Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
SWIFTsim
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Model registry
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
SWIFT
SWIFTsim
Commits
bd71c9a1
Commit
bd71c9a1
authored
8 years ago
by
Matthieu Schaller
Browse files
Options
Downloads
Patches
Plain Diff
Finished description of PE-SPH in the documentation
parent
57f7680e
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
theory/SPH/Flavours/sph_flavours.tex
+58
-3
58 additions, 3 deletions
theory/SPH/Flavours/sph_flavours.tex
with
58 additions
and
3 deletions
theory/SPH/Flavours/sph_flavours.tex
+
58
−
3
View file @
bd71c9a1
...
...
@@ -305,17 +305,72 @@ P_{\partial h_i}$ and $\rho_{\partial h_i}$
(eq.
\ref
{
eq:sph:minimal:rho
_
dh
}
):
\begin{equation}
f
_
i
\equiv
\left
(
\frac
{
\bar
P
_{
\partial
h
_
i
}
h
_
i
}{
3
\rho
_
i
\tilde
{
A
}
_
i
}
\right
)
\left
(1 +
\frac
{
h
_
i
}{
3
\rho
_
i
}
\rho
_{
\partial
h
_
i
}
\right
)
^{
-1
}
.
f
_
i
\equiv
\left
(
\frac
{
h
_
i
}{
3
\rho
_
i
}
\bar
P
_{
\partial
h
_
i
}
\right
)
\left
(1 +
\frac
{
h
_
i
}{
3
\rho
_
i
}
\rho
_{
\partial
h
_
i
}
\right
)
^{
-1
}
.
\end{equation}
\subsubsection
{
Hydrodynamical accelerations (
\nth
{
2
}
neighbour loop)
}
The accelerations are given by the following term:
\begin{align}
\frac
{
d
\vec
{
v
}_
i
}{
dt
}
= -
\sum
_
j m
_
j
&
\left
[
\frac
{
\bar
P
_
i
}{
\bar\rho
_
i
^
2
}
\left
(
\frac
{
\tilde
A
_
j
}{
\tilde
A
_
i
}
-
\frac
{
f
_
i
}{
\tilde
A
_
i
}
\right
)
\nabla
_
x W(
\vec
{
x
}_{
ij
}
, h
_
i)
\right
.
\nonumber
\\
&
+
\frac
{
P
_
j
}{
\rho
_
j
^
2
}
\left
(
\frac
{
\tilde
A
_
i
}{
\tilde
A
_
j
}
-
\frac
{
f
_
j
}{
\tilde
A
_
j
}
\right
)
\nabla
_
x W(
\vec
{
x
}_{
ij
}
,h
_
j)
\\
&
+
\left
.
\bigg
.
\nu
_{
ij
}
\Wij
\right
],
\label
{
eq:sph:pe:dv
_
dt
}
\end{align}
where the viscosity term
$
\nu
_{
ij
}$
has been computed as in
the
\GadgetSPH
case (Eq.
\ref
{
eq:sph:gadget2:balsara
}
and
\ref
{
eq:sph:gadget2:nu
_
ij
}
). For completeness, the equation of
motion for the entropy is
\begin{equation}
\frac
{
dA
_
i
}{
dt
}
=
\frac
{
1
}{
2
}
A
_{
\rm
eos
}
\left
(
\rho
_
i,
\sum
_
j
m
_
j
\nu
_{
ij
}
\vec
{
v
}_{
ij
}
\cdot
\Wij\right
).
\end{equation}
\subsubsection
{
Time integration
}
The time-step condition is identical to the
\MinimalSPH
case
(Eq.
\ref
{
eq:sph:minimal:dt
}
). The same applies to the integration
forward in time (Eq.
\ref
{
eq:sph:minimal:kick
_
v
}
to
\ref
{
eq:sph:minimal:kick
_
c
}
) with the exception of the change in
internal energy (Eq.
\ref
{
eq:sph:minimal:kick
_
u
}
) which gets replaced
by an integration for the the entropy:
\begin{align}
\vec
{
v
}_
i
&
\rightarrow
\vec
{
v
}_
i +
\frac
{
d
\vec
{
v
}_
i
}{
dt
}
\Delta
t
\label
{
eq:sph:pe:kick
_
v
}
\\
A
_
i
&
\rightarrow
A
_
i +
\frac
{
dA
_
i
}{
dt
}
\Delta
t
\label
{
eq:sph:pe:kick
_
A
}
\\
P
_
i
&
\rightarrow
P
_{
\rm
eos
}
\left
(
\rho
_
i, A
_
i
\right
)
\label
{
eq:sph:pe:kick
_
P
}
,
\\
c
_
i
&
\rightarrow
c
_{
\rm
eos
}
\left
(
\rho
_
i,
A
_
i
\right
)
\label
{
eq:sph:pe:kick
_
c
}
,
\\
\tilde
A
_
i
&
= A
_
i
^{
1/
\gamma
}
\end{align}
where, once again, we made use of the equation of state relating
thermodynamical quantities.
\subsubsection
{
Particle properties prediction
}
The prediction step is also identical to the
\MinimalSPH
case with the
entropic function replacing the thermal energy.
\begin{align}
\vec
{
x
}_
i
&
\rightarrow
\vec
{
x
}_
i +
\vec
{
v
}_
i
\Delta
t
\label
{
eq:sph:pe:drift
_
x
}
\\
h
_
i
&
\rightarrow
h
_
i
\exp\left
(
\frac
{
1
}{
h
_
i
}
\frac
{
dh
_
i
}{
dt
}
\Delta
t
\right
),
\label
{
eq:sph:pe:drift
_
h
}
\\
\rho
_
i
&
\rightarrow
\rho
_
i
\exp\left
(-
\frac
{
3
}{
h
_
i
}
\frac
{
dh
_
i
}{
dt
}
\Delta
t
\right
),
\label
{
eq:sph:pe:drift
_
rho
}
\\
\tilde
A
_
i
&
\rightarrow
\left
(A
_
i +
\frac
{
dA
_
i
}{
dt
}
\Delta
t
\right
)
^{
1/
\gamma
}
\label
{
eq:sph:pe:drift
_
A
_
tilde
}
,
\\
P
_
i
&
\rightarrow
P
_{
\rm
eos
}
\left
(
\rho
_
i, A
_
i +
\frac
{
dA
_
i
}{
dt
}
\Delta
t
\right
),
\label
{
eq:sph:pe:drift
_
P
}
\\
c
_
i
&
\rightarrow
c
_{
\rm
eos
}
\left
(
\rho
_
i, A
_
i +
\frac
{
dA
_
i
}{
dt
}
\Delta
t
\right
)
\label
{
eq:sph:pe:drift
_
c
}
,
\end{align}
where, as above, the last two updated quantities are obtained using
the pre-defined equation of state. Note that the entropic function
$
A
_
i
$
itself is
\emph
{
not
}
updated.
\subsection
{
Pressure-Energy SPH
}
\label
{
sec:sph:pu
}
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment