Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
SWIFT
SWIFTsim
Commits
9924b6e3
Commit
9924b6e3
authored
Aug 17, 2016
by
Peter W. Draper
Browse files
Merge branch 'master' into tasks_cleanup
parents
d043bdee
28388f70
Changes
75
Expand all
Hide whitespace changes
Inline
Side-by-side
examples/CosmoVolume/run.sh
View file @
9924b6e3
...
...
@@ -7,4 +7,4 @@ then
./getIC.sh
fi
../swift
-s
-t
16 cosmoVolume.yml
../swift
-s
-t
16 cosmoVolume.yml
2>&1 |
tee
output.log
examples/EAGLE_12/run.sh
View file @
9924b6e3
...
...
@@ -7,5 +7,5 @@ then
./getIC.sh
fi
../swift
-s
-t
16 eagle_12.yml
../swift
-s
-t
16 eagle_12.yml
2>&1 |
tee
output.log
examples/EAGLE_25/run.sh
View file @
9924b6e3
...
...
@@ -7,5 +7,5 @@ then
./getIC.sh
fi
../swift
-s
-t
16 eagle_25.yml
../swift
-s
-t
16 eagle_25.yml
2>&1 |
tee
output.log
examples/EAGLE_50/run.sh
View file @
9924b6e3
...
...
@@ -7,5 +7,5 @@ then
./getIC.sh
fi
../swift
-s
-t
16 eagle_50.yml
../swift
-s
-t
16 eagle_50.yml
2>&1 |
tee
output.log
examples/ExternalPointMass/run.sh
View file @
9924b6e3
...
...
@@ -7,4 +7,4 @@ then
python makeIC.py 10000
fi
../swift
-g
-t
2 externalPointMass.yml
../swift
-g
-t
2 externalPointMass.yml
2>&1 |
tee
output.log
examples/Glass/glass_50000.hdf5
deleted
100644 → 0
View file @
d043bdee
File deleted
examples/GreshoVortex/getGlass.sh
→
examples/GreshoVortex
_2D
/getGlass.sh
View file @
9924b6e3
File moved
examples/GreshoVortex/gresho.yml
→
examples/GreshoVortex
_2D
/gresho.yml
View file @
9924b6e3
...
...
@@ -27,7 +27,7 @@ Statistics:
SPH
:
resolution_eta
:
1.2348
# Target smoothing length in units of the mean inter-particle separation (1.2348 == 48Ngbs with the cubic spline kernel).
delta_neighbours
:
0.1
# The tolerance for the targetted number of neighbours.
max_smoothing_length
:
0.
1
# Maximal smoothing length allowed (in internal units).
max_smoothing_length
:
0.
02
# Maximal smoothing length allowed (in internal units).
CFL_condition
:
0.1
# Courant-Friedrich-Levy condition for time integration.
# Parameters related to the initial conditions
...
...
examples/GreshoVortex/makeIC.py
→
examples/GreshoVortex
_2D
/makeIC.py
View file @
9924b6e3
###############################################################################
# This file is part of SWIFT.
# Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk),
# Matthieu Schaller (matthieu.schaller@durham.ac.uk)
# Copyright (c) 2016 Matthieu Schaller (matthieu.schaller@durham.ac.uk)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published
...
...
@@ -19,9 +18,7 @@
##############################################################################
import
h5py
import
random
from
numpy
import
*
import
sys
# Generates a swift IC file for the Gresho-Chan vortex in a periodic box
...
...
@@ -51,7 +48,6 @@ for i in range(numPart):
x
=
coords
[
i
,
0
]
y
=
coords
[
i
,
1
]
z
=
coords
[
i
,
2
]
r2
=
(
x
-
boxSize
/
2
)
**
2
+
(
y
-
boxSize
/
2
)
**
2
r
=
sqrt
(
r2
)
...
...
