho_norm) ** ( EAGLEfloor_cool_gamma_effective - 1.0 )
+eos_cool_T = EAGLEfloor_cool_temperature_norm_K * (
+    eos_cool_rho / EAGLEfloor_cool_rho_norm
+) ** (EAGLEfloor_cool_gamma_effective - 1.0)
 eos_Jeans_rho = np.logspace(-1, 5, 1000)
-eos_Jeans_T = EAGLEfloor_Jeans_temperature_norm_K * (eos_Jeans_rho / EAGLEfloor_Jeans_rho_norm) ** (EAGLEfloor_Jeans_gamma_effective - 1.0 ) 
+eos_Jeans_T = EAGLEfloor_Jeans_temperature_norm_K * (
+    eos_Jeans_rho / EAGLEfloor_Jeans_rho_norm
+) ** (EAGLEfloor_Jeans_gamma_effective - 1.0)
 
 ########################################################################3
 
@@ -156,7 +188,15 @@ subplot(111, xscale="log", yscale="log")
 plot(eos_cool_rho, eos_cool_T, "k--", lw=0.6)
 plot(eos_Jeans_rho, eos_Jeans_T, "k--", lw=0.6)
 plot([SF_thresh, SF_thresh], [1, 1e10], "k:", lw=0.6)
-text(SF_thresh*0.9, 2e4, "$n_{\\rm H, thresh}=%.3f~{\\rm cm^{-3}}$"%SF_thresh, fontsize=8, rotation=90, ha="right", va="bottom")
+text(
+    SF_thresh * 0.9,
+    2e4,
+    "$n_{\\rm H, thresh}=%.3f~{\\rm cm^{-3}}$" % SF_thresh,
+    fontsize=8,
+    rotation=90,
+    ha="right",
+    va="bottom",
+)
 scatter(gas_nH[gas_SFR > 0.0], gas_T[gas_SFR > 0.0], s=0.2)
 xlabel("${\\rm Density}~n_{\\rm H}~[{\\rm cm^{-3}}]$", labelpad=0)
 ylabel("${\\rm Temperature}~T~[{\\rm K}]$", labelpad=2)
@@ -188,37 +228,61 @@ star_mask = (
     & (stars_pos[:, 2] > -1.0)
 )
 
-stars_BirthDensity = stars_BirthDensity[star_mask] 
-#stars_BirthFlag = stars_BirthFlag[star_mask]
+stars_BirthDensity = stars_BirthDensity[star_mask]
+# stars_BirthFlag = stars_BirthFlag[star_mask]
 stars_BirthTime = stars_BirthTime[star_mask]
 
 # Histogram of the birth density
 figure()
 subplot(111, xscale="linear", yscale="linear")
-hist(np.log10(stars_BirthDensity),density=True,bins=20,range=[-2,5])
+hist(np.log10(stars_BirthDensity), density=True, bins=20, range=[-2, 5])
 xlabel("${\\rm Stellar~birth~density}~n_{\\rm H}~[{\\rm cm^{-3}}]$", labelpad=0)
 ylabel("${\\rm Probability}$", labelpad=-7)
 savefig("BirthDensity.png", dpi=200)
 
 # Plot of the specific star formation rate in the galaxy
-rhos = 10**np.linspace(-1,np.log10(KS_high_den_thresh),100)
-rhoshigh = 10**np.linspace(np.log10(KS_high_den_thresh),5,100)
+rhos = 10 ** np.linspace(-1, np.log10(KS_high_den_thresh), 100)
+rhoshigh = 10 ** np.linspace(np.log10(KS_high_den_thresh), 5, 100)
 
-P_effective = EOS_press_norm * ( rhos / EOS_density_norm)**(EOS_gamma_effective)
-P_norm_high = EOS_press_norm * (KS_high_den_thresh  / EOS_density_norm)**(EOS_gamma_effective)
-sSFR = KS_law_norm_cgs * (Msun_p_pc2)**(-KS_law_slope) * (gamma/G_in_cgs * KS_gas_fraction *P_effective)**((KS_law_slope-1.)/2.)
-KS_law_norm_high_den_cgs = KS_law_norm_cgs * (Msun_p_pc2)**(-KS_law_slope) * (gamma/G_in_cgs * KS_gas_fraction * P_norm_high)**((KS_law_slope-1.)/2.)
-sSFR_high_den = KS_law_norm_high_den_cgs * ((rhoshigh/KS_high_den_thresh)**EOS_gamma_effective)**((KS_law_slope_high_den-1)/2.)
+P_effective = EOS_press_norm * (rhos / EOS_density_norm) ** (EOS_gamma_effective)
+P_norm_high = EOS_press_norm * (KS_high_den_thresh / EOS_density_norm) ** (
+    EOS_gamma_effective
+)
+sSFR = (
+    KS_law_norm_cgs
+    * (Msun_p_pc2) ** (-KS_law_slope)
+    * (gamma / G_in_cgs * KS_gas_fraction * P_effective) ** ((KS_law_slope - 1.0) / 2.0)
+)
+KS_law_norm_high_den_cgs = (
+    KS_law_norm_cgs
+    * (Msun_p_pc2) ** (-KS_law_slope)
+    * (gamma / G_in_cgs * KS_gas_fraction * P_norm_high) ** ((KS_law_slope - 1.0) / 2.0)
+)
+sSFR_high_den = KS_law_norm_high_den_cgs * (
+    (rhoshigh / KS_high_den_thresh) ** EOS_gamma_effective
+) ** ((KS_law_slope_high_den - 1) / 2.0)
 
 # density - sSFR plane
 figure()
 subplot(111)
-hist2d(np.log10(gas_nH), np.log10(gas_sSFR), bins=50,range=[[-1.5,5],[-.5,2.5]])
-plot(np.log10(rhos),np.log10(sSFR)+np.log10(year_in_cgs)+9.,'k--',label='sSFR low density EAGLE')
-plot(np.log10(rhoshigh),np.log10(sSFR_high_den)+np.log10(year_in_cgs)+9.,'k--',label='sSFR high density EAGLE')
+hist2d(np.log10(gas_nH), np.log10(gas_sSFR), bins=50, range=[[-1.5, 5], [-0.5, 2.5]])
+plot(
+    np.log10(rhos),
+    np.log10(sSFR) + np.log10(year_in_cgs) + 9.0,
+    "k--",
+    label="sSFR low density EAGLE",
+)
+plot(
+    np.log10(rhoshigh),
+    np.log10(sSFR_high_den) + np.log10(year_in_cgs) + 9.0,
+    "k--",
+    label="sSFR high density EAGLE",
+)
 xlabel("${\\rm Density}~n_{\\rm H}~[{\\rm cm^{-3}}]$", labelpad=2)
 ylabel("${\\rm sSFR}~[{\\rm Gyr^{-1}}]$", labelpad=0)
-xticks([-1, 0, 1, 2, 3, 4], ["$10^{-1}$", "$10^0$", "$10^1$", "$10^2$", "$10^3$", "$10^4$"])
+xticks(
+    [-1, 0, 1, 2, 3, 4], ["$10^{-1}$", "$10^0$", "$10^1$", "$10^2$", "$10^3$", "$10^4$"]
+)
 yticks([0, 1, 2], ["$10^0$", "$10^1$", "$10^2$"])
 xlim(-1.4, 4.9)
 ylim(-0.5, 2.2)
diff --git a/examples/IsolatedGalaxy/IsolatedGalaxy_feedback/plot_box_evolution.py b/examples/IsolatedGalaxy/IsolatedGalaxy_feedback/plot_box_evolution.py
index 67da3c390be1240323941b835e056dcd6e27feed..94f27c87ff46c48ffc6b0df8c3e02c7abb6df875 100644
--- a/examples/IsolatedGalaxy/IsolatedGalaxy_feedback/plot_box_evolution.py
+++ b/examples/IsolatedGalaxy/IsolatedGalaxy_feedback/plot_box_evolution.py
@@ -1,24 +1,25 @@
 ###############################################################################
- # This file is part of SWIFT.
- # Copyright (c) 2015 Bert Vandenbroucke (bert.vandenbroucke@ugent.be)
- #                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
- # 
- # This program is free software: you can redistribute it and/or modify
- # it under the terms of the GNU Lesser General Public License as published
- # by the Free Software Foundation, either version 3 of the License, or
- # (at your option) any later version.
- # 
- # This program is distributed in the hope that it will be useful,
- # but WITHOUT ANY WARRANTY; without even the implied warranty of
- # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- # GNU General Public License for more details.
- # 
- # You should have received a copy of the GNU Lesser General Public License
- # along with this program.  If not, see <http://www.gnu.org/licenses/>.
- # 
- ##############################################################################
+# This file is part of SWIFT.
+# Copyright (c) 2015 Bert Vandenbroucke (bert.vandenbroucke@ugent.be)
+#                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
+#
+# This program is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Lesser General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public License
+# along with this program.  If not, see <http://www.gnu.org/licenses/>.
+#
+##############################################################################
 
 import matplotlib
+
 matplotlib.use("Agg")
 from pylab import *
 from scipy import stats
@@ -27,40 +28,42 @@ import numpy as np
 import glob
 import os.path
 
-def find_indices(a,b):
-        result = np.zeros(len(b))
-        for i in range(len(b)):
-                result[i] = ((np.where(a == b[i]))[0])[0]
 
-        return result
+def find_indices(a, b):
+    result = np.zeros(len(b))
+    for i in range(len(b)):
+        result[i] = ((np.where(a == b[i]))[0])[0]
+
+    return result
 
 
 # Plot parameters
-params = {'axes.labelsize': 10,
-'axes.titlesize': 10,
-'font.size': 12,
-'legend.fontsize': 12,
-'xtick.labelsize': 10,
-'ytick.labelsize': 10,
-'text.usetex': True,
- 'figure.figsize' : (9.90,6.45),
-'figure.subplot.left'    : 0.1,
-'figure.subplot.right'   : 0.99,
-'figure.subplot.bottom'  : 0.1,
-'figure.subplot.top'     : 0.95,
-'figure.subplot.wspace'  : 0.2,
-'figure.subplot.hspace'  : 0.2,
-'lines.markersize' : 6,
-'lines.linewidth' : 3.,
-'text.latex.unicode': True
+params = {
+    "axes.labelsize": 10,
+    "axes.titlesize": 10,
+    "font.size": 12,
+    "legend.fontsize": 12,
+    "xtick.labelsize": 10,
+    "ytick.labelsize": 10,
+    "text.usetex": True,
+    "figure.figsize": (9.90, 6.45),
+    "figure.subplot.left": 0.1,
+    "figure.subplot.right": 0.99,
+    "figure.subplot.bottom": 0.1,
+    "figure.subplot.top": 0.95,
+    "figure.subplot.wspace": 0.2,
+    "figure.subplot.hspace": 0.2,
+    "lines.markersize": 6,
+    "lines.linewidth": 3.0,
+    "text.latex.unicode": True,
 }
 rcParams.update(params)
-rc('font',**{'family':'sans-serif','sans-serif':['Times']})
+rc("font", **{"family": "sans-serif", "sans-serif": ["Times"]})
 
 
 # Number of snapshots and elements
-newest_snap_name = max(glob.glob('output_*.hdf5'), key=os.path.getctime)
-n_snapshots = int(newest_snap_name.replace('output_','').replace('.hdf5','')) + 1
+newest_snap_name = max(glob.glob("output_*.hdf5"), key=os.path.getctime)
+n_snapshots = int(newest_snap_name.replace("output_", "").replace(".hdf5", "")) + 1
 n_elements = 9
 
 # Read the simulation data
@@ -84,10 +87,10 @@ unit_energy_in_cgs = unit_mass_in_cgs * unit_vel_in_cgs * unit_vel_in_cgs
 unit_length_in_si = 0.01 * unit_length_in_cgs
 unit_mass_in_si = 0.001 * unit_mass_in_cgs
 unit_time_in_si = unit_time_in_cgs
-unit_density_in_cgs = unit_mass_in_cgs*unit_length_in_cgs**-3
-unit_pressure_in_cgs = unit_mass_in_cgs/unit_length_in_cgs*unit_time_in_cgs**-2
-unit_int_energy_in_cgs = unit_energy_in_cgs/unit_mass_in_cgs
-unit_entropy_in_cgs = unit_energy_in_cgs/unit_temp_in_cgs
+unit_density_in_cgs = unit_mass_in_cgs * unit_length_in_cgs ** -3
+unit_pressure_in_cgs = unit_mass_in_cgs / unit_length_in_cgs * unit_time_in_cgs ** -2
+unit_int_energy_in_cgs = unit_energy_in_cgs / unit_mass_in_cgs
+unit_entropy_in_cgs = unit_energy_in_cgs / unit_temp_in_cgs
 Gyr_in_cgs = 3.155e16
 Msun_in_cgs = 1.989e33
 
@@ -95,61 +98,111 @@ box_energy = zeros(n_snapshots)
 box_mass = zeros(n_snapshots)
 box_star_mass = zeros(n_snapshots)
 box_metal_mass = zeros(n_snapshots)
-element_mass = zeros((n_snapshots,n_elements))
+element_mass = zeros((n_snapshots, n_elements))
 t = zeros(n_snapshots)
 
 # Read data from snapshots
 for i in range(n_snapshots):
-	print("reading snapshot "+str(i))
-	# Read the simulation data
-	sim = h5py.File("output_%04d.hdf5"%i, "r")
-	t[i] = sim["/Header"].attrs["Time"][0]
-	#ids = sim["/PartType0/ParticleIDs"][:]
-	
-	masses = sim["/PartType0/Masses"][:]
-	box_mass[i] = np.sum(masses)
-	
-	star_masses = sim["/PartType4/Masses"][:]
-	box_star_mass[i] = np.sum(star_masses)
-	
-	metallicities = sim["/PartType0/Metallicity"][:]
-	box_metal_mass[i] = np.sum(metallicities * masses)
-	
-	internal_energies = sim["/PartType0/InternalEnergy"][:]
-	box_energy[i] = np.sum(masses * internal_energies)
+    print("reading snapshot " + str(i))
+    # Read the simulation data
+    sim = h5py.File("output_%04d.hdf5" % i, "r")
+    t[i] = sim["/Header"].attrs["Time"][0]
+    # ids = sim["/PartType0/ParticleIDs"][:]
+
+    masses = sim["/PartType0/Masses"][:]
+    box_mass[i] = np.sum(masses)
+
+    star_masses = sim["/PartType4/Masses"][:]
+    box_star_mass[i] = np.sum(star_masses)
+
+    metallicities = sim["/PartType0/Metallicities"][:]
+    box_metal_mass[i] = np.sum(metallicities * masses)
+
+    internal_energies = sim["/PartType0/InternalEnergies"][:]
+    box_energy[i] = np.sum(masses * internal_energies)
 
 # Plot the interesting quantities
 figure()
 
 # Box mass --------------------------------
 subplot(221)
-plot(t[1:] * unit_time_in_cgs / Gyr_in_cgs, (box_mass[1:] - box_mass[0])* unit_mass_in_cgs / Msun_in_cgs, linewidth=0.5, color='k', marker = "*", ms=0.5, label='swift')
+plot(
+    t[1:] * unit_time_in_cgs / Gyr_in_cgs,
+    (box_mass[1:] - box_mass[0]) * unit_mass_in_cgs / Msun_in_cgs,
+    linewidth=0.5,
+    color="k",
+    marker="*",
+    ms=0.5,
+    label="swift",
+)
 xlabel("${\\rm{Time}} (Gyr)$", labelpad=0)
 ylabel("Change in total gas particle mass (Msun)", labelpad=2)
-ticklabel_format(style='sci', axis='y', scilimits=(0,0))
+ticklabel_format(style="sci", axis="y", scilimits=(0, 0))
 
 # Box metal mass --------------------------------
 subplot(222)
-plot(t[1:] * unit_time_in_cgs / Gyr_in_cgs, (box_metal_mass[1:] - box_metal_mass[0])* unit_mass_in_cgs / Msun_in_cgs, linewidth=0.5, color='k', ms=0.5, label='swift')
+plot(
+    t[1:] * unit_time_in_cgs / Gyr_in_cgs,
+    (box_metal_mass[1:] - box_metal_mass[0]) * unit_mass_in_cgs / Msun_in_cgs,
+    linewidth=0.5,
+    color="k",
+    ms=0.5,
+    label="swift",
+)
 xlabel("${\\rm{Time}} (Gyr)$", labelpad=0)
 ylabel("Change in total metal mass of gas particles (Msun)", labelpad=2)
-ticklabel_format(style='sci', axis='y', scilimits=(0,0))
+ticklabel_format(style="sci", axis="y", scilimits=(0, 0))
 
 # Box energy --------------------------------
 subplot(223)
-plot(t[1:] * unit_time_in_cgs / Gyr_in_cgs, (box_energy[1:] - box_energy[0])* unit_energy_in_cgs, linewidth=0.5, color='k', ms=0.5, label='swift')
+plot(
+    t[1:] * unit_time_in_cgs / Gyr_in_cgs,
+    (box_energy[1:] - box_energy[0]) * unit_energy_in_cgs,
+    linewidth=0.5,
+    color="k",
+    ms=0.5,
+    label="swift",
+)
 xlabel("${\\rm{Time}} (Gyr)$", labelpad=0)
 ylabel("Change in total energy of gas particles (erg)", labelpad=2)
-ticklabel_format(style='sci', axis='y', scilimits=(0,0))
+ticklabel_format(style="sci", axis="y", scilimits=(0, 0))
 
 # Box mass --------------------------------
 subplot(224)
-plot(t[1:] * unit_time_in_cgs / Gyr_in_cgs, (box_mass[1:] - box_mass[0])* unit_mass_in_cgs / Msun_in_cgs, linewidth=0.5, color='k', marker = "*", ms=0.5, label='gas')
-plot(t[1:] * unit_time_in_cgs / Gyr_in_cgs, (box_star_mass[1:] - box_star_mass[n_snapshots-1])* unit_mass_in_cgs / Msun_in_cgs, linewidth=0.5, color='r', marker = "*", ms=0.5, label='stars')
-plot(t[1:] * unit_time_in_cgs / Gyr_in_cgs, (box_star_mass[1:] - box_star_mass[n_snapshots-1] + box_mass[1:] - box_mass[0])* unit_mass_in_cgs / Msun_in_cgs, linewidth=0.5, color='g', marker = "*", ms=0.5, label='total')
+plot(
+    t[1:] * unit_time_in_cgs / Gyr_in_cgs,
+    (box_mass[1:] - box_mass[0]) * unit_mass_in_cgs / Msun_in_cgs,
+    linewidth=0.5,
+    color="k",
+    marker="*",
+    ms=0.5,
+    label="gas",
+)
+plot(
+    t[1:] * unit_time_in_cgs / Gyr_in_cgs,
+    (box_star_mass[1:] - box_star_mass[n_snapshots - 1])
+    * unit_mass_in_cgs
+    / Msun_in_cgs,
+    linewidth=0.5,
+    color="r",
+    marker="*",
+    ms=0.5,
+    label="stars",
+)
+plot(
+    t[1:] * unit_time_in_cgs / Gyr_in_cgs,
+    (box_star_mass[1:] - box_star_mass[n_snapshots - 1] + box_mass[1:] - box_mass[0])
+    * unit_mass_in_cgs
+    / Msun_in_cgs,
+    linewidth=0.5,
+    color="g",
+    marker="*",
+    ms=0.5,
+    label="total",
+)
 xlabel("${\\rm{Time}} (Gyr)$", labelpad=0)
 ylabel("Change in total gas particle mass (Msun)", labelpad=2)
-ticklabel_format(style='sci', axis='y', scilimits=(0,0))
+ticklabel_format(style="sci", axis="y", scilimits=(0, 0))
 legend()
 
 savefig("box_evolution.png", dpi=200)
diff --git a/examples/IsolatedGalaxy/IsolatedGalaxy_starformation/plotSolution.py b/examples/IsolatedGalaxy/IsolatedGalaxy_starformation/plotSolution.py
index 73e4878e8e00a35fe19c359652be0d57153dea62..044ad2bc78958cbf669c7257122b1ff80a94ba1a 100644
--- a/examples/IsolatedGalaxy/IsolatedGalaxy_starformation/plotSolution.py
+++ b/examples/IsolatedGalaxy/IsolatedGalaxy_starformation/plotSolution.py
@@ -49,7 +49,7 @@ rcParams.update(params)
 rc("font", **{"family": "sans-serif", "sans-serif": ["Times"]})
 
 snap = int(sys.argv[1])
-filename = "output_%.4d.hdf5"%snap
+filename = "output_%.4d.hdf5" % snap
 
 f = h5.File(filename, "r")
 
@@ -60,7 +60,7 @@ year_in_cgs = 3600.0 * 24 * 365.0
 Msun_in_cgs = 1.98848e33
 G_in_cgs = 6.67259e-8
 pc_in_cgs = 3.08567758e18
-Msun_p_pc2 = Msun_in_cgs / pc_in_cgs**2
+Msun_p_pc2 = Msun_in_cgs / pc_in_cgs ** 2
 
 # Gemoetry info
 boxsize = f["/Header"].attrs["BoxSize"]
@@ -72,57 +72,85 @@ unit_mass_in_cgs = f["/Units"].attrs["Unit mass in cgs (U_M)"]
 unit_time_in_cgs = f["/Units"].attrs["Unit time in cgs (U_t)"]
 
 # Calculate Gravitational constant in internal units
-G = G_in_cgs * ( unit_length_in_cgs**3 / unit_mass_in_cgs / unit_time_in_cgs**2)**(-1)
+G = G_in_cgs * (unit_length_in_cgs ** 3 / unit_mass_in_cgs / unit_time_in_cgs ** 2) ** (
+    -1
+)
 
 # Read parameters of the SF model
 KS_law_slope = float(f["/Parameters"].attrs["EAGLEStarFormation:KS_exponent"])
 KS_law_norm = float(f["/Parameters"].attrs["EAGLEStarFormation:KS_normalisation"])
 KS_thresh_Z0 = float(f["/Parameters"].attrs["EAGLEStarFormation:threshold_Z0"])
 KS_thresh_slope = float(f["/Parameters"].attrs["EAGLEStarFormation:threshold_slope"])
-KS_thresh_norm = float(f["/Parameters"].attrs["EAGLEStarFormation:threshold_norm_H_p_cm3"])
+KS_thresh_norm = float(
+    f["/Parameters"].attrs["EAGLEStarFormation:threshold_norm_H_p_cm3"]
+)
 KS_gas_fraction = float(f["/Parameters"].attrs["EAGLEStarFormation:gas_fraction"])
-KS_thresh_max_norm = float(f["/Parameters"].attrs["EAGLEStarFormation:threshold_max_density_H_p_cm3"])
-KS_high_den_thresh = float(f["/Parameters"].attrs["EAGLEStarFormation:KS_high_density_threshold_H_p_cm3"])
-KS_law_slope_high_den = float(f["/Parameters"].attrs["EAGLEStarFormation:KS_high_density_exponent"])
-EOS_gamma_effective = float(f["/Parameters"].attrs["EAGLEStarFormation:EOS_gamma_effective"])                           
-EOS_density_norm = float(f["/Parameters"].attrs["EAGLEStarFormation:EOS_density_norm_H_p_cm3"])                           
-EOS_temp_norm = float(f["/Parameters"].attrs["EAGLEStarFormation:EOS_temperature_norm_K"])                           
+KS_thresh_max_norm = float(
+    f["/Parameters"].attrs["EAGLEStarFormation:threshold_max_density_H_p_cm3"]
+)
+KS_high_den_thresh = float(
+    f["/Parameters"].attrs["EAGLEStarFormation:KS_high_density_threshold_H_p_cm3"]
+)
+KS_law_slope_high_den = float(
+    f["/Parameters"].attrs["EAGLEStarFormation:KS_high_density_exponent"]
+)
+EOS_gamma_effective = float(
+    f["/Parameters"].attrs["EAGLEStarFormation:EOS_gamma_effective"]
+)
+EOS_density_norm = float(
+    f["/Parameters"].attrs["EAGLEStarFormation:EOS_density_norm_H_p_cm3"]
+)
+EOS_temp_norm = float(
+    f["/Parameters"].attrs["EAGLEStarFormation:EOS_temperature_norm_K"]
+)
 
 # Read reference metallicity
 EAGLE_Z = float(f["/Parameters"].attrs["EAGLEChemistry:init_abundance_metal"])
 
 # Read parameters of the entropy floor
-EAGLEfloor_Jeans_rho_norm = float(f["/Parameters"].attrs["EAGLEEntropyFloor:Jeans_density_threshold_H_p_cm3"])
-EAGLEfloor_Jeans_temperature_norm_K = float(f["/Parameters"].attrs["EAGLEEntropyFloor:Jeans_temperature_norm_K"])
-EAGLEfloor_Jeans_gamma_effective = float(f["/Parameters"].attrs["EAGLEEntropyFloor:Jeans_gamma_effective"])
-EAGLEfloor_cool_rho_norm = float(f["/Parameters"].attrs["EAGLEEntropyFloor:Cool_density_threshold_H_p_cm3"])
-EAGLEfloor_cool_temperature_norm_K = float(f["/Parameters"].attrs["EAGLEEntropyFloor:Cool_temperature_norm_K"])
-EAGLEfloor_cool_gamma_effective = float(f["/Parameters"].attrs["EAGLEEntropyFloor:Cool_gamma_effective"])
+EAGLEfloor_Jeans_rho_norm = float(
+    f["/Parameters"].attrs["EAGLEEntropyFloor:Jeans_density_threshold_H_p_cm3"]
+)
+EAGLEfloor_Jeans_temperature_norm_K = float(
+    f["/Parameters"].attrs["EAGLEEntropyFloor:Jeans_temperature_norm_K"]
+)
+EAGLEfloor_Jeans_gamma_effective = float(
+    f["/Parameters"].attrs["EAGLEEntropyFloor:Jeans_gamma_effective"]
+)
+EAGLEfloor_cool_rho_norm = float(
+    f["/Parameters"].attrs["EAGLEEntropyFloor:Cool_density_threshold_H_p_cm3"]
+)
+EAGLEfloor_cool_temperature_norm_K = float(
+    f["/Parameters"].attrs["EAGLEEntropyFloor:Cool_temperature_norm_K"]
+)
+EAGLEfloor_cool_gamma_effective = float(
+    f["/Parameters"].attrs["EAGLEEntropyFloor:Cool_gamma_effective"]
+)
 
 # Properties of the KS law
-KS_law_norm_cgs = KS_law_norm * Msun_in_cgs / ( 1e6 * pc_in_cgs**2 * year_in_cgs )
-gamma = 5./3.
+KS_law_norm_cgs = KS_law_norm * Msun_in_cgs / (1e6 * pc_in_cgs ** 2 * year_in_cgs)
+gamma = 5.0 / 3.0
 EOS_press_norm = k_in_cgs * EOS_temp_norm * EOS_density_norm
 
 # Star formation threshold
-SF_thresh = KS_thresh_norm * (EAGLE_Z / KS_thresh_Z0)**(KS_thresh_slope)
+SF_thresh = KS_thresh_norm * (EAGLE_Z / KS_thresh_Z0) ** (KS_thresh_slope)
 
 # Read gas properties
 gas_pos = f["/PartType0/Coordinates"][:, :]
 gas_mass = f["/PartType0/Masses"][:]
-gas_rho = f["/PartType0/Density"][:]
+gas_rho = f["/PartType0/Densities"][:]
 gas_T = f["/PartType0/Temperature"][:]
 gas_SFR = f["/PartType0/SFR"][:]
-gas_XH = f["/PartType0/ElementAbundance"][:, 0]
-gas_Z = f["/PartType0/Metallicity"][:]
-gas_hsml = f["/PartType0/SmoothingLength"][:]
+gas_XH = f["/PartType0/ElementMassFractions"][:, 0]
+gas_Z = f["/PartType0/Metallicities"][:]
+gas_hsml = f["/PartType0/SmoothingLengths"][:]
 gas_sSFR = gas_SFR / gas_mass
 
 # Read the Star properties
 stars_pos = f["/PartType4/Coordinates"][:, :]
 stars_BirthDensity = f["/PartType4/BirthDensity"][:]
 stars_BirthTime = f["/PartType4/BirthTime"][:]
-stars_XH = f["/PartType4/ElementAbundance"][:,0]
+stars_XH = f["/PartType4/ElementAbundance"][:, 0]
 stars_BirthTemperature = f["/PartType4/BirthTemperature"][:]
 
 # Centre the box
@@ -130,9 +158,9 @@ gas_pos[:, 0] -= centre[0]
 gas_pos[:, 1] -= centre[1]
 gas_pos[:, 2] -= centre[2]
 
-stars_pos[:,0] -= centre[0]
-stars_pos[:,1] -= centre[1]
-stars_pos[:,2] -= centre[2]
+stars_pos[:, 0] -= centre[0]
+stars_pos[:, 1] -= centre[1]
+stars_pos[:, 2] -= centre[2]
 
 # Turn the mass into better units
 gas_mass *= unit_mass_in_cgs / Msun_in_cgs
@@ -156,9 +184,13 @@ stars_BirthDensity *= stars_XH
 
 # Equations of state
 eos_cool_rho = np.logspace(-5, 5, 1000)
-eos_cool_T = EAGLEfloor_cool_temperature_norm_K * (eos_cool_rho / EAGLEfloor_cool_rho_norm) ** ( EAGLEfloor_cool_gamma_effective - 1.0 )
+eos_cool_T = EAGLEfloor_cool_temperature_norm_K * (
+    eos_cool_rho / EAGLEfloor_cool_rho_norm
+) ** (EAGLEfloor_cool_gamma_effective - 1.0)
 eos_Jeans_rho = np.logspace(-1, 5, 1000)
-eos_Jeans_T = EAGLEfloor_Jeans_temperature_norm_K * (eos_Jeans_rho / EAGLEfloor_Jeans_rho_norm) ** (EAGLEfloor_Jeans_gamma_effective - 1.0 ) 
+eos_Jeans_T = EAGLEfloor_Jeans_temperature_norm_K * (
+    eos_Jeans_rho / EAGLEfloor_Jeans_rho_norm
+) ** (EAGLEfloor_Jeans_gamma_effective - 1.0)
 
 ########################################################################3
 
@@ -180,7 +212,15 @@ subplot(111, xscale="log", yscale="log")
 plot(eos_cool_rho, eos_cool_T, "k--", lw=0.6)
 plot(eos_Jeans_rho, eos_Jeans_T, "k--", lw=0.6)
 plot([SF_thresh, SF_thresh], [1, 1e10], "k:", lw=0.6)
-text(SF_thresh*0.9, 2e4, "$n_{\\rm H, thresh}=%.3f~{\\rm cm^{-3}}$"%SF_thresh, fontsize=8, rotation=90, ha="right", va="bottom")
+text(
+    SF_thresh * 0.9,
+    2e4,
+    "$n_{\\rm H, thresh}=%.3f~{\\rm cm^{-3}}$" % SF_thresh,
+    fontsize=8,
+    rotation=90,
+    ha="right",
+    va="bottom",
+)
 scatter(gas_nH[gas_SFR > 0.0], gas_T[gas_SFR > 0.0], s=0.2)
 xlabel("${\\rm Density}~n_{\\rm H}~[{\\rm cm^{-3}}]$", labelpad=0)
 ylabel("${\\rm Temperature}~T~[{\\rm K}]$", labelpad=2)
@@ -199,66 +239,92 @@ star_mask = (
     & (stars_pos[:, 2] > -1.0)
 )
 
-stars_BirthDensity = stars_BirthDensity[star_mask] 
-#stars_BirthFlag = stars_BirthFlag[star_mask]
+stars_BirthDensity = stars_BirthDensity[star_mask]
+# stars_BirthFlag = stars_BirthFlag[star_mask]
 stars_BirthTime = stars_BirthTime[star_mask]
 
 # Histogram of the birth density
 figure()
 subplot(111, xscale="linear", yscale="linear")
-hist(np.log10(stars_BirthDensity),density=True,bins=20,range=[-2,5])
+hist(np.log10(stars_BirthDensity), density=True, bins=20, range=[-2, 5])
 xlabel("${\\rm Stellar~birth~density}~n_{\\rm H}~[{\\rm cm^{-3}}]$", labelpad=0)
 ylabel("${\\rm Probability}$", labelpad=3)
 savefig("BirthDensity.png", dpi=200)
 
-# Histogram of the birth temperature 
+# Histogram of the birth temperature
 figure()
 subplot(111, xscale="linear", yscale="linear")
-hist(np.log10(stars_BirthTemperature),density=True,bins=20,range=[3.5,5.0])
+hist(np.log10(stars_BirthTemperature), density=True, bins=20, range=[3.5, 5.0])
 xlabel("${\\rm Stellar~birth~temperature}~[{\\rm K}]$", labelpad=0)
 ylabel("${\\rm Probability}$", labelpad=3)
 savefig("BirthTemperature.png", dpi=200)
 
 # Plot of the specific star formation rate in the galaxy
-rhos = 10**np.linspace(-1,np.log10(KS_high_den_thresh),100)
-rhoshigh = 10**np.linspace(np.log10(KS_high_den_thresh),5,100)
+rhos = 10 ** np.linspace(-1, np.log10(KS_high_den_thresh), 100)
+rhoshigh = 10 ** np.linspace(np.log10(KS_high_den_thresh), 5, 100)
 
-P_effective = EOS_press_norm * ( rhos / EOS_density_norm)**(EOS_gamma_effective)
-P_norm_high = EOS_press_norm * (KS_high_den_thresh  / EOS_density_norm)**(EOS_gamma_effective)
-sSFR = KS_law_norm_cgs * (Msun_p_pc2)**(-KS_law_slope) * (gamma/G_in_cgs * KS_gas_fraction *P_effective)**((KS_law_slope-1.)/2.)
-KS_law_norm_high_den_cgs = KS_law_norm_cgs * (Msun_p_pc2)**(-KS_law_slope) * (gamma/G_in_cgs * KS_gas_fraction * P_norm_high)**((KS_law_slope-1.)/2.)
-sSFR_high_den = KS_law_norm_high_den_cgs * ((rhoshigh/KS_high_den_thresh)**EOS_gamma_effective)**((KS_law_slope_high_den-1)/2.)
+P_effective = EOS_press_norm * (rhos / EOS_density_norm) ** (EOS_gamma_effective)
+P_norm_high = EOS_press_norm * (KS_high_den_thresh / EOS_density_norm) ** (
+    EOS_gamma_effective
+)
+sSFR = (
+    KS_law_norm_cgs
+    * (Msun_p_pc2) ** (-KS_law_slope)
+    * (gamma / G_in_cgs * KS_gas_fraction * P_effective) ** ((KS_law_slope - 1.0) / 2.0)
+)
+KS_law_norm_high_den_cgs = (
+    KS_law_norm_cgs
+    * (Msun_p_pc2) ** (-KS_law_slope)
+    * (gamma / G_in_cgs * KS_gas_fraction * P_norm_high) ** ((KS_law_slope - 1.0) / 2.0)
+)
+sSFR_high_den = KS_law_norm_high_den_cgs * (
+    (rhoshigh / KS_high_den_thresh) ** EOS_gamma_effective
+) ** ((KS_law_slope_high_den - 1) / 2.0)
 
