diff --git a/theory/SPH/Flavours/sph_flavours.tex b/theory/SPH/Flavours/sph_flavours.tex index 1ca7fb7018ed14cbf4972a181b66f841b75b6f43..5fe1277373552d60607671299437a371e068169c 100644 --- a/theory/SPH/Flavours/sph_flavours.tex +++ b/theory/SPH/Flavours/sph_flavours.tex @@ -305,17 +305,72 @@ P_{\partial h_i}$ and $\rho_{\partial h_i}$ (eq. \ref{eq:sph:minimal:rho_dh}): \begin{equation} - f_i \equiv \left(\frac{\bar P_{\partial h_i} h_i}{3\rho_i - \tilde{A}_i}\right)\left(1 + \frac{h_i}{3\rho_i}\rho_{\partial - h_i}\right)^{-1}. + f_i \equiv \left(\frac{h_i}{3\rho_i}\bar P_{\partial + h_i}\right)\left(1 + \frac{h_i}{3\rho_i}\rho_{\partial + h_i}\right)^{-1}. \end{equation} \subsubsection{Hydrodynamical accelerations (\nth{2} neighbour loop)} +The accelerations are given by the following term: + +\begin{align} + \frac{d\vec{v}_i}{dt} = -\sum_j m_j &\left[\frac{\bar P_i}{\bar\rho_i^2} \left(\frac{\tilde A_j}{\tilde A_i} - \frac{f_i}{\tilde A_i}\right)\nabla_x W(\vec{x}_{ij}, h_i) \right. \nonumber \\ + &+\frac{P_j}{\rho_j^2} \left(\frac{\tilde A_i}{\tilde A_j} - \frac{f_j}{\tilde A_j}\right)\nabla_x W(\vec{x}_{ij},h_j) \\ + &+ \left. \bigg.\nu_{ij} \Wij \right], \label{eq:sph:pe:dv_dt} +\end{align} +where the viscosity term $\nu_{ij}$ has been computed as in +the \GadgetSPH case (Eq. \ref{eq:sph:gadget2:balsara} +and \ref{eq:sph:gadget2:nu_ij}). For completeness, the equation of +motion for the entropy is + +\begin{equation} +\frac{dA_i}{dt} = \frac{1}{2} A_{\rm eos}\left(\rho_i, \sum_j +m_j \nu_{ij}\vec{v}_{ij}\cdot \Wij\right). +\end{equation} + +\subsubsection{Time integration} + +The time-step condition is identical to the \MinimalSPH case +(Eq. \ref{eq:sph:minimal:dt}). The same applies to the integration +forward in time (Eq. \ref{eq:sph:minimal:kick_v} to +\ref{eq:sph:minimal:kick_c}) with the exception of the change in +internal energy (Eq. \ref{eq:sph:minimal:kick_u}) which gets replaced +by an integration for the the entropy: + +\begin{align} + \vec{v}_i &\rightarrow \vec{v}_i + \frac{d\vec{v}_i}{dt} \Delta t \label{eq:sph:pe:kick_v}\\ + A_i &\rightarrow A_i + \frac{dA_i}{dt} \Delta t \label{eq:sph:pe:kick_A}\\ + P_i &\rightarrow P_{\rm eos}\left(\rho_i, A_i\right) \label{eq:sph:pe:kick_P}, \\ + c_i &\rightarrow c_{\rm eos}\left(\rho_i, + A_i\right) \label{eq:sph:pe:kick_c}, \\ + \tilde A_i &= A_i^{1/\gamma} +\end{align} +where, once again, we made use of the equation of state relating +thermodynamical quantities. \subsubsection{Particle properties prediction} +The prediction step is also identical to the \MinimalSPH case with the +entropic function replacing the thermal energy. + +\begin{align} + \vec{x}_i &\rightarrow \vec{x}_i + \vec{v}_i \Delta t \label{eq:sph:pe:drift_x} \\ + h_i &\rightarrow h_i \exp\left(\frac{1}{h_i} \frac{dh_i}{dt} + \Delta t\right), \label{eq:sph:pe:drift_h}\\ + \rho_i &\rightarrow \rho_i \exp\left(-\frac{3}{h_i} \frac{dh_i}{dt} + \Delta t\right), \label{eq:sph:pe:drift_rho} \\ + \tilde A_i &\rightarrow \left(A_i + \frac{dA_i}{dt} + \Delta t\right)^{1/\gamma} \label{eq:sph:pe:drift_A_tilde}, \\ + P_i &\rightarrow P_{\rm eos}\left(\rho_i, A_i + \frac{dA_i}{dt} \Delta t\right), \label{eq:sph:pe:drift_P}\\ + c_i &\rightarrow c_{\rm eos}\left(\rho_i, A_i + \frac{dA_i}{dt} + \Delta t\right) \label{eq:sph:pe:drift_c}, +\end{align} +where, as above, the last two updated quantities are obtained using +the pre-defined equation of state. Note that the entropic function $A_i$ +itself is \emph{not} updated. + \subsection{Pressure-Energy SPH} \label{sec:sph:pu}