@@ -83,7 +79,7 @@ fileOutput = h5py.File(fileOutputName, 'w')
# Header
grp
=
fileOutput
.
create_group
(
"/Header"
)
grp
.
attrs
[
"BoxSize"
]
=
boxSize
grp
.
attrs
[
"BoxSize"
]
=
[
boxSize
,
boxSize
,
0.2
]
grp
.
attrs
[
"NumPart_Total"
]
=
[
numPart
,
0
,
0
,
0
,
0
,
0
]
grp
.
attrs
[
"NumPart_Total_HighWord"
]
=
[
0
,
0
,
0
,
0
,
0
,
0
]
grp
.
attrs
[
"NumPart_ThisFile"
]
=
[
numPart
,
0
,
0
,
0
,
0
,
0
]
...
...
examples/GreshoVortex/plotSolution.py
→
examples/GreshoVortex
_2D
/plotSolution.py
View file @
9924b6e3
File moved
examples/GreshoVortex/run.sh
→
examples/GreshoVortex
_2D
/run.sh
View file @
9924b6e3
...
...
@@ -13,7 +13,7 @@ then
fi
# Run SWIFT
../swift
-s
-t
1 gresho.yml
../swift
-s
-t
1 gresho.yml
2>&1 |
tee
output.log
# Plot the solution
python plotSolution.py 11
examples/IsothermalPotential/GravityOnly/legend.pro
deleted
100755 → 0
View file @
d043bdee
This diff is collapsed.
Click to expand it.
examples/IsothermalPotential/GravityOnly/run.sh
View file @
9924b6e3
...
...
@@ -7,4 +7,4 @@ then
python makeIC.py 1000 1
fi
../../swift
-g
-t
2 isothermal.yml
../../swift
-g
-t
2 isothermal.yml
2>&1 |
tee
output.log
examples/KelvinHelmholtz_2D/kelvinHelmholtz.yml
0 → 100644
View file @
9924b6e3
# Define the system of units to use internally.
InternalUnitSystem
:
UnitMass_in_cgs
:
1
# Grams
UnitLength_in_cgs
:
1
# Centimeters
UnitVelocity_in_cgs
:
1
# Centimeters per second
UnitCurrent_in_cgs
:
1
# Amperes
UnitTemp_in_cgs
:
1
# Kelvin
# Parameters governing the time integration
TimeIntegration
:
time_begin
:
0.
# The starting time of the simulation (in internal units).
time_end
:
1.5
# The end time of the simulation (in internal units).
dt_min
:
1e-6
# The minimal time-step size of the simulation (in internal units).
dt_max
:
1e-2
# The maximal time-step size of the simulation (in internal units).
# Parameters governing the snapshots
Snapshots
:
basename
:
kelvinHelmholtz
# Common part of the name of output files
time_first
:
0.
# Time of the first output (in internal units)
delta_time
:
0.25
# Time difference between consecutive outputs (in internal units)
# Parameters governing the conserved quantities statistics
Statistics
:
delta_time
:
1e-2
# Time between statistics output
# Parameters for the hydrodynamics scheme
SPH
:
resolution_eta
:
1.2348
# Target smoothing length in units of the mean inter-particle separation (1.2348 == 48Ngbs with the cubic spline kernel).
delta_neighbours
:
0.1
# The tolerance for the targetted number of neighbours.
max_smoothing_length
:
0.01
# Maximal smoothing length allowed (in internal units).
CFL_condition
:
0.1
# Courant-Friedrich-Levy condition for time integration.
# Parameters related to the initial conditions
InitialConditions
:
file_name
:
./kelvinHelmholtz.hdf5
# The file to read
examples/KelvinHelmholtz_2D/makeIC.py
0 → 100644
View file @
9924b6e3
###############################################################################
# This file is part of SWIFT.
# Copyright (c) 2016 Matthieu Schaller (matthieu.schaller@durham.ac.uk)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
##############################################################################
import
h5py
from
numpy
import
*
import
sys
# Generates a swift IC file for the Kelvin-Helmholtz vortex in a periodic box
# Parameters
L2
=
128
# Particles along one edge in the low-density region
gamma
=
5.