 # density - sSFR plane
 figure()
 subplot(111)
-hist2d(np.log10(gas_nH), np.log10(gas_sSFR), bins=50,range=[[-1.5,5],[-.5,2.5]])
-plot(np.log10(rhos),np.log10(sSFR)+np.log10(year_in_cgs)+9.,'k--',label='sSFR low density EAGLE')
-plot(np.log10(rhoshigh),np.log10(sSFR_high_den)+np.log10(year_in_cgs)+9.,'k--',label='sSFR high density EAGLE')
+hist2d(np.log10(gas_nH), np.log10(gas_sSFR), bins=50, range=[[-1.5, 5], [-0.5, 2.5]])
+plot(
+    np.log10(rhos),
+    np.log10(sSFR) + np.log10(year_in_cgs) + 9.0,
+    "k--",
+    label="sSFR low density EAGLE",
+)
+plot(
+    np.log10(rhoshigh),
+    np.log10(sSFR_high_den) + np.log10(year_in_cgs) + 9.0,
+    "k--",
+    label="sSFR high density EAGLE",
+)
 xlabel("${\\rm Density}~n_{\\rm H}~[{\\rm cm^{-3}}]$", labelpad=2)
 ylabel("${\\rm sSFR}~[{\\rm Gyr^{-1}}]$", labelpad=0)
-xticks([-1, 0, 1, 2, 3, 4], ["$10^{-1}$", "$10^0$", "$10^1$", "$10^2$", "$10^3$", "$10^4$"])
+xticks(
+    [-1, 0, 1, 2, 3, 4], ["$10^{-1}$", "$10^0$", "$10^1$", "$10^2$", "$10^3$", "$10^4$"]
+)
 yticks([0, 1, 2], ["$10^0$", "$10^1$", "$10^2$"])
 xlim(-1.4, 4.9)
 ylim(-0.5, 2.2)
 savefig("density-sSFR.png", dpi=200)
 
-SFR_low = 10**(np.log10(sSFR)+np.log10(year_in_cgs)+np.log10(median_gas_mass))
-SFR_high = 10**(np.log10(sSFR_high_den)+np.log10(year_in_cgs)+np.log10(median_gas_mass))
-SFR_low_min = np.floor(np.log10(.75*np.min(SFR_low)))
-SFR_high_max = np.ceil(np.log10(1.25*np.max(SFR_high)))
+SFR_low = 10 ** (np.log10(sSFR) + np.log10(year_in_cgs) + np.log10(median_gas_mass))
+SFR_high = 10 ** (
+    np.log10(sSFR_high_den) + np.log10(year_in_cgs) + np.log10(median_gas_mass)
+)
+SFR_low_min = np.floor(np.log10(0.75 * np.min(SFR_low)))
+SFR_high_max = np.ceil(np.log10(1.25 * np.max(SFR_high)))
 
 # 3D Density vs SFR
 rcParams.update({"figure.subplot.left": 0.18})
 figure()
 subplot(111, xscale="log", yscale="log")
 scatter(gas_nH, gas_SFR, s=0.2)
-plot(rhos,SFR_low,'k--',lw=1,label='SFR low density EAGLE')
-plot(rhoshigh,SFR_high,'k--',lw=1,label='SFR high density EAGLE')
+plot(rhos, SFR_low, "k--", lw=1, label="SFR low density EAGLE")
+plot(rhoshigh, SFR_high, "k--", lw=1, label="SFR high density EAGLE")
 xlabel("${\\rm Density}~n_{\\rm H}~[{\\rm cm^{-3}}]$", labelpad=0)
 ylabel("${\\rm SFR}~[{\\rm M_\\odot~\\cdot~yr^{-1}}]$", labelpad=2)
 xlim(1e-2, 1e5)
-ylim(10**SFR_low_min, 10**(SFR_high_max+0.1))
+ylim(10 ** SFR_low_min, 10 ** (SFR_high_max + 0.1))
 savefig("rho_SFR.png", dpi=200)
 rcParams.update({"figure.subplot.left": 0.15})
 ########################################################################3
diff --git a/examples/SantaBarbara/SantaBarbara-256/plotTempEvolution.py b/examples/SantaBarbara/SantaBarbara-256/plotTempEvolution.py
index dab4b2c90a7b751c8d143ed38c614473c951988a..63e46ccaee7be9ea18090e13ae15bb0a1fae4bef 100644
--- a/examples/SantaBarbara/SantaBarbara-256/plotTempEvolution.py
+++ b/examples/SantaBarbara/SantaBarbara-256/plotTempEvolution.py
@@ -128,7 +128,7 @@ for i in range(n_snapshots):
     z[i] = sim["/Cosmology"].attrs["Redshift"][0]
     a[i] = sim["/Cosmology"].attrs["Scale-factor"][0]
 
-    u = sim["/PartType0/InternalEnergy"][:]
+    u = sim["/PartType0/InternalEnergies"][:]
 
     # Compute the temperature
     u *= unit_length_in_si ** 2 / unit_time_in_si ** 2
diff --git a/examples/SantaBarbara/SantaBarbara-256/rhoTPlot.py b/examples/SantaBarbara/SantaBarbara-256/rhoTPlot.py
index c290268eaa548e188bb652104ea9e726ea88a267..3bcf01d2a49bc1c53b243ffcff12359201d26d87 100644
--- a/examples/SantaBarbara/SantaBarbara-256/rhoTPlot.py
+++ b/examples/SantaBarbara/SantaBarbara-256/rhoTPlot.py
@@ -28,10 +28,10 @@ def get_data(filename):
 
     data = SWIFTDataset(filename)
 
-    data.gas.density.convert_to_units(mh / (cm ** 3))
-    data.gas.temperature.convert_to_cgs()
+    data.gas.densities.convert_to_units(mh / (cm ** 3))
+    data.gas.temperatures.convert_to_cgs()
 
-    return data.gas.density, data.gas.temperature
+    return data.gas.densities, data.gas.temperatures
 
 
 def make_hist(filename, density_bounds, temperature_bounds, bins):
@@ -155,10 +155,8 @@ def make_movie(args, density_bounds, temperature_bounds, bins):
     def format_metadata(metadata: SWIFTMetadata):
         t = metadata.t * units.units["Unit time in cgs (U_t)"]
         t.convert_to_units(Gyr)
-        
-        x = "$a$: {:2.2f}\n$z$: {:2.2f}\n$t$: {:2.2f}".format(
-            metadata.a, metadata.z, t
-        )
+
+        x = "$a$: {:2.2f}\n$z$: {:2.2f}\n$t$: {:2.2f}".format(metadata.a, metadata.z, t)
 
         return x
 
diff --git a/examples/SmallCosmoVolume/SmallCosmoVolume_cooling/plotRhoT.py b/examples/SmallCosmoVolume/SmallCosmoVolume_cooling/plotRhoT.py
index 4ba8ad66daca1d9614be8917a77407dd99209dea..4f02213ec2a66700d28ad5f8e57e00c30f3019d7 100644
--- a/examples/SmallCosmoVolume/SmallCosmoVolume_cooling/plotRhoT.py
+++ b/examples/SmallCosmoVolume/SmallCosmoVolume_cooling/plotRhoT.py
@@ -112,8 +112,8 @@ def T(u, H_frac=H_mass_fraction, T_trans=H_transition_temp):
     return ret
 
 
-rho = sim["/PartType0/Density"][:]
-u = sim["/PartType0/InternalEnergy"][:]
+rho = sim["/PartType0/Densities"][:]
+u = sim["/PartType0/InternalEnergies"][:]
 
 # Compute the temperature
 u *= unit_length_in_si ** 2 / unit_time_in_si ** 2
diff --git a/examples/SmallCosmoVolume/SmallCosmoVolume_cooling/plotTempEvolution.py b/examples/SmallCosmoVolume/SmallCosmoVolume_cooling/plotTempEvolution.py
index a3458ac1598e5657f3f597dfb10b36a7a641e68f..1e8cf9ea1082372d8e395c352f908c7ce693d99f 100644
--- a/examples/SmallCosmoVolume/SmallCosmoVolume_cooling/plotTempEvolution.py
+++ b/examples/SmallCosmoVolume/SmallCosmoVolume_cooling/plotTempEvolution.py
@@ -126,7 +126,7 @@ for i in range(n_snapshots):
     z[i] = sim["/Cosmology"].attrs["Redshift"][0]
     a[i] = sim["/Cosmology"].attrs["Scale-factor"][0]
 
-    u = sim["/PartType0/InternalEnergy"][:]
+    u = sim["/PartType0/InternalEnergies"][:]
 
     # Compute the temperature
     u *= (unit_length_in_si**2 / unit_time_in_si**2)
diff --git a/examples/SmallCosmoVolume/SmallCosmoVolume_hydro/plotTempEvolution.py b/examples/SmallCosmoVolume/SmallCosmoVolume_hydro/plotTempEvolution.py
index aa6c5df5fe5ff5c7d0944a45bb11344f70c57844..d707f70450471f2d2fc589dbc382366280e0e7f3 100644
--- a/examples/SmallCosmoVolume/SmallCosmoVolume_hydro/plotTempEvolution.py
+++ b/examples/SmallCosmoVolume/SmallCosmoVolume_hydro/plotTempEvolution.py
@@ -123,7 +123,7 @@ for i in range(n_snapshots):
     z[i] = sim["/Cosmology"].attrs["Redshift"][0]
     a[i] = sim["/Cosmology"].attrs["Scale-factor"][0]
 
-    u = sim["/PartType0/InternalEnergy"][:]
+    u = sim["/PartType0/InternalEnergies"][:]
 
     # Compute the temperature
     u *= (unit_length_in_si**2 / unit_time_in_si**2)
diff --git a/examples/SubgridTests/BlackHoleSwallowing/check_masses.py b/examples/SubgridTests/BlackHoleSwallowing/check_masses.py
index c7f1d7b2c1f90efa285c13c75f0e5243f36e49ea..a5b55ed00df0851f989858ddffd00ea34df88a27 100644
--- a/examples/SubgridTests/BlackHoleSwallowing/check_masses.py
+++ b/examples/SubgridTests/BlackHoleSwallowing/check_masses.py
@@ -66,5 +66,5 @@ for i in range(np.size(ids_removed)):
     result = np.where(ids_gas == ids_removed)
     print result
 
-#rho_gas = f["/PartType0/Density"][:]
+#rho_gas = f["/PartType0/Densities"][:]
 #print np.mean(rho_gas), np.std(rho_gas)
diff --git a/examples/SubgridTests/SmoothedMetallicity/plotSolution.py b/examples/SubgridTests/SmoothedMetallicity/plotSolution.py
index e5bca3dfb7fe1e43c836733894c9e297cdd468ca..068fe5378e19c34ee8a68398f4e0ed096d0982e0 100644
--- a/examples/SubgridTests/SmoothedMetallicity/plotSolution.py
+++ b/examples/SubgridTests/SmoothedMetallicity/plotSolution.py
@@ -3,20 +3,20 @@
 # This file is part of SWIFT.
 # Copyright (c) 2015 Bert Vandenbroucke (bert.vandenbroucke@ugent.be)
 #                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
-# 
+#
 # This program is free software: you can redistribute it and/or modify
 # it under the terms of the GNU Lesser General Public License as published
 # by the Free Software Foundation, either version 3 of the License, or
 # (at your option) any later version.
-# 
+#
 # This program is distributed in the hope that it will be useful,
 # but WITHOUT ANY WARRANTY; without even the implied warranty of
 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 # GNU General Public License for more details.
-# 
+#
 # You should have received a copy of the GNU Lesser General Public License
 # along with this program.  If not, see <http://www.gnu.org/licenses/>.
-# 
+#
 ##############################################################################
 
 # Computes the analytical solution of the 3D Smoothed Metallicity example.
@@ -25,12 +25,13 @@ import h5py
 import sys
 import numpy as np
 import matplotlib
+
 matplotlib.use("Agg")
 import matplotlib.pyplot as plt
 
 # Parameters
-low_metal = -6     # low metal abundance
-high_metal = -5    # High metal abundance
+low_metal = -6  # low metal abundance
+high_metal = -5  # High metal abundance
 sigma_metal = 0.1  # relative standard deviation for Z
 
 Nelem = 9
@@ -44,27 +45,27 @@ high_metal = [high_metal] * Nelem + np.linspace(0, 3, Nelem)
 
 # Plot parameters
 params = {
-    'axes.labelsize': 10,
-    'axes.titlesize': 10,
-    'font.size': 12,
-    'legend.fontsize': 12,
-    'xtick.labelsize': 10,
-    'ytick.labelsize': 10,
-    'text.usetex': True,
-    'figure.figsize': (9.90, 6.45),
-    'figure.subplot.left': 0.045,
-    'figure.subplot.right': 0.99,
-    'figure.subplot.bottom': 0.05,
-    'figure.subplot.top': 0.99,
-    'figure.subplot.wspace': 0.15,
-    'figure.subplot.hspace': 0.12,
-    'lines.markersize': 6,
-    'lines.linewidth': 3.,
-    'text.latex.unicode': True
+    "axes.labelsize": 10,
+    "axes.titlesize": 10,
+    "font.size": 12,
+    "legend.fontsize": 12,
+    "xtick.labelsize": 10,
+    "ytick.labelsize": 10,
+    "text.usetex": True,
+    "figure.figsize": (9.90, 6.45),
+    "figure.subplot.left": 0.045,
+    "figure.subplot.right": 0.99,
+    "figure.subplot.bottom": 0.05,
+    "figure.subplot.top": 0.99,
+    "figure.subplot.wspace": 0.15,
+    "figure.subplot.hspace": 0.12,
+    "lines.markersize": 6,
+    "lines.linewidth": 3.0,
+    "text.latex.unicode": True,
 }
 
 plt.rcParams.update(params)
-plt.rc('font', **{'family': 'sans-serif', 'sans-serif': ['Times']})
+plt.rc("font", **{"family": "sans-serif", "sans-serif": ["Times"]})
 
 
 snap = int(sys.argv[1])
@@ -83,18 +84,17 @@ git = sim["Code"].attrs["Git Revision"]
 
 pos = sim["/PartType0/Coordinates"][:, :]
 d = pos[:, 0] - boxSize / 2
-smooth_metal = sim["/PartType0/SmoothedElementAbundance"][:, :]
-metal = sim["/PartType0/ElementAbundance"][:, :]
-h = sim["/PartType0/SmoothingLength"][:]
+smooth_metal = sim["/PartType0/SmoothedElementMassFractions"][:, :]
+metal = sim["/PartType0/ElementMassFractions"][:, :]
+h = sim["/PartType0/SmoothingLengths"][:]
 h = np.mean(h)
 
-if (Nelem != metal.shape[1]):
-    print("Unexpected number of element, please check makeIC.py"
-          " and plotSolution.py")
+if Nelem != metal.shape[1]:
+    print("Unexpected number of element, please check makeIC.py" " and plotSolution.py")
     exit(1)
 
 N = 1000
-d_a = np.linspace(-boxSize / 2., boxSize / 2., N)
+d_a = np.linspace(-boxSize / 2.0, boxSize / 2.0, N)
 
 # Now, work our the solution....
 
@@ -142,14 +142,14 @@ def calc_a(d, high_metal, low_metal, std_dev, h):
         m = (high_metal[i] - low_metal[i]) / (2.0 * h)
         c = (high_metal[i] + low_metal[i]) / 2.0
         # compute left linear part
-        s = d < - boxSize / 2.0 + h
-        a[s, i] = - m * (d[s] + boxSize / 2.0) + c
+        s = d < -boxSize / 2.0 + h
+        a[s, i] = -m * (d[s] + boxSize / 2.0) + c
         # compute middle linear part
         s = np.logical_and(d >= -h, d <= h)
         a[s, i] = m * d[s] + c
         # compute right linear part
         s = d > boxSize / 2.0 - h
-        a[s, i] = - m * (d[s] - boxSize / 2.0) + c
+        a[s, i] = -m * (d[s] - boxSize / 2.0) + c
 
     sigma[:, :, 0] = a * (1 + std_dev)
     sigma[:, :, 1] = a * (1 - std_dev)
@@ -165,7 +165,7 @@ plt.figure()
 # Metallicity --------------------------------
 plt.subplot(221)
 for e in range(Nelem):
-    plt.plot(metal[:, e], smooth_metal[:, e], '.', ms=0.5, alpha=0.2)
+    plt.plot(metal[:, e], smooth_metal[:, e], ".", ms=0.5, alpha=0.2)
 
 xmin, xmax = metal.min(), metal.max()
 ymin, ymax = smooth_metal.min(), smooth_metal.max()
@@ -178,27 +178,28 @@ plt.ylabel("${\\rm{Smoothed~Metallicity}}~Z_\\textrm{sm}$", labelpad=0)
 # Metallicity --------------------------------
 e = 0
 plt.subplot(223)
-plt.plot(d, smooth_metal[:, e], '.', color='r', ms=0.5, alpha=0.2)
-plt.plot(d_a, sol[:, e], '--', color='b', alpha=0.8, lw=1.2)
-plt.fill_between(d_a, sig[:, e, 0], sig[:, e, 1], facecolor="b",
-                 interpolate=True, alpha=0.5)
+plt.plot(d, smooth_metal[:, e], ".", color="r", ms=0.5, alpha=0.2)
+plt.plot(d_a, sol[:, e], "--", color="b", alpha=0.8, lw=1.2)
+plt.fill_between(
+    d_a, sig[:, e, 0], sig[:, e, 1], facecolor="b", interpolate=True, alpha=0.5
+)
 plt.xlabel("${\\rm{Distance}}~r$", labelpad=0)
 plt.ylabel("${\\rm{Smoothed~Metallicity}}~Z_\\textrm{sm}$", labelpad=0)
 plt.xlim(-0.5, 0.5)
-plt.ylim(low_metal[e]-1, high_metal[e]+1)
+plt.ylim(low_metal[e] - 1, high_metal[e] + 1)
 
 # Information -------------------------------------
 plt.subplot(222, frameon=False)
 
-plt.text(-0.49, 0.9, "Smoothed Metallicity in 3D at $t=%.2f$" % time,
-         fontsize=10)
-plt.plot([-0.49, 0.1], [0.82, 0.82], 'k-', lw=1)
+plt.text(-0.49, 0.9, "Smoothed Metallicity in 3D at $t=%.2f$" % time, fontsize=10)
+plt.plot([-0.49, 0.1], [0.82, 0.82], "k-", lw=1)
 plt.text(-0.49, 0.7, "$\\textsc{Swift}$ %s" % git, fontsize=10)
 plt.text(-0.49, 0.6, scheme, fontsize=10)
 plt.text(-0.49, 0.5, kernel, fontsize=10)
 plt.text(-0.49, 0.4, chemistry + "'s Chemistry", fontsize=10)
-plt.text(-0.49, 0.3, "$%.2f$ neighbours ($\\eta=%.3f$)" % (neighbours, eta),
-         fontsize=10)
+plt.text(
+    -0.49, 0.3, "$%.2f$ neighbours ($\\eta=%.3f$)" % (neighbours, eta), fontsize=10
+)
 plt.xlim(-0.5, 0.5)
 plt.ylim(0, 1)
 plt.xticks([])
diff --git a/examples/SubgridTests/StellarEvolution/check_continuous_heating.py b/examples/SubgridTests/StellarEvolution/check_continuous_heating.py
index f3c1b5d7fd682d914f2dbc05259c2dab0baf1e32..b5940eba43c89b8af4a883cc8f7022e33293b869 100644
--- a/examples/SubgridTests/StellarEvolution/check_continuous_heating.py
+++ b/examples/SubgridTests/StellarEvolution/check_continuous_heating.py
@@ -93,7 +93,7 @@ for i in range(n_snapshots):
 	sim = h5py.File("stellar_evolution_%04d.hdf5"%i, "r")
 	print('reading snapshot '+str(i))
 	masses[:,i] = sim["/PartType0/Masses"]
-	internal_energy[:,i] = sim["/PartType0/InternalEnergy"]
+	internal_energy[:,i] = sim["/PartType0/InternalEnergies"]
 	velocity_parts[:,:,i] = sim["/PartType0/Velocities"]
 	time[i] = sim["/Header"].attrs["Time"][0]
 
diff --git a/examples/SubgridTests/StellarEvolution/check_stellar_evolution.py b/examples/SubgridTests/StellarEvolution/check_stellar_evolution.py
index 02c1e9343de7b58cfddc8dee3bf0215a4b80ccf4..5680eb4d64f29ab32831d995e31ae9c27de82a71 100644
--- a/examples/SubgridTests/StellarEvolution/check_stellar_evolution.py
+++ b/examples/SubgridTests/StellarEvolution/check_stellar_evolution.py
@@ -1,4 +1,5 @@
 import matplotlib
+
 matplotlib.use("Agg")
 from pylab import *
 import h5py
@@ -7,32 +8,35 @@ import numpy as np
 import glob
 
 # Number of snapshots and elements
-newest_snap_name = max(glob.glob('stellar_evolution_*.hdf5'), key=os.path.getctime)
-n_snapshots = int(newest_snap_name.replace('stellar_evolution_','').replace('.hdf5','')) + 1
+newest_snap_name = max(glob.glob("stellar_evolution_*.hdf5"), key=os.path.getctime)
+n_snapshots = (
+    int(newest_snap_name.replace("stellar_evolution_", "").replace(".hdf5", "")) + 1
+)
 n_elements = 9
 
 # Plot parameters
-params = {'axes.labelsize': 10,
-'axes.titlesize': 10,
-'font.size': 9,
-'legend.fontsize': 9,
-'xtick.labelsize': 10,
-'ytick.labelsize': 10,
-'text.usetex': True,
- 'figure.figsize' : (3.15,3.15),
-'figure.subplot.left'    : 0.3,
-'figure.subplot.right'   : 0.99,
-'figure.subplot.bottom'  : 0.18,
-'figure.subplot.top'     : 0.92,
-'figure.subplot.wspace'  : 0.21,
-'figure.subplot.hspace'  : 0.19,
-'lines.markersize' : 6,
-'lines.linewidth' : 2.,
-'text.latex.unicode': True
+params = {
+    "axes.labelsize": 10,
+    "axes.titlesize": 10,
+    "font.size": 9,
+    "legend.fontsize": 9,
+    "xtick.labelsize": 10,
+    "ytick.labelsize": 10,
+    "text.usetex": True,
+    "figure.figsize": (3.15, 3.15),
+    "figure.subplot.left": 0.3,
+    "figure.subplot.right": 0.99,
+    "figure.subplot.bottom": 0.18,
+    "figure.subplot.top": 0.92,
+    "figure.subplot.wspace": 0.21,
+    "figure.subplot.hspace": 0.19,
+    "lines.markersize": 6,
+    "lines.linewidth": 2.0,
+    "text.latex.unicode": True,
 }
 
 rcParams.update(params)
-rc('font',**{'family':'sans-serif','sans-serif':['Times']})
+rc("font", **{"family": "sans-serif", "sans-serif": ["Times"]})
 
 # Read the simulation data
 sim = h5py.File("stellar_evolution_0000.hdf5", "r")
@@ -43,7 +47,9 @@ neighbours = sim["/HydroScheme"].attrs["Kernel target N_ngb"][0]
 eta = sim["/HydroScheme"].attrs["Kernel eta"][0]
 alpha = sim["/HydroScheme"].attrs["Alpha viscosity"][0]
 H_mass_fraction = sim["/HydroScheme"].attrs["Hydrogen mass fraction"][0]
-H_transition_temp = sim["/HydroScheme"].attrs["Hydrogen ionization transition temperature"][0]
+H_transition_temp = sim["/HydroScheme"].attrs[
+    "Hydrogen ionization transition temperature"
+][0]
 T_initial = sim["/HydroScheme"].attrs["Initial temperature"][0]
 T_minimal = sim["/HydroScheme"].attrs["Minimal temperature"][0]
 git = sim["Code"].attrs["Git Revision"]
@@ -68,136 +74,245 @@ n_parts = sim["/Header"].attrs["NumPart_Total"][0]
 n_sparts = sim["/Header"].attrs["NumPart_Total"][4]
 
 # Declare arrays for data
-masses = zeros((n_parts,n_snapshots))
-star_masses = zeros((n_sparts,n_snapshots))
-mass_from_AGB = zeros((n_parts,n_snapshots))
-metal_mass_frac_from_AGB = zeros((n_parts,n_snapshots))
-mass_from_SNII = zeros((n_parts,n_snapshots))
-metal_mass_frac_from_SNII = zeros((n_parts,n_snapshots))
-mass_from_SNIa = zeros((n_parts,n_snapshots))
-metal_mass_frac_from_SNIa = zeros((n_parts,n_snapshots))
-iron_mass_frac_from_SNIa = zeros((n_parts,n_snapshots))
-metallicity = zeros((n_parts,n_snapshots))
-abundances = zeros((n_parts,n_elements,n_snapshots))
-internal_energy = zeros((n_parts,n_snapshots))
-coord_parts = zeros((n_parts,3))
-velocity_parts = zeros((n_parts,3,n_snapshots))
+masses = zeros((n_parts, n_snapshots))
+star_masses = zeros((n_sparts, n_snapshots))
+mass_from_AGB = zeros((n_parts, n_snapshots))
+metal_mass_frac_from_AGB = zeros((n_parts, n_snapshots))
+mass_from_SNII = zeros((n_parts, n_snapshots))
+metal_mass_frac_from_SNII = zeros((n_parts, n_snapshots))
+mass_from_SNIa = zeros((n_parts, n_snapshots))
+metal_mass_frac_from_SNIa = zeros((n_parts, n_snapshots))
+iron_mass_frac_from_SNIa = zeros((n_parts, n_snapshots))
+metallicity = zeros((n_parts, n_snapshots))
+abundances = zeros((n_parts, n_elements, n_snapshots))
+internal_energy = zeros((n_parts, n_snapshots))
+coord_parts = zeros((n_parts, 3))
+velocity_parts = zeros((n_parts, 3, n_snapshots))
 coord_sparts = zeros(3)
 time = zeros(n_snapshots)
 
 # Read fields we are checking from snapshots
 for i in range(n_snapshots):
-	sim = h5py.File("stellar_evolution_%04d.hdf5"%i, "r")
-	print('reading snapshot '+str(i))
-	abundances[:,:,i] = sim["/PartType0/ElementAbundance"]
-	metallicity[:,i] = sim["/PartType0/Metallicity"]
-	masses[:,i] = sim["/PartType0/Masses"]
-	star_masses[:,i] = sim["/PartType4/Masses"]
-	mass_from_AGB[:,i] = sim["/PartType0/TotalMassFromAGB"]
-	metal_mass_frac_from_AGB[:,i] = sim["/PartType0/MetalMassFracFromAGB"]
-	mass_from_SNII[:,i] = sim["/PartType0/TotalMassFromSNII"]
-	metal_mass_frac_from_SNII[:,i] = sim["/PartType0/MetalMassFracFromSNII"]
-	mass_from_SNIa[:,i] = sim["/PartType0/TotalMassFromSNIa"]
-	metal_mass_frac_from_SNIa[:,i] = sim["/PartType0/MetalMassFracFromSNIa"]
-	iron_mass_frac_from_SNIa[:,i] = sim["/PartType0/IronMassFracFromSNIa"]
-	internal_energy[:,i] = sim["/PartType0/InternalEnergy"]
-	velocity_parts[:,:,i] = sim["/PartType0/Velocities"]
-	time[i] = sim["/Header"].attrs["Time"][0]
+    sim = h5py.File("stellar_evolution_%04d.hdf5" % i, "r")
+    print("reading snapshot " + str(i))
+    abundances[:, :, i] = sim["/PartType0/ElementMassFractions"]
+    metallicity[:, i] = sim["/PartType0/Metallicities"]
+    masses[:, i] = sim["/PartType0/Masses"]
+    star_masses[:, i] = sim["/PartType4/Masses"]
+    mass_from_AGB[:, i] = sim["/PartType0/TotalMassFromAGB"]
+    metal_mass_frac_from_AGB[:, i] = sim["/PartType0/MetalMassFracFromAGB"]
+    mass_from_SNII[:, i] = sim["/PartType0/TotalMassFromSNII"]
+    metal_mass_frac_from_SNII[:, i] = sim["/PartType0/MetalMassFracFromSNII"]
+    mass_from_SNIa[:, i] = sim["/PartType0/TotalMassFromSNIa"]
+    metal_mass_frac_from_SNIa[:, i] = sim["/PartType0/MetalMassFracFromSNIa"]
+    iron_mass_frac_from_SNIa[:, i] = sim["/PartType0/IronMassFracFromSNIa"]
+    internal_energy[:, i] = sim["/PartType0/InternalEnergies"]
+    velocity_parts[:, :, i] = sim["/PartType0/Velocities"]
+    time[i] = sim["/Header"].attrs["Time"][0]
 
 # Define ejecta factor
 ejecta_factor = 1.0e-2
-ejecta_factor_metallicity = 1.0 - 2.0/n_elements
-ejecta_factor_abundances = 1.0/n_elements
+ejecta_factor_metallicity = 1.0 - 2.0 / n_elements
+ejecta_factor_abundances = 1.0 / n_elements
 ejected_mass = star_initial_mass
-energy_per_SNe = 1.0e51/unit_energy_in_cgs
+energy_per_SNe = 1.0e51 / unit_energy_in_cgs
 
 # Check that the total amount of enrichment is as expected.
 # Define tolerance
 eps = 0.01
 
 # Total mass
-total_part_mass = np.sum(masses,axis = 0)
-if abs((total_part_mass[n_snapshots-1] - total_part_mass[0])/total_part_mass[0] - ejected_mass/total_part_mass[0])*total_part_mass[0]/ejected_mass < eps:
-	print("total mass released consistent with expectation")
+total_part_mass = np.sum(masses, axis=0)
+if (
+    abs(
+        (total_part_mass[n_snapshots - 1] - total_part_mass[0]) / total_part_mass[0]
+        - ejected_mass / total_part_mass[0]
+    )
+    * total_part_mass[0]
+    / ejected_mass
+    < eps
+):
+    print("total mass released consistent with expectation")
 else:
-	print("mass increase "+str(total_part_mass[n_snapshots-1]/total_part_mass[0])+" expected "+ str(1.0+ejected_mass/total_part_mass[0]))
+    print(
+        "mass increase "
+        + str(total_part_mass[n_snapshots - 1] / total_part_mass[0])
+        + " expected "
+        + str(1.0 + ejected_mass / total_part_mass[0])
+    )
 
 # Check that mass is conserved (i.e. total star mass decreases by same amount as total gas mass increases)
-total_spart_mass = np.sum(star_masses,axis = 0)
-if abs((total_part_mass[n_snapshots-1] + total_spart_mass[n_snapshots-1]) / (total_part_mass[0] + total_spart_mass[0]) - 1.0) < eps**3:
-	print("total mass conserved")
+total_spart_mass = np.sum(star_masses, axis=0)
+if (
+    abs(
+        (total_part_mass[n_snapshots - 1] + total_spart_mass[n_snapshots - 1])
+        / (total_part_mass[0] + total_spart_mass[0])
+        - 1.0
+    )
+    < eps ** 3
+):
+    print("total mass conserved")
 else:
-	print("initial part, spart mass " + str(total_part_mass[0]) + " " + str(total_spart_mass[0]) + " final mass " + str(total_part_mass[n_snapshots-1]) + " " + str(total_spart_mass[n_snapshots-1]))
+    print(
+        "initial part, spart mass "
+        + str(total_part_mass[0])
+        + " "
+        + str(total_spart_mass[0])
+        + " final mass "
+        + str(total_part_mass[n_snapshots - 1])
+        + " "
+        + str(total_spart_mass[n_snapshots - 1])
+    )
 
 # Total metal mass from AGB
-total_metal_mass_AGB = np.sum(np.multiply(metal_mass_frac_from_AGB,masses),axis = 0)
-expected_metal_mass_AGB = ejecta_factor*ejected_mass
-if abs(total_metal_mass_AGB[n_snapshots-1] - expected_metal_mass_AGB)/expected_metal_mass_AGB < eps:
-	print("total AGB metal mass released consistent with expectation")
+total_metal_mass_AGB = np.sum(np.multiply(metal_mass_frac_from_AGB, masses), axis=0)
+expected_metal_mass_AGB = ejecta_factor * ejected_mass
+if (
+    abs(total_metal_mass_AGB[n_snapshots - 1] - expected_metal_mass_AGB)
+    / expected_metal_mass_AGB
+    < eps
+):
+    print("total AGB metal mass released consistent with expectation")
 else:
-	print("total AGB metal mass "+str(total_metal_mass_AGB[n_snapshots-1])+" expected "+ str(expected_metal_mass_AGB))
+    print(
+        "total AGB metal mass "
+        + str(total_metal_mass_AGB[n_snapshots - 1])
+        + " expected "
+        + str(expected_metal_mass_AGB)
+    )
 
 # Total mass from AGB
-total_AGB_mass = np.sum(mass_from_AGB,axis = 0)
-expected_AGB_mass = ejecta_factor*ejected_mass
-if abs(total_AGB_mass[n_snapshots-1] - expected_AGB_mass)/expected_AGB_mass < eps:
-	print("total AGB mass released consistent with expectation")
+total_AGB_mass = np.sum(mass_from_AGB, axis=0)
+expected_AGB_mass = ejecta_factor * ejected_mass
+if abs(total_AGB_mass[n_snapshots - 1] - expected_AGB_mass) / expected_AGB_mass < eps:
+    print("total AGB mass released consistent with expectation")
 else:
-	print("total AGB mass "+str(total_AGB_mass[n_snapshots-1])+" expected "+ str(expected_AGB_mass))
+    print(
+        "total AGB mass "
+        + str(total_AGB_mass[n_snapshots - 1])
+        + " expected "
+        + str(expected_AGB_mass)
+    )
 
 # Total metal mass from SNII
-total_metal_mass_SNII = np.sum(np.multiply(metal_mass_frac_from_SNII,masses),axis = 0)
-expected_metal_mass_SNII = ejecta_factor*ejected_mass
-if abs(total_metal_mass_SNII[n_snapshots-1] - expected_metal_mass_SNII)/expected_metal_mass_SNII < eps:
-	print("total SNII metal mass released consistent with expectation")
+total_metal_mass_SNII = np.sum(np.multiply(metal_mass_frac_from_SNII, masses), axis=0)
+expected_metal_mass_SNII = ejecta_factor * ejected_mass
+if (
+    abs(total_metal_mass_SNII[n_snapshots - 1] - expected_metal_mass_SNII)
+    / expected_metal_mass_SNII
+    < eps
+):
+    print("total SNII metal mass released consistent with expectation")
 else:
-	print("total SNII metal mass "+str(total_metal_mass_SNII[n_snapshots-1])+" expected "+ str(expected_metal_mass_SNII))
+    print(
+        "total SNII metal mass "
+        + str(total_metal_mass_SNII[n_snapshots - 1])
+        + " expected "
+        + str(expected_metal_mass_SNII)
+    )
 
 # Total mass from SNII
-total_SNII_mass = np.sum(mass_from_SNII,axis = 0)
-expected_SNII_mass = ejecta_factor*ejected_mass
-if abs(total_SNII_mass[n_snapshots-1] - expected_SNII_mass)/expected_SNII_mass < eps:
-	print("total SNII mass released consistent with expectation")
+total_SNII_mass = np.sum(mass_from_SNII, axis=0)
+expected_SNII_mass = ejecta_factor * ejected_mass
+if (
+    abs(total_SNII_mass[n_snapshots - 1] - expected_SNII_mass) / expected_SNII_mass
+    < eps
+):
+    print("total SNII mass released consistent with expectation")
 else:
-	print("total SNII mass "+str(total_SNII_mass[n_snapshots-1])+" expected "+ str(expected_SNII_mass))
+    print(
+        "total SNII mass "
+        + str(total_SNII_mass[n_snapshots - 1])
+        + " expected "
+        + str(expected_SNII_mass)
+    )
 
 # Total metal mass from SNIa
-total_metal_mass_SNIa = np.sum(np.multiply(metal_mass_frac_from_SNIa,masses),axis = 0)
-expected_metal_mass_SNIa = ejecta_factor*ejected_mass
-if abs(total_metal_mass_SNIa[n_snapshots-1] - expected_metal_mass_SNIa)/expected_metal_mass_SNIa < eps:
-	print("total SNIa metal mass released consistent with expectation")
+total_metal_mass_SNIa = np.sum(np.multiply(metal_mass_frac_from_SNIa, masses), axis=0)
+expected_metal_mass_SNIa = ejecta_factor * ejected_mass
+if (
+    abs(total_metal_mass_SNIa[n_snapshots - 1] - expected_metal_mass_SNIa)
+    / expected_metal_mass_SNIa
+    < eps
+):
+    print("total SNIa metal mass released consistent with expectation")
 else:
-	print("total SNIa metal mass "+str(total_metal_mass_SNIa[n_snapshots-1])+" expected "+ str(expected_metal_mass_SNIa))
+    print(
+        "total SNIa metal mass "
+        + str(total_metal_mass_SNIa[n_snapshots - 1])
+        + " expected "
+        + str(expected_metal_mass_SNIa)
+    )
 
 # Total iron mass from SNIa
-total_iron_mass_SNIa = np.sum(np.multiply(iron_mass_frac_from_SNIa,masses),axis = 0)
-expected_iron_mass_SNIa = ejecta_factor*ejected_mass
-if abs(total_iron_mass_SNIa[n_snapshots-1] - expected_iron_mass_SNIa)/expected_iron_mass_SNIa < eps:
-	print("total SNIa iron mass released consistent with expectation")
+total_iron_mass_SNIa = np.sum(np.multiply(iron_mass_frac_from_SNIa, masses), axis=0)
+expected_iron_mass_SNIa = ejecta_factor * ejected_mass
+if (
+    abs(total_iron_mass_SNIa[n_snapshots - 1] - expected_iron_mass_SNIa)
+    / expected_iron_mass_SNIa
+    < eps
+):
+    print("total SNIa iron mass released consistent with expectation")
 else:
-	print("total SNIa iron mass "+str(total_iron_mass_SNIa[n_snapshots-1])+" expected "+ str(expected_iron_mass_SNIa))
+    print(
+        "total SNIa iron mass "
+        + str(total_iron_mass_SNIa[n_snapshots - 1])
+        + " expected "
+        + str(expected_iron_mass_SNIa)
+    )
 
 # Total mass from SNIa
-total_SNIa_mass = np.sum(mass_from_SNIa,axis = 0)
-expected_SNIa_mass = ejecta_factor*ejected_mass
-if abs(total_SNIa_mass[n_snapshots-1] - expected_SNIa_mass)/expected_SNIa_mass < eps:
-	print("total SNIa mass released consistent with expectation")
+total_SNIa_mass = np.sum(mass_from_SNIa, axis=0)
+expected_SNIa_mass = ejecta_factor * ejected_mass
+if (
+    abs(total_SNIa_mass[n_snapshots - 1] - expected_SNIa_mass) / expected_SNIa_mass
+    < eps
+):
+    print("total SNIa mass released consistent with expectation")
 else:
-	print("total SNIa mass "+str(total_SNIa_mass[n_snapshots-1])+" expected "+ str(expected_SNIa_mass))
+    print(
+        "total SNIa mass "
+        + str(total_SNIa_mass[n_snapshots - 1])
+        + " expected "
+        + str(expected_SNIa_mass)
+    )
 
 # Total metal mass
-total_metal_mass = np.sum(np.multiply(metallicity,masses),axis = 0)
-expected_metal_mass = ejecta_factor_metallicity*ejected_mass
-if abs(total_metal_mass[n_snapshots-1] - expected_metal_mass)/expected_metal_mass < eps:
-	print("total metal mass released consistent with expectation")
+total_metal_mass = np.sum(np.multiply(metallicity, masses), axis=0)
+expected_metal_mass = ejecta_factor_metallicity * ejected_mass
+if (
+    abs(total_metal_mass[n_snapshots - 1] - expected_metal_mass) / expected_metal_mass
+    < eps
+):
+    print("total metal mass released consistent with expectation")
 else:
-	print("total metal mass "+str(total_metal_mass[n_snapshots-1])+" expected "+ str(expected_metal_mass))
+    print(
+        "total metal mass "
+        + str(total_metal_mass[n_snapshots - 1])
+        + " expected "
+        + str(expected_metal_mass)
+    )
 
 # Total mass for each element
-expected_element_mass = ejecta_factor_abundances*ejected_mass
+expected_element_mass = ejecta_factor_abundances * ejected_mass
 for i in range(n_elements):
-	total_element_mass = np.sum(np.multiply(abundances[:,i,:],masses),axis = 0)
-	if abs(total_element_mass[n_snapshots-1] - expected_element_mass)/expected_element_mass < eps:
-		print("total element mass released consistent with expectation for element "+str(i))
-	else:
-		print("total element mass "+str(total_element_mass[n_snapshots-1])+" expected "+ str(expected_element_mass) + " for element "+ str(i))
+    total_element_mass = np.sum(np.multiply(abundances[:, i, :], masses), axis=0)
+    if (
+        abs(total_element_mass[n_snapshots - 1] - expected_element_mass)
+        / expected_element_mass
+        < eps
+    ):
+        print(
+            "total element mass released consistent with expectation for element "
+            + str(i)
+        )
+    else:
+        print(
+            "total element mass "
+            + str(total_element_mass[n_snapshots - 1])
+            + " expected "
+            + str(expected_element_mass)
+            + " for element "
+            + str(i)
+        )
+
diff --git a/examples/SubgridTests/StellarEvolution/check_stochastic_heating.py b/examples/SubgridTests/StellarEvolution/check_stochastic_heating.py
index da837540041a9295a33b55e16b5e996394576cd7..1cacc13653d821da3abd2a09566be347608c64f7 100644
--- a/examples/SubgridTests/StellarEvolution/check_stochastic_heating.py
+++ b/examples/SubgridTests/StellarEvolution/check_stochastic_heating.py
@@ -93,7 +93,7 @@ for i in range(n_snapshots):
 	sim = h5py.File("stellar_evolution_%04d.hdf5"%i, "r")
 	print('reading snapshot '+str(i))
 	masses[:,i] = sim["/PartType0/Masses"]
-	internal_energy[:,i] = sim["/PartType0/InternalEnergy"]
+	internal_energy[:,i] = sim["/PartType0/InternalEnergies"]
 	velocity_parts[:,:,i] = sim["/PartType0/Velocities"]
 	time[i] = sim["/Header"].attrs["Time"][0]
 
diff --git a/examples/SubgridTests/StellarEvolution/plot_box_evolution.py b/examples/SubgridTests/StellarEvolution/plot_box_evolution.py
index a46db721e153ade2d386a5790e26a290cead4f90..bcfa85a1afac021e280a797641dd677bccd291d3 100644
--- a/examples/SubgridTests/StellarEvolution/plot_box_evolution.py
+++ b/examples/SubgridTests/StellarEvolution/plot_box_evolution.py
@@ -112,16 +112,16 @@ for i in range(n_snapshots):
 	star_masses = sim["/PartType4/Masses"][:]
 	swift_box_star_mass[i] = np.sum(star_masses)
 
-	metallicities = sim["/PartType0/Metallicity"][:]
+	metallicities = sim["/PartType0/Metallicities"][:]
 	swift_box_gas_metal_mass[i] = np.sum(metallicities * masses)
 
-	element_abundances = sim["/PartType0/ElementAbundance"][:][:]
+	element_abundances = sim["/PartType0/ElementMassFractions"][:][:]
 	for j in range(n_elements):
 		swift_element_mass[i,j] = np.sum(element_abundances[:,j] * masses)
 
         v = sim["/PartType0/Velocities"][:,:]
         v2 = v[:,0]**2 + v[:,1]**2 + v[:,2]**2
-        u = sim["/PartType0/InternalEnergy"][:]
+        u = sim["/PartType0/InternalEnergies"][:]
         swift_internal_energy[i] = np.sum(masses * u)
         swift_kinetic_energy[i] = np.sum(0.5 * masses * v2)
         swift_total_energy[i] = swift_kinetic_energy[i] + swift_internal_energy[i]
diff --git a/examples/SubgridTests/StellarEvolution/plot_particle_evolution.py b/examples/SubgridTests/StellarEvolution/plot_particle_evolution.py
index 8b935e537b14a9d1d9cc4eec7c5cd0794c6fc489..be1588f9b707d448b2905611defd9e760c5f91de 100644
--- a/examples/SubgridTests/StellarEvolution/plot_particle_evolution.py
+++ b/examples/SubgridTests/StellarEvolution/plot_particle_evolution.py
@@ -1,29 +1,30 @@
 ###############################################################################
- # This file is part of SWIFT.
- # Copyright (c) 2015 Bert Vandenbroucke (bert.vandenbroucke@ugent.be)
- #                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
- # 
- # This program is free software: you can redistribute it and/or modify
- # it under the terms of the GNU Lesser General Public License as published
- # by the Free Software Foundation, either version 3 of the License, or
- # (at your option) any later version.
- # 
- # This program is distributed in the hope that it will be useful,
- # but WITHOUT ANY WARRANTY; without even the implied warranty of
- # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- # GNU General Public License for more details.
- # 
- # You should have received a copy of the GNU Lesser General Public License
- # along with this program.  If not, see <http://www.gnu.org/licenses/>.
- # 
- ##############################################################################
-
-# Assuming output snapshots contain evolution of box of gas with star at its 
-# centre, this script will plot the evolution of the radial velocities, internal 
-# energies, mass and metallicities of the nearest n particles to the star over 
-# the duration of the simulation. 
+# This file is part of SWIFT.
+# Copyright (c) 2015 Bert Vandenbroucke (bert.vandenbroucke@ugent.be)
+#                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
+#
+# This program is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Lesser General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public License
+# along with this program.  If not, see <http://www.gnu.org/licenses/>.
+#
+##############################################################################
+
+# Assuming output snapshots contain evolution of box of gas with star at its
+# centre, this script will plot the evolution of the radial velocities, internal
+# energies, mass and metallicities of the nearest n particles to the star over
+# the duration of the simulation.
 
 import matplotlib
+
 matplotlib.use("Agg")
 from pylab import *
 from scipy import stats
@@ -33,38 +34,42 @@ import glob
 import os.path
 
 # Function to find index in array a for each element in array b
-def find_indices(a,b):
-        result = np.zeros(len(b))
-        for i in range(len(b)):
-                result[i] = ((np.where(a == b[i]))[0])[0]
-        return result
+def find_indices(a, b):
+    result = np.zeros(len(b))
+    for i in range(len(b)):
+        result[i] = ((np.where(a == b[i]))[0])[0]
+    return result
+
 
 # Plot parameters
-params = {'axes.labelsize': 10,
-'axes.titlesize': 10,
-'font.size': 12,
-'legend.fontsize': 12,
-'xtick.labelsize': 10,
-'ytick.labelsize': 10,
-'text.usetex': True,
- 'figure.figsize' : (9.90,6.45),
-'figure.subplot.left'    : 0.1,
-'figure.subplot.right'   : 0.99,
-'figure.subplot.bottom'  : 0.1,
-'figure.subplot.top'     : 0.95,
-'figure.subplot.wspace'  : 0.2,
-'figure.subplot.hspace'  : 0.2,
-'lines.markersize' : 6,
-'lines.linewidth' : 3.,
-'text.latex.unicode': True
+params = {
+    "axes.labelsize": 10,
+    "axes.titlesize": 10,
+    "font.size": 12,
+    "legend.fontsize": 12,
+    "xtick.labelsize": 10,
+    "ytick.labelsize": 10,
+    "text.usetex": True,
+    "figure.figsize": (9.90, 6.45),
+    "figure.subplot.left": 0.1,
+    "figure.subplot.right": 0.99,
+    "figure.subplot.bottom": 0.1,
+    "figure.subplot.top": 0.95,
+    "figure.subplot.wspace": 0.2,
+    "figure.subplot.hspace": 0.2,
+    "lines.markersize": 6,
+    "lines.linewidth": 3.0,
+    "text.latex.unicode": True,
 }
 rcParams.update(params)
-rc('font',**{'family':'sans-serif','sans-serif':['Times']})
+rc("font", **{"family": "sans-serif", "sans-serif": ["Times"]})
 
 
 # Number of snapshots and elements
-newest_snap_name = max(glob.glob('stellar_evolution_*.hdf5'), key=os.path.getctime)
-n_snapshots = int(newest_snap_name.replace('stellar_evolution_','').replace('.hdf5','')) + 1
+newest_snap_name = max(glob.glob("stellar_evolution_*.hdf5"), key=os.path.getctime)
+n_snapshots = (
+    int(newest_snap_name.replace("stellar_evolution_", "").replace(".hdf5", "")) + 1
+)
 n_particles_to_plot = 500
 
 # Read the simulation data
@@ -87,25 +92,25 @@ unit_energy_in_cgs = unit_mass_in_cgs * unit_vel_in_cgs * unit_vel_in_cgs
 unit_length_in_si = 0.01 * unit_length_in_cgs
 unit_mass_in_si = 0.001 * unit_mass_in_cgs
 unit_time_in_si = unit_time_in_cgs
-unit_density_in_cgs = unit_mass_in_cgs*unit_length_in_cgs**-3
-unit_pressure_in_cgs = unit_mass_in_cgs/unit_length_in_cgs*unit_time_in_cgs**-2
-unit_int_energy_in_cgs = unit_energy_in_cgs/unit_mass_in_cgs
-unit_entropy_in_cgs = unit_energy_in_cgs/unit_temp_in_cgs
+unit_density_in_cgs = unit_mass_in_cgs * unit_length_in_cgs ** -3
+unit_pressure_in_cgs = unit_mass_in_cgs / unit_length_in_cgs * unit_time_in_cgs ** -2
+unit_int_energy_in_cgs = unit_energy_in_cgs / unit_mass_in_cgs
+unit_entropy_in_cgs = unit_energy_in_cgs / unit_temp_in_cgs
 Myr_in_cgs = 3.154e13
 Msun_in_cgs = 1.989e33
 
 # Read data of zeroth snapshot
-pos = sim["/PartType0/Coordinates"][:,:]
-x = pos[:,0] - boxSize / 2
-y = pos[:,1] - boxSize / 2
-z = pos[:,2] - boxSize / 2
-vel = sim["/PartType0/Velocities"][:,:]
-r = sqrt(x**2 + y**2 + z**2)
-v_r = (x * vel[:,0] + y * vel[:,1] + z * vel[:,2]) / r
-u = sim["/PartType0/InternalEnergy"][:]
-S = sim["/PartType0/Entropy"][:]
-P = sim["/PartType0/Pressure"][:]
-rho = sim["/PartType0/Density"][:]
+pos = sim["/PartType0/Coordinates"][:, :]
+x = pos[:, 0] - boxSize / 2
+y = pos[:, 1] - boxSize / 2
+z = pos[:, 2] - boxSize / 2
+vel = sim["/PartType0/Velocities"][:, :]
+r = sqrt(x ** 2 + y ** 2 + z ** 2)
+v_r = (x * vel[:, 0] + y * vel[:, 1] + z * vel[:, 2]) / r
+u = sim["/PartType0/InternalEnergies"][:]
+S = sim["/PartType0/Entropies"][:]
+P = sim["/PartType0/Pressures"][:]
+rho = sim["/PartType0/Densities"][:]
 mass = sim["/PartType0/Masses"][:]
 IDs = sim["/PartType0/ParticleIDs"][:]
 
@@ -123,34 +128,34 @@ t = zeros(n_snapshots)
 
 # Read data from rest of snapshots
 for i in range(n_snapshots):
-	print("reading snapshot "+str(i))
-	# Read the simulation data
-	sim = h5py.File("stellar_evolution_%04d.hdf5"%i, "r")
-	t[i] = sim["/Header"].attrs["Time"][0]
-	
-	pos = sim["/PartType0/Coordinates"][:,:]
-	x = pos[:,0] - boxSize / 2
-	y = pos[:,1] - boxSize / 2
-	z = pos[:,2] - boxSize / 2
-	vel = sim["/PartType0/Velocities"][:,:]
-	r = sqrt(x**2 + y**2 + z**2)
-	v_r = (x * vel[:,0] + y * vel[:,1] + z * vel[:,2]) / r
-	u = sim["/PartType0/InternalEnergy"][:]
-	S = sim["/PartType0/Entropy"][:]
-	P = sim["/PartType0/Pressure"][:]
-	rho = sim["/PartType0/Density"][:]
-	mass = sim["/PartType0/Masses"][:]
-	metallicity = sim["/PartType0/Metallicity"][:]
-	internal_energy = sim["/PartType0/InternalEnergy"][:]
-	IDs = sim["/PartType0/ParticleIDs"][:]
-
-	# Find which particles we want to plot and store their data
-	indices = (find_indices(IDs,part_IDs_to_plot)).astype(int)
-	masses_to_plot[:,i] = mass[indices[:]]
-	v_r_to_plot[:,i] = v_r[indices[:]]
-	metallicities_to_plot[:,i] = metallicity[indices[:]]
-	internal_energies_to_plot[:,i] = internal_energy[indices[:]]
-	
+    print("reading snapshot " + str(i))
+    # Read the simulation data
+    sim = h5py.File("stellar_evolution_%04d.hdf5" % i, "r")
+    t[i] = sim["/Header"].attrs["Time"][0]
+
+    pos = sim["/PartType0/Coordinates"][:, :]
+    x = pos[:, 0] - boxSize / 2
+    y = pos[:, 1] - boxSize / 2
+    z = pos[:, 2] - boxSize / 2
+    vel = sim["/PartType0/Velocities"][:, :]
+    r = sqrt(x ** 2 + y ** 2 + z ** 2)
+    v_r = (x * vel[:, 0] + y * vel[:, 1] + z * vel[:, 2]) / r
+    u = sim["/PartType0/InternalEnergies"][:]
+    S = sim["/PartType0/Entropies"][:]
+    P = sim["/PartType0/Pressures"][:]
+    rho = sim["/PartType0/Densities"][:]
+    mass = sim["/PartType0/Masses"][:]
+    metallicity = sim["/PartType0/Metallicities"][:]
+    internal_energy = sim["/PartType0/InternalEnergies"][:]
+    IDs = sim["/PartType0/ParticleIDs"][:]
+
+    # Find which particles we want to plot and store their data
+    indices = (find_indices(IDs, part_IDs_to_plot)).astype(int)
+    masses_to_plot[:, i] = mass[indices[:]]
+    v_r_to_plot[:, i] = v_r[indices[:]]
+    metallicities_to_plot[:, i] = metallicity[indices[:]]
+    internal_energies_to_plot[:, i] = internal_energy[indices[:]]
+
 
 # Plot the interesting quantities
 figure()
@@ -158,33 +163,61 @@ figure()
 # Radial velocity --------------------------------
 subplot(221)
 for j in range(n_particles_to_plot):
-	plot(t * unit_time_in_cgs / Myr_in_cgs, v_r_to_plot[j,:] * unit_vel_in_cgs, linewidth=0.5, color='k', ms=0.5, alpha=0.1)
+    plot(
+        t * unit_time_in_cgs / Myr_in_cgs,
+        v_r_to_plot[j, :] * unit_vel_in_cgs,
+        linewidth=0.5,
+        color="k",
+        ms=0.5,
+        alpha=0.1,
+    )
 xlabel("Time (Myr)", labelpad=0)
 ylabel("Radial velocity $(\\rm{cm} \cdot \\rm{s}^{-1})$", labelpad=0)
-ticklabel_format(style='sci', axis='y', scilimits=(0,0))
+ticklabel_format(style="sci", axis="y", scilimits=(0, 0))
 
 # Internal energy --------------------------------
 subplot(222)
 for j in range(n_particles_to_plot):
-	plot(t * unit_time_in_cgs / Myr_in_cgs, internal_energies_to_plot[j,:] * unit_energy_in_cgs / unit_mass_in_cgs, linewidth=0.5, color='k', ms=0.5, alpha=0.1)
+    plot(
+        t * unit_time_in_cgs / Myr_in_cgs,
+        internal_energies_to_plot[j, :] * unit_energy_in_cgs / unit_mass_in_cgs,
+        linewidth=0.5,
+        color="k",
+        ms=0.5,
+        alpha=0.1,
+    )
 xlabel("Time (Myr)", labelpad=0)
 ylabel("Internal energy $(\\rm{erg} \cdot \\rm{g}^{-1})$", labelpad=2)
-ticklabel_format(style='sci', axis='y', scilimits=(0,0))
+ticklabel_format(style="sci", axis="y", scilimits=(0, 0))
 
 # Masses --------------------------------
 subplot(223)
 for j in range(n_particles_to_plot):
-	plot(t * unit_time_in_cgs / Myr_in_cgs, masses_to_plot[j,:] * unit_mass_in_cgs / Msun_in_cgs, linewidth=0.5, color='k', ms=0.5, alpha=0.1)
+    plot(
+        t * unit_time_in_cgs / Myr_in_cgs,
+        masses_to_plot[j, :] * unit_mass_in_cgs / Msun_in_cgs,
+        linewidth=0.5,
+        color="k",
+        ms=0.5,
+        alpha=0.1,
+    )
 xlabel("Time (Myr)", labelpad=0)
 ylabel("Mass (Msun)", labelpad=2)
-ticklabel_format(style='sci', axis='y', scilimits=(0,0))
+ticklabel_format(style="sci", axis="y", scilimits=(0, 0))
 
 # Metallicities --------------------------------
 subplot(224)
 for j in range(n_particles_to_plot):
-	plot(t * unit_time_in_cgs / Myr_in_cgs, metallicities_to_plot[j,:] , linewidth=0.5, color='k', ms=0.5, alpha=0.1)
+    plot(
+        t * unit_time_in_cgs / Myr_in_cgs,
+        metallicities_to_plot[j, :],
+        linewidth=0.5,
+        color="k",
+        ms=0.5,
+        alpha=0.1,
+    )
 xlabel("Time (Myr)", labelpad=0)
 ylabel("Metallicity", labelpad=2)
-ticklabel_format(style='sci', axis='y', scilimits=(0,0))
+ticklabel_format(style="sci", axis="y", scilimits=(0, 0))
 
 savefig("particle_evolution.png", dpi=200)