diff --git a/examples/GreshoVortex/makeIC.py b/examples/GreshoVortex/makeIC.py index 2f5bebc00ce0f86d3f4f3cccd030cfff5f90d51d..75af3a777682cb56dbd87bab9d125845d06fe153 100644 --- a/examples/GreshoVortex/makeIC.py +++ b/examples/GreshoVortex/makeIC.py @@ -1,7 +1,6 @@ ############################################################################### # This file is part of SWIFT. - # Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk), - # Matthieu Schaller (matthieu.schaller@durham.ac.uk) + # Copyright (c) 2016 Matthieu Schaller (matthieu.schaller@durham.ac.uk) # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published @@ -19,7 +18,6 @@ ############################################################################## import h5py -import random from numpy import * import sys @@ -51,7 +49,6 @@ for i in range(numPart): x = coords[i,0] y = coords[i,1] - z = coords[i,2] r2 = (x - boxSize / 2)**2 + (y - boxSize / 2)**2 r = sqrt(r2) diff --git a/examples/KelvinHelmoltz/kelvinHelmholtz.yml b/examples/KelvinHelmoltz/kelvinHelmholtz.yml new file mode 100644 index 0000000000000000000000000000000000000000..38dd16880a209b885f7ad9c30c024988f4d8228f --- /dev/null +++ b/examples/KelvinHelmoltz/kelvinHelmholtz.yml @@ -0,0 +1,35 @@ +# Define the system of units to use internally. +InternalUnitSystem: + UnitMass_in_cgs: 1 # Grams + UnitLength_in_cgs: 1 # Centimeters + UnitVelocity_in_cgs: 1 # Centimeters per second + UnitCurrent_in_cgs: 1 # Amperes + UnitTemp_in_cgs: 1 # Kelvin + +# Parameters governing the time integration +TimeIntegration: + time_begin: 0. # The starting time of the simulation (in internal units). + time_end: 1.5 # The end time of the simulation (in internal units). + dt_min: 1e-6 # The minimal time-step size of the simulation (in internal units). + dt_max: 1e-2 # The maximal time-step size of the simulation (in internal units). + +# Parameters governing the snapshots +Snapshots: + basename: kelvinHelmholtz # Common part of the name of output files + time_first: 0. # Time of the first output (in internal units) + delta_time: 0.25 # Time difference between consecutive outputs (in internal units) + +# Parameters governing the conserved quantities statistics +Statistics: + delta_time: 1e-2 # Time between statistics output + +# Parameters for the hydrodynamics scheme +SPH: + resolution_eta: 1.2348 # Target smoothing length in units of the mean inter-particle separation (1.2348 == 48Ngbs with the cubic spline kernel). + delta_neighbours: 0.1 # The tolerance for the targetted number of neighbours. + max_smoothing_length: 0.01 # Maximal smoothing length allowed (in internal units). + CFL_condition: 0.1 # Courant-Friedrich-Levy condition for time integration. + +# Parameters related to the initial conditions +InitialConditions: + file_name: ./kelvinHelmholtz.hdf5 # The file to read diff --git a/examples/KelvinHelmoltz/makeIC.py b/examples/KelvinHelmoltz/makeIC.py new file mode 100644 index 0000000000000000000000000000000000000000..5c8632dea52ef301c453cfbf21c35923f12e2d5a --- /dev/null +++ b/examples/KelvinHelmoltz/makeIC.py @@ -0,0 +1,153 @@ +############################################################################### + # This file is part of SWIFT. + # Copyright (c) 2016 Matthieu Schaller (matthieu.schaller@durham.ac.uk) + # + # This program is free software: you can redistribute it and/or modify + # it under the terms of the GNU Lesser General Public License as published + # by the Free Software Foundation, either version 3 of the License, or + # (at your option) any later version. + # + # This program is distributed in the hope that it will be useful, + # but WITHOUT ANY WARRANTY; without even the