/
3.
# Gas adiabatic index
P1
=
2.5
# Central region pressure
P2
=
2.5
# Outskirts pressure
v1
=
0.5
# Central region velocity
v2
=
-
0.5
# Outskirts vlocity
rho1
=
2
# Central density
rho2
=
1
# Outskirts density
omega0
=
0.1
sigma
=
0.05
/
sqrt
(
2
)
fileOutputName
=
"kelvinHelmholtz.hdf5"
#---------------------------------------------------
# Start by generating grids of particles at the two densities
numPart2
=
L2
*
L2
L1
=
int
(
sqrt
(
numPart2
/
rho2
*
rho1
))
numPart1
=
L1
*
L1
#print "N2 =", numPart2, "N1 =", numPart1
#print "L2 =", L2, "L1 = ", L1
#print "rho2 =", rho2, "rho1 =", (float(L1*L1)) / (float(L2*L2))
coords1
=
zeros
((
numPart1
,
3
))
coords2
=
zeros
((
numPart2
,
3
))
h1
=
ones
(
numPart1
)
*
1.2348
/
L1
h2
=
ones
(
numPart2
)
*
1.2348
/
L2
m1
=
zeros
(
numPart1
)
m2
=
zeros
(
numPart2
)
u1
=
zeros
(
numPart1
)
u2
=
zeros
(
numPart2
)
vel1
=
zeros
((
numPart1
,
3
))
vel2
=
zeros
((
numPart2
,
3
))
# Particles in the central region
for
i
in
range
(
L1
):
for
j
in
range
(
L1
):
index
=
i
*
L1
+
j
x
=
i
/
float
(
L1
)
+
1.
/
(
2.
*
L1
)
y
=
j
/
float
(
L1
)
+
1.
/
(
2.
*
L1
)
coords1
[
index
,
0
]
=
x
coords1
[
index
,
1
]
=
y
u1
[
index
]
=
P1
/
(
rho1
*
(
gamma
-
1.
))
vel1
[
index
,
0
]
=
v1
# Particles in the outskirts
for
i
in
range
(
L2
):
for
j
in
range
(
L2
):
index
=
i
*
L2
+
j
x
=
i
/
float
(
L2
)
+
1.
/
(
2.
*
L2
)
y
=
j
/
float
(
L2
)
+
1.
/
(
2.
*
L2
)
coords2
[
index
,
0
]
=
x
coords2
[
index
,
1
]
=
y
u2
[
index
]
=
P2
/
(
rho2
*
(
gamma
-
1.
))
vel2
[
index
,
0
]
=
v2
# Now concatenate arrays
where1
=
abs
(
coords1
[:,
1
]
-
0.5
)
<
0.25
where2
=
abs
(
coords2
[:,
1
]
-
0.5
)
>
0.25
coords
=
append
(
coords1
[
where1
,
:],
coords2
[
where2
,
:],
axis
=
0
)
#print L2*(L2/2), L1*(L1/2)
#print shape(coords), shape(coords1[where1,:]), shape(coords2[where2,:])
#print shape(coords), shape(logical_not(coords1[where1,:])), shape(logical_not(coords2[where2,:]))
vel
=
append
(
vel1
[
where1
,
:],
vel2
[
where2
,
:],
axis
=
0
)
h
=
append
(
h1
[
where1
],
h2
[
where2
],
axis
=
0
)
m
=
append
(
m1
[
where1
],
m2
[
where2
],
axis
=
0
)
u
=
append
(
u1
[
where1
],
u2
[
where2
],
axis
=
0
)
numPart
=
size
(
h
)
ids
=
linspace
(
1
,
numPart
,
numPart
)
m
[:]
=
(
0.5
*
rho1
+
0.5
*
rho2
)
/
float
(
numPart
)
# Velocity perturbation
vel
[:,
1
]
=
omega0
*
sin
(
4
*
pi
*
coords
[:,
0
])
*
(
exp
(
-
(
coords
[:,
1
]
-
0.25
)
**
2
/
(
2
*
sigma
**
2
))
+
exp
(
-
(
coords
[:,
1
]
-
0.75
)
**
2
/
(
2
*
sigma
**
2
)))
#File
fileOutput
=
h5py
.
File
(
fileOutputName
,
'w'
)
# Header
grp
=
fileOutput
.
create_group
(
"/Header"
)
grp
.
attrs
[
"BoxSize"
]
=
[
1.
,
1.
,
0.1
]
grp
.
attrs
[
"NumPart_Total"
]
=
[
numPart
,
0
,
0
,
0
,
0
,
0
]
grp
.
attrs
[
"NumPart_Total_HighWord"
]
=
[
0
,
0
,
0
,
0
,
0
,
0
]
grp
.
attrs
[
"NumPart_ThisFile"
]
=
[
numPart
,
0
,
0
,
0
,
0
,
0
]
grp
.
attrs
[
"Time"
]
=
0.0
grp
.
attrs
[
"NumFileOutputsPerSnapshot"
]
=
1
grp
.
attrs
[
"MassTable"
]
=
[
0.0
,
0.0
,
0.0
,
0.0
,
0.0
,
0.0
]
grp
.
attrs
[
"Flag_Entropy_ICs"
]
=
[
0
,
0
,
0
,
0
,
0
,
0
]
#Runtime parameters
grp
=
fileOutput
.
create_group
(
"/RuntimePars"
)
grp
.
attrs
[
"PeriodicBoundariesOn"
]
=
1
#Units
grp
=
fileOutput
.
create_group
(
"/Units"
)
grp
.
attrs
[
"Unit length in cgs (U_L)"
]
=
1.
grp
.
attrs
[
"Unit mass in cgs (U_M)"
]
=
1.
grp
.
attrs
[
"Unit time in cgs (U_t)"
]
=
1.
grp
.
attrs
[
"Unit current in cgs (U_I)"
]
=
1.
grp
.
attrs
[
"Unit temperature in cgs (U_T)"
]
=
1.
#Particle group
grp
=
fileOutput
.
create_group
(
"/PartType0"
)
ds
=
grp
.
create_dataset
(
'Coordinates'
,
(
numPart
,
3
),
'd'
)
ds
[()]
=
coords
ds
=
grp
.
create_dataset
(
'Velocities'
,
(
numPart
,
3
),
'f'
)
ds
[()]
=
vel
ds
=
grp
.
create_dataset
(
'Masses'
,
(
numPart
,
1
),
'f'
)
ds
[()]
=
m
.
reshape
((
numPart
,
1
))
ds
=
grp
.
create_dataset
(
'SmoothingLength'
,
(
numPart
,
1
),
'f'
)
ds
[()]
=
h
.
reshape
((
numPart
,
1
))
ds
=
grp
.
create_dataset
(
'InternalEnergy'
,
(
numPart
,
1
),
'f'
)
ds
[()]
=
u
.
reshape
((
numPart
,
1
))
ds
=
grp
.
create_dataset
(
'ParticleIDs'
,
(
numPart
,
1
),
'L'
)
ds
[()]
=
ids
.
reshape
((
numPart
,
1
))
fileOutput
.
close
()
examples/KelvinHelmholtz_2D/plotSolution.py
0 → 100644
View file @
9924b6e3
###############################################################################
# This file is part of SWIFT.
# Copyright (c) 2016 Matthieu Schaller (matthieu.schaller@durham.ac.uk)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
##############################################################################
# Computes the analytical solution of the Gresho-Chan vortex and plots the SPH answer
# Parameters
gas_gamma
=
5.
/
3.