implied warranty of + # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + # GNU General Public License for more details. + # + # You should have received a copy of the GNU Lesser General Public License + # along with this program. If not, see <http://www.gnu.org/licenses/>. + # + ############################################################################## + +import h5py +from numpy import * +import sys + +# Generates a swift IC file for the Kelvin-Helmholtz vortex in a periodic box + +# Parameters +L2 = 128 # Particles along one edge in the low-density region +gamma = 5./3. # Gas adiabatic index +P1 = 2.5 # Central region pressure +P2 = 2.5 # Outskirts pressure +v1 = 0.5 # Central region velocity +v2 = -0.5 # Outskirts vlocity +rho1 = 2 # Central density +rho2 = 1 # Outskirts density +omega0 = 0.1 +sigma = 0.05 / sqrt(2) +fileOutputName = "kelvinHelmholtz.hdf5" +#--------------------------------------------------- + +# Start by generating grids of particles at the two densities +numPart2 = L2 * L2 +L1 = int(sqrt(numPart2 / rho2 * rho1)) +numPart1 = L1 * L1 + +#print "N2 =", numPart2, "N1 =", numPart1 +#print "L2 =", L2, "L1 = ", L1 +#print "rho2 =", rho2, "rho1 =", (float(L1*L1)) / (float(L2*L2)) + +coords1 = zeros((numPart1, 3)) +coords2 = zeros((numPart2, 3)) +h1 = ones(numPart1) * 1.2348 / L1 +h2 = ones(numPart2) * 1.2348 / L2 +m1 = zeros(numPart1) +m2 = zeros(numPart2) +u1 = zeros(numPart1) +u2 = zeros(numPart2) +vel1 = zeros((numPart1, 3)) +vel2 = zeros((numPart2, 3)) + +# Particles in the central region +for i in range(L1): + for j in range(L1): + + index = i * L1 + j + + x = i / float(L1) + 1. / (2. * L1) + y = j / float(L1) + 1. / (2. * L1) + + coords1[index, 0] = x + coords1[index, 1] = y + u1[index] = P1 / (rho1 * (gamma-1.)) + vel1[index, 0] = v1 + +# Particles in the outskirts +for i in range(L2): + for j in range(L2): + + index = i * L2 + j + + x = i / float(L2) + 1. / (2. * L2) + y = j / float(L2) + 1. / (2. * L2) + + coords2[index, 0] = x + coords2[index, 1] = y + u2[index] = P2 / (rho2 * (gamma-1.)) + vel2[index, 0] = v2 + + +# Now concatenate arrays +where1 = abs(coords1[:,1]-0.5) < 0.25 +where2 = abs(coords2[:,1]-0.5) > 0.25 + +coords = append(coords1[where1, :], coords2[where2, :], axis=0) + +#print L2*(L2/2), L1*(L1/2) +#print shape(coords), shape(coords1[where1,:]), shape(coords2[where2,:]) +#print shape(coords), shape(logical_not(coords1[where1,:])), shape(logical_not(coords2[where2,:])) + +vel = append(vel1[where1, :], vel2[where2, :], axis=0) +h = append(h1[where1], h2[where2], axis=0) +m = append(m1[where1], m2[where2], axis=0) +u = append(u1[where1], u2[where2], axis=0) +numPart = size(h) +ids = linspace(1, numPart, numPart) +m[:] = (0.5 * rho1 + 0.5 * rho2) / float(numPart) + +# Velocity perturbation +vel[:,1] = omega0 * sin(4*pi*coords[:,0]) * (exp(-(coords[:,1]-0.25)**2 / (2 * sigma**2)) + exp(-(coords[:,1]-0.75)**2 / (2 * sigma**2))) + +#File +fileOutput = h5py.File(fileOutputName, 'w') + +# Header +grp = fileOutput.create_group("/Header") +grp.attrs["BoxSize"] = [1., 1., 0.1] +grp.attrs["NumPart_Total"] = [numPart, 0, 0, 0, 0, 0] +grp.attrs["NumPart_Total_HighWord"] = [0, 0, 0, 0, 0, 0] +grp.attrs["NumPart_ThisFile"] = [numPart, 0, 0, 0, 0, 0] +grp.attrs["Time"] = 0.0 +grp.attrs["NumFileOutputsPerSnapshot"] = 1 +grp.attrs["MassTable"] = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0] +grp.attrs["Flag_Entropy_ICs"] = [0, 0, 0, 0, 0, 0] + +#Runtime parameters +grp = fileOutput.create_group("/RuntimePars") +grp.attrs["PeriodicBoundariesOn"] = 1 + +#Units +grp = fileOutput.create_group("/Units") +grp.attrs["Unit length in cgs (U_L)"] = 1. +grp.attrs["Unit mass in cgs (U_M)"] = 1. +grp.attrs["Unit time in cgs (U_t)"] = 1. +grp.attrs["Unit current in cgs (U_I)"] = 1. +grp.attrs["Unit temperature in cgs (U_T)"] = 1. + +#Particle group +grp = fileOutput.create_group("/PartType0") +ds = grp.create_dataset('Coordinates', (numPart, 3), 'd') +ds[()] = coords +ds = grp.create_dataset('Velocities', (numPart, 3), 'f') +ds[()] = vel +ds = grp.create_dataset('Masses', (numPart, 1), 'f') +ds[()] = m.reshape((numPart,1)) +ds = grp.create_dataset('SmoothingLength', (numPart,1), 'f') +ds[()] = h.reshape((numPart,1)) +ds = grp.create_dataset('InternalEnergy', (numPart,1), 'f') +ds[()] = u.reshape((numPart,1)) +ds = grp.create_dataset('ParticleIDs', (numPart,1), 'L') +ds[()] = ids.reshape((numPart,1)) + +fileOutput.close() + + diff --git a/examples/KelvinHelmoltz/plotSolution.py b/examples/KelvinHelmoltz/plotSolution.py new file mode 100644 index 0000000000000000000000000000000000000000..9191f3ac7ec75c61d5fdab5d347c86222f787fab --- /dev/null +++ b/examples/KelvinHelmoltz/plotSolution.py @@ -0,0 +1,159 @@ +############################################################################### + # This file is part of SWIFT. + # Copyright (c) 2016 Matthieu Schaller (matthieu.schaller@durham.ac.uk) + # + # This program is free software: you can redistribute it and/or modify + # it under the terms of the GNU Lesser General Public License as published + # by the Free Software Foundation, either version 3 of the License, or + # (at your option) any later version. + # + # This program is distributed in the hope that it will be useful, + # but WITHOUT ANY WARRANTY; without even the implied warranty of + # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + # GNU General Public License for more details. + # + # You should have received a copy of the GNU Lesser General Public License + # along with this program. If not, see <http://www.gnu.org/licenses/>. + # + ############################################################################## + +# Computes the analytical solution of the Gresho-Chan vortex and plots the SPH answer + +# Parameters +gas_gamma = 5./3. # Gas adiabatic index +P1 = 2.5 # Central region pressure +P2 = 2.5 # Outskirts pressure +v1 = 0.5 # Central region velocity +v2 = -0.5 # Outskirts vlocity +rho1 = 2 # Central density +rho2 = 1 # Outskirts density + +# --------------------------------------------------------------- +# Don't touch anything after this. +# --------------------------------------------------------------- + +import matplotlib +matplotlib.use("Agg") +from pylab import * +import h5py + +# Plot parameters +params = {'axes.labelsize': 10, +'axes.titlesize': 10, +'font.size': 12, +'legend.fontsize': 12, +'xtick.labelsize': 10, +'ytick.labelsize': 10, +'text.usetex': True, + 'figure.figsize' : (9.90,6.45), +'figure.subplot.left' : 0.045, +'figure.subplot.right' : 0.99, +'figure.subplot.bottom' : 0.05, +'figure.subplot.top' : 0.99, +'figure.subplot.wspace' : 0.15, +'figure.subplot.hspace' : 0.12, +'lines.markersize' : 6, +'lines.linewidth' : 3., +'text.latex.unicode': True +} +rcParams.update(params) +rc('font',**{'family':'sans-serif','sans-serif':['Times']}) + + +snap = int(sys.argv[1]) + +# Read the simulation data +sim = h5py.File("kelvinHelmholtz_%03d.hdf5"%snap, "r") +boxSize = sim["/Header"].attrs["BoxSize"][0] +time = sim["/Header"].attrs["Time"][0] +scheme = sim["/HydroScheme"].attrs["Scheme"] +kernel = sim["/HydroScheme"].attrs["Kernel function"] +neighbours = sim["/HydroScheme"].attrs["Kernel target N_ngb"] +eta = sim["/HydroScheme"].attrs["Kernel eta"] +git = sim["Code"].attrs["Git Revision"] + +pos = sim["/PartType0/Coordinates"][:,:] +x = pos[:,0] - boxSize / 2 +y = pos[:,1] - boxSize / 2 +vel = sim["/PartType0/Velocities"][:,:] +v_norm = sqrt(vel[:,0]**2 + vel[:,1]**2) +rho = sim["/PartType0/Density"][:] +u = sim["/PartType0/InternalEnergy"][:] +S = sim["/PartType0/Entropy"][:] +P = sim["/PartType0/Pressure"][:] + +# Plot the interesting quantities +figure() + + +# Azimuthal velocity profile ----------------------------- +subplot(231) +scatter(pos[:,0], pos[:,1], c=vel[:,0], cmap="PuBu", edgecolors='face', s=4, vmin=-1., vmax=1.) +text(0.97, 0.97, "${\\rm{Velocity~along}}~x$", ha="right", va="top", backgroundcolor="w") +xlabel("${\\rm{Position}}~x$", labelpad=0) +ylabel("${\\rm{Position}}~y$", labelpad=0) +xlim(0, 1) +ylim(0, 1) + +# Radial density profile -------------------------------- +subplot(232) +scatter(pos[:,0], pos[:,1], c=rho, cmap="PuBu", edgecolors='face', s=4, vmin=0.8, vmax=2.2) +text(0.97, 0.97, "${\\rm{Density}}$", ha="right", va="top", backgroundcolor="w") +xlabel("${\\rm{Position}}~x$", labelpad=0) +ylabel("${\\rm{Position}}~y$", labelpad=0) +xlim(0, 1) +ylim(0, 1) + +# Radial pressure profile -------------------------------- +subplot(233) +scatter(pos[:,0], pos[:,1], c=P, cmap="PuBu", edgecolors='face', s=4, vmin=1, vmax=4) +text(0.97, 0.97, "${\\rm{Pressure}}$", ha="right", va="top", backgroundcolor="w") +xlabel("${\\rm{Position}}~x$", labelpad=0) +ylabel("${\\rm{Position}}~y$", labelpad=0) +xlim(0, 1) +ylim(0, 1) + +# Internal energy profile -------------------------------- +subplot(234) +scatter(pos[:,0], pos[:,1], c=u, cmap="PuBu", edgecolors='face', s=4, vmin=1.5, vmax=5.) +text(0.97, 0.97, "${\\rm{Internal~energy}}$", ha="right", va="top", backgroundcolor="w") +xlabel("${\\rm{Position}}~x$", labelpad=0) +ylabel("${\\rm{Position}}~y$", labelpad=0) +xlim(0, 1) +ylim(0, 1) + +# Radial entropy profile -------------------------------- +subplot(235) +scatter(pos[:,0], pos[:,1], c=S, cmap="PuBu", edgecolors='face', s=4, vmin=0.5, vmax=3.) +text(0.97, 0.97, "${\\rm{Entropy}}$", ha="right", va="top", backgroundcolor="w") +xlabel("${\\rm{Position}}~x$", labelpad=0) +ylabel("${\\rm{Position}}~y$", labelpad=0) +xlim(0, 1) +ylim(0, 1) + +# Image -------------------------------------------------- +#subplot(234) +#scatter(pos[:,0], pos[:,1], c=v_norm, cmap="PuBu", edgecolors='face', s=4, vmin=0, vmax=1) +#text(0.95, 0.95, "$|v|$", ha="right", va="top") +#xlim(0,1) +#ylim(0,1) +#xlabel("$x$", labelpad=0) +#ylabel("$y$", labelpad=0) + +# Information ------------------------------------- +subplot(236, frameon=False) + +text(-0.49, 0.9, "Kelvin-Helmholtz instability at $t=%.2f$"%(time), fontsize=10) +text(-0.49, 0.8, "Centre:~~~ $(P, \\rho, v) = (%.3f, %.3f, %.3f)$"%(P1, rho1, v1), fontsize=10) +text(-0.49, 0.7, "Outskirts: $(P, \\rho, v) = (%.3f, %.3f, %.3f)$"%(P2, rho2, v2), fontsize=10) +plot([-0.49, 0.1], [0.62, 0.62], 'k-', lw=1) +text(-0.49, 0.5, "$\\textsc{Swift}$ %s"%git, fontsize=10) +text(-0.49, 0.4, scheme, fontsize=10) +text(-0.49, 0.3, kernel, fontsize=10) +text(-0.49, 0.2, "$%.2f$ neighbours ($\\eta=%.3f$)"%(neighbours, eta), fontsize=10) +xlim(-0.5, 0.5) +ylim(0, 1) +xticks([]) +yticks([]) + +savefig("KelvinHelmholtz.png", dpi=200) diff --git a/examples/KelvinHelmoltz/run.sh b/examples/KelvinHelmoltz/run.sh new file mode 100755 index 0000000000000000000000000000000000000000..4899ca89bc7bbbf72d15d6ecd3961c146a9c9821 --- /dev/null +++ b/examples/KelvinHelmoltz/run.sh @@ -0,0 +1,14 @@ +#!/bin/bash + + # Generate the initial conditions if they are not present. +if [ ! -e kelvinHelmholtz.hdf5 ] +then + echo "Generating initial conditions for the Kelvin-Helmholtz example..." + python makeIC.py +fi + +# Run SWIFT +../swift -s -t 1 kelvinHelmholtz.yml + +# Plot the solution +python plotSolution.py 6 diff --git a/examples/SedovBlast_2D/makeIC.py b/examples/SedovBlast_2D/makeIC.py index dc2c574bb76387ef3bebd714423e4612e5838e0d..a30e727b4dd42c1f058827959cf12e3b4f152181 100644 --- a/examples/SedovBlast_2D/makeIC.py +++ b/examples/SedovBlast_2D/makeIC.py @@ -31,8 +31,6 @@ E0= 1. # Energy of the explosion N_inject = 21 # Number of particles in which to inject energy fileName = "sedov.hdf5" -#L = 101 - #--------------------------------------------------- glass = h5py.File("glassPlane_128.hdf5", "r") @@ -50,10 +48,9 @@ m = zeros(numPart) u = zeros(numPart) r = zeros(numPart) -for i in range(numPart): - r[i] = sqrt((pos[i,0] - 0.5)**2 + (pos[i,1] - 0.5)**2) - m[i] = rho0 * vol / numPart - u[i] = P0 / (rho0 * (gamma - 1)) +r = sqrt((pos[:,0] - 0.5)**2 + (pos[:,1] - 0.5)**2) +m[:] = rho0 * vol / numPart +u[:] = P0 / (rho0 * (gamma - 1)) # Make the central particle detonate index = argsort(r) diff --git a/examples/SedovBlast_2D/plotSolution.py b/examples/SedovBlast_2D/plotSolution.py index af7c3b525dc25b2b10399f9cf27553999b28ab92..69e4e1232dd5c14b06e8a705f4add391f1f597f0 100644 --- a/examples/SedovBlast_2D/plotSolution.py +++ b/examples/SedovBlast_2D/plotSolution.py @@ -18,7 +18,7 @@ # ############################################################################## -# Computes the analytical solution of the 3D Sedov blast wave. +# Computes the analytical solution of the 2D Sedov blast wave. # The script works for a given initial box and dumped energy and computes the solution at a later time t. # Parameters @@ -85,6 +85,8 @@ P = sim["/PartType0/Pressure"][:] rho = sim["/PartType0/Density"][:] +# Now, work our the solution.... + from scipy.special import gamma as Gamma from numpy import * @@ -190,6 +192,8 @@ def sedov(t, E0, rho0, g, n=1000, nu=3): rho *= rho0 return r, p, rho, u, r_s, p_s, rho_s, u_s, shock_speed + +# The main properties of the solution r_s, P_s, rho_s, v_s, r_shock, _, _, _, _ = sedov(time, E_0, rho_0, gas_gamma, 1000, 2) # Append points for after the shock @@ -202,6 +206,8 @@ v_s = np.insert(v_s, np.size(v_s), [0, 0]) u_s = P_s / (rho_s * (gas_gamma - 1.)) #internal energy s_s = P_s / rho_s**gas_gamma # entropic function + + # Plot the interesting quantities figure() diff --git a/examples/SedovBlast_2D/sedov.py b/examples/SedovBlast_2D/sedov.py deleted file mode 100755 index 2439a7fda91831a7c54350a597db5f026e36fee9..0000000000000000000000000000000000000000 --- a/examples/SedovBlast_2D/sedov.py +++ /dev/null @@ -1,212 +0,0 @@ -############################################################################### - # This file is part of SWIFT. - # Copyright (c) 2015 Bert Vandenbroucke (bert.vandenbroucke@ugent.be) - # - # This program is free software: you can redistribute it and/or modify - # it under the terms of the GNU Lesser General Public License as published - # by the Free Software Foundation, either version 3 of the License, or - # (at your option) any later version. - # - # This program is distributed in the hope that it will be useful, - # but WITHOUT ANY WARRANTY; without even the implied warranty of - # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - # GNU General Public License for more details. - # - # You should have received a copy of the GNU Lesser General Public License - # along with this program. If not, see <http://www.gnu.org/licenses/>. - # - ############################################################################## - -import numpy as np -import scipy.integrate as integrate -import scipy.optimize as optimize -import os - -# Calculate the analytical solution of the Sedov-Taylor shock wave for a given -# number of dimensions, gamma and time. We assume dimensionless units and a -# setup with constant density 1, pressure and velocity 0. An energy 1 is -# inserted in the center at t 0. -# -# The solution is a self-similar shock wave, which was described in detail by -# Sedov (1959). We follow his notations and solution method. -# -# The position of the shock at time t is given by -# r2 = (E/rho1)^(1/(2+nu)) * t^(2/(2+nu)) -# the energy E is related to the inserted energy E0 by E0 = alpha*E, with alpha -# a constant which has to be calculated by imposing energy conservation. -# -# The density for a given radius at a certain time is determined by introducing -# the dimensionless position coordinate lambda = r/r2. The density profile as -# a function of lambda is constant in time and given by -# rho = rho1 * R(V, gamma, nu) -# and -# V = V(lambda, gamma, nu) -# -# The function V(lambda, gamma, nu) is found by solving a differential equation -# described in detail in Sedov (1959) chapter 4, section 5. Alpha is calculated -# from the integrals in section 11 of the same chapter. -# -# Numerically, the complete solution requires the use of 3 quadratures and 1 -# root solver, which are implemented using the GNU Scientific Library (GSL). -# Since some quadratures call functions that themselves contain quadratures, -# the problem is highly non-linear and complex and takes a while to converge. -# Therefore, we tabulate the alpha values and profile values the first time -# a given set of gamma and nu values is requested and reuse these tabulated -# values. -# -# Reference: -# Sedov (1959): Sedov, L., Similitude et dimensions en mecanique (7th ed.; -# Moscou: Editions Mir) - french translation of the original -# book from 1959. - -# dimensionless variable z = gamma*P/R as a function of V (and gamma and nu) -# R is a dimensionless density, while P is a dimensionless pressure -# z is hence a sort of dimensionless sound speed -# The expression below corresponds to eq. 11.9 in Sedov (1959), chapter 4 -def _z(V, gamma, nu): - if V == 2./(nu+2.)/gamma: - return 0. - else: - return (gamma-1.)*V*V*(V-2./(2.+nu))/2./(2./(2.+nu)/gamma-V) - -# differential equation that needs to be solved to obtain lambda for a given V -# corresponds to eq. 5.11 in Sedov (1959), chapter 4 (omega = 0) -def _dlnlambda_dV(V, gamma, nu): - nom = _z(V, gamma, nu) - (V-2./(nu+2.))*(V-2./(nu+2.)) - denom = V*(V-1.)*(V-2./(nu+2.))+nu*(2./(nu+2.)/gamma-V)*_z(V, gamma, nu) - return nom/denom - -# dimensionless variable lambda = r/r2 as a function of V (and gamma and nu) -# found by solving differential equation 5.11 in Sedov (1959), chapter 4 -# (omega = 0) -def _lambda(V, gamma, nu): - if V == 2./(nu+2.)/gamma: - return 0. - else: - V0 = 4./(nu+2.)/(gamma+1.) - integral, err = integrate.quad(_dlnlambda_dV, V, V0, (gamma, nu), - limit = 8000) - return np.exp(-integral) - -# dimensionless variable R = rho/rho1 as a function of V (and gamma and nu) -# found by inverting eq. 5.12 in Sedov (1959), chapter 4 (omega = 0) -# the integration constant C is found by inserting the R, V and z values -# at the shock wave, where lambda is 1. These correspond to eq. 11.8 in Sedov -# (1959), chapter 4. -def _R(V, gamma, nu): - if V == 2./(nu+2.)/gamma: - return 0. - else: - C = 8.*gamma*(gamma-1.)/(nu+2.)/(nu+2.)/(gamma+1.)/(gamma+1.) \ - *((gamma-1.)/(gamma+1.))**(gamma-2.) \ - *(4./(nu+2.)/(gamma+1.)-2./(nu+2.)) - lambda1 = _lambda(V, gamma, nu) - lambda5 = lambda1**(nu+2) - return (_z(V, gamma, nu)*(V-2./(nu+2.))*lambda5/C)**(1./(gamma-2.)) - -# function of which we need to find the zero point to invert lambda(V) -def _lambda_min_lambda(V, lambdax, gamma, nu): - return _lambda(V, gamma, nu) - lambdax - -# dimensionless variable V = v*t/r as a function of lambda (and gamma and nu) -# found by inverting the function lamdba(V) which is found by solving -# differential equation 5.11 in Sedov (1959), chapter 4 (omega = 0) -# the invertion is done by searching the zero point of the function -# lambda_min_lambda defined above -def _V_inv(lambdax, gamma, nu): - if lambdax == 0.: - return 2./(2.+nu)/gamma; - else: - return optimize.brentq(_lambda_min_lambda, 2./(nu+2.)/gamma, - 4./(nu+2.)/(gamma+1.), (lambdax, gamma, nu)) - -# integrand of the first integral in eq. 11.24 in Sedov (1959), chapter 4 -def _integrandum1(lambdax, gamma, nu): - V = _V_inv(lambdax, gamma, nu) - if nu == 2: - return _R(V, gamma, nu)*V**2*lambdax**3 - else: - return _R(V, gamma, nu)*V**2*lambdax**4 - -# integrand of the second integral in eq. 11.24 in Sedov (1959), chapter 4 -def _integrandum2(lambdax, gamma, nu): - V = _V_inv(lambdax, gamma, nu) - if V == 2./(nu+2.)/gamma: - P = 0. - else: - P = _z(V, gamma, nu)*_R(V, gamma, nu)/gamma - if nu == 2: - return P*lambdax**3 - else: - return P*lambdax**4 - -# calculate alpha = E0/E -# this corresponds to eq. 11.24 in Sedov (1959), chapter 4 -def get_alpha(gamma, nu): - integral1, err1 = integrate.quad(_integrandum1, 0., 1., (gamma, nu)) - integral2, err2 = integrate.quad(_integrandum2, 0., 1., (gamma, nu)) - - if nu == 2: - return np.pi*integral1+2.*np.pi/(gamma-1.)*integral2 - else: - return 2.*np.pi*integral1+4.*np.pi/(gamma-1.)*integral2 - -# get the analytical solution for the Sedov-Taylor blastwave given an input -# energy E, adiabatic index gamma, and number of dimensions nu, at time t and -# with a maximal outer region radius maxr -def get_analytical_solution(E, gamma, nu, t, maxr = 1.): - # we check for the existance of a datafile with precomputed alpha and - # profile values - # if it does not exist, we calculate it here and write it out - # calculation of alpha and the profile takes a while... - lvec = np.zeros(1000) - Rvec = np.zeros(1000) - fname = "sedov_profile_gamma_{gamma}_nu_{nu}.dat".format(gamma = gamma, - nu = nu) - if os.path.exists(fname): - file = open(fname, "r") - lines = file.readlines() - alpha = float(lines[0]) - for i in range(len(lines)-1): - data = lines[i+1].split() - lvec[i] = float(data[0]) - Rvec[i] = float(data[1]) - else: - alpha = get_alpha(gamma, nu) - for i in range(1000): - lvec[i] = (i+1)*0.001 - V = _V_inv(lvec[i], gamma, nu) - Rvec[i] = _R(V, gamma, nu) - file = open(fname, "w") - file.write("#{alpha}\n".format(alpha = alpha)) - for i in range(1000): - file.write("{l}\t{R}\n".format(l = lvec[i], R = Rvec[i])) - - xvec = np.zeros(1002) - rhovec = np.zeros(1002) - if nu == 2: - r2 = (E/alpha)**0.25*np.sqrt(t) - else: - r2 = (E/alpha)**0.2*t**0.4 - - for i in range(1000): - xvec[i] = lvec[i]*r2 - rhovec[i] = Rvec[i] - xvec[1000] = 1.001*r2 - xvec[1001] = maxr - rhovec[1000] = 1. - rhovec[1001] = 1. - - return xvec, rhovec - -def main(): - E = 1. - gamma = 1.66667 - nu = 2 - t = 0.001 - x, rho = get_analytical_solution(E, gamma, nu, t) - for i in range(len(x)): - print x[i], rho[i] - -if __name__ == "__main__": - main() diff --git a/src/hydro/Gadget2/hydro.h b/src/hydro/Gadget2/hydro.h index 60f07c2fc31fd5f38d2929679d0e13beb1cc9131..d2d4450fa12374a8a8dec624c5e54ba3d47b99aa 100644 --- a/src/hydro/Gadget2/hydro.h +++ b/src/hydro/Gadget2/hydro.h @@ -320,7 +320,8 @@ __attribute__((always_inline)) INLINE static void hydro_end_force( p->force.h_dt *= p->h * hydro_dimension_inv; - p->entropy_dt *= hydro_gamma_minus_one * pow_minus_gamma_minus_one(p->rho); + p->entropy_dt *= + 0.5f * hydro_gamma_minus_one * pow_minus_gamma_minus_one(p->rho); } /** diff --git a/src/hydro/Gadget2/hydro_iact.h b/src/hydro/Gadget2/hydro_iact.h index d37ac491fe5d8ecdf127c217ca025080daf4bbfd..6766e98e6a6ecda12372bee7354b1cd4ca090885 100644 --- a/src/hydro/Gadget2/hydro_iact.h +++ b/src/hydro/Gadget2/hydro_iact.h @@ -469,8 +469,8 @@ __attribute__((always_inline)) INLINE static void runner_iact_force( pj->force.v_sig = fmaxf(pj->force.v_sig, v_sig); /* Change in entropy */ - pi->entropy_dt += 0.5f * mj * visc_term * dvdr; - pj->entropy_dt += 0.5f * mi * visc_term * dvdr; + pi->entropy_dt += mj * visc_term * dvdr; + pj->entropy_dt += mi * visc_term * dvdr; } /** @@ -631,7 +631,7 @@ __attribute__((always_inline)) INLINE static void runner_iact_vec_force( pjh_dt.v = mi.v * dvdr.v * ri.v / pirho.v * wj_dr.v; /* Change in entropy */ - entropy_dt.v = vec_set1(0.5f) * visc_term.v * dvdr.v; + entropy_dt.v = visc_term.v * dvdr.v; /* Store the forces back on the particles. */ for (k = 0; k < VEC_SIZE; k++) { @@ -644,7 +644,7 @@ __attribute__((always_inline)) INLINE static void runner_iact_vec_force( pi[k]->force.v_sig = fmaxf(pi[k]->force.v_sig, v_sig.f[k]); pj[k]->force.v_sig = fmaxf(pj[k]->force.v_sig, v_sig.f[k]); pi[k]->entropy_dt += entropy_dt.f[k] * mj.f[k]; - pj[k]->entropy_dt -= entropy_dt.f[k] * mi.f[k]; + pj[k]->entropy_dt += entropy_dt.f[k] * mi.f[k]; } #else @@ -738,7 +738,7 @@ __attribute__((always_inline)) INLINE static void runner_iact_nonsym_force( pi->force.v_sig = fmaxf(pi->force.v_sig, v_sig); /* Change in entropy */ - pi->entropy_dt += 0.5f * mj * visc_term * dvdr; + pi->entropy_dt += mj * visc_term * dvdr; } /** @@ -894,7 +894,7 @@ __attribute__((always_inline)) INLINE static void runner_iact_nonsym_vec_force( pih_dt.v = mj.v * dvdr.v * ri.v / pjrho.v * wi_dr.v; /* Change in entropy */ - entropy_dt.v = vec_set1(0.5f) * mj.v * visc_term.v * dvdr.v; + entropy_dt.v = mj.v * visc_term.v * dvdr.v; /* Store the forces back on the particles. */ for (k = 0; k < VEC_SIZE; k++) { diff --git a/tests/difffloat.py b/tests/difffloat.py index 57707c5920997e3ef688606a0839f59a69d2e4f2..e0f0864372264899c6de1bf2f83ab678b7dd9ead 100644 --- a/tests/difffloat.py +++ b/tests/difffloat.py @@ -89,13 +89,12 @@ for i in range(n_lines_to_check): abs_diff = abs(data1[i,j] - data2[i,j]) sum = abs(data1[i,j] + data2[i,j]) - if abs(data1[i,j]) + abs(data2[i,j]) < 2.5e-7: continue if sum > 0: rel_diff = abs(data1[i,j] - data2[i,j]) / sum else: rel_diff = 0. - if( abs_diff > absTol[j]): + if( abs_diff > 1.1*absTol[j]): print "Absolute difference larger than tolerance (%e) for particle %d, column %d:"%(absTol[j], i,j) print "%10s: a = %e"%("File 1", data1[i,j]) print "%10s: b = %e"%("File 2", data2[i,j]) @@ -103,7 +102,9 @@ for i in range(n_lines_to_check): print "" error = True - if( rel_diff > relTol[j]): + if abs(data1[i,j]) < 1e-6 and + abs(data2[i,j]) < 1e-6 : continue + + if( rel_diff > 1.1*relTol[j]): print "Relative difference larger than tolerance (%e) for particle %d, column %d:"%(relTol[j], i,j) print "%10s: a = %e"%("File 1", data1[i,j]) print "%10s: b = %e"%("File 2", data2[i,j]) diff --git a/tests/test125cells.c b/tests/test125cells.c index e75754999ccd11e61a930003592169eb67029a7b..4619d1fce34e67d4a1f62af59792390310dcfccb 100644 --- a/tests/test125cells.c +++ b/tests/test125cells.c @@ -511,8 +511,8 @@ int main(int argc, char *argv[]) { prog_const.const_newton_G = 1.f; struct hydro_props hp; - hp.target_neighbours = h * h * h * kernel_norm; - hp.delta_neighbours = 1.; + hp.target_neighbours = pow_dimension(h) * kernel_norm; + hp.delta_neighbours = 2.; hp.max_smoothing_iterations = 1; hp.CFL_condition = 0.1;