# Gas adiabatic index
P1
=
2.5
# Central region pressure
P2
=
2.5
# Outskirts pressure
v1
=
0.5
# Central region velocity
v2
=
-
0.5
# Outskirts vlocity
rho1
=
2
# Central density
rho2
=
1
# Outskirts density
# ---------------------------------------------------------------
# Don't touch anything after this.
# ---------------------------------------------------------------
import
matplotlib
matplotlib
.
use
(
"Agg"
)
from
pylab
import
*
import
h5py
# Plot parameters
params
=
{
'axes.labelsize'
:
10
,
'axes.titlesize'
:
10
,
'font.size'
:
12
,
'legend.fontsize'
:
12
,
'xtick.labelsize'
:
10
,
'ytick.labelsize'
:
10
,
'text.usetex'
:
True
,
'figure.figsize'
:
(
9.90
,
6.45
),
'figure.subplot.left'
:
0.045
,
'figure.subplot.right'
:
0.99
,
'figure.subplot.bottom'
:
0.05
,
'figure.subplot.top'
:
0.99
,
'figure.subplot.wspace'
:
0.15
,
'figure.subplot.hspace'
:
0.12
,
'lines.markersize'
:
6
,
'lines.linewidth'
:
3.
,
'text.latex.unicode'
:
True
}
rcParams
.
update
(
params
)
rc
(
'font'
,
**
{
'family'
:
'sans-serif'
,
'sans-serif'
:[
'Times'
]})
snap
=
int
(
sys
.
argv
[
1
])
# Read the simulation data
sim
=
h5py
.
File
(
"kelvinHelmholtz_%03d.hdf5"
%
snap
,
"r"
)
boxSize
=
sim
[
"/Header"
].
attrs
[
"BoxSize"
][
0
]
time
=
sim
[
"/Header"
].
attrs
[
"Time"
][
0
]
scheme
=
sim
[
"/HydroScheme"
].
attrs
[
"Scheme"
]
kernel
=
sim
[
"/HydroScheme"
].
attrs
[
"Kernel function"
]
neighbours
=
sim
[
"/HydroScheme"
].
attrs
[
"Kernel target N_ngb"
]
eta
=
sim
[
"/HydroScheme"
].
attrs
[
"Kernel eta"
]
git
=
sim
[
"Code"
].
attrs
[
"Git Revision"
]
pos
=
sim
[
"/PartType0/Coordinates"
][:,:]
x
=
pos
[:,
0
]
-
boxSize
/
2
y
=
pos
[:,
1
]
-
boxSize
/
2
vel
=
sim
[
"/PartType0/Velocities"
][:,:]
v_norm
=
sqrt
(
vel
[:,
0
]
**
2
+
vel
[:,
1
]
**
2
)
rho
=
sim
[
"/PartType0/Density"
][:]
u
=
sim
[
"/PartType0/InternalEnergy"
][:]
S
=
sim
[
"/PartType0/Entropy"
][:]
P
=
sim
[
"/PartType0/Pressure"
][:]
# Plot the interesting quantities
figure
()
# Azimuthal velocity profile -----------------------------
subplot
(
231
)
scatter
(
pos
[:,
0
],
pos
[:,
1
],
c
=
vel
[:,
0
],
cmap
=
"PuBu"
,
edgecolors
=
'face'
,
s
=
4
,
vmin
=-
1.
,
vmax
=
1.
)
text
(
0.97
,
0.97
,
"${
\\
rm{Velocity~along}}~x$"
,
ha
=
"right"
,
va
=
"top"
,
backgroundcolor
=
"w"
)
xlabel
(
"${
\\
rm{Position}}~x$"
,
labelpad
=
0
)
ylabel
(
"${
\\
rm{Position}}~y$"
,
labelpad
=
0
)
xlim
(
0
,
1
)
ylim
(
0
,
1
)
# Radial density profile --------------------------------
subplot
(
232
)
scatter
(
pos
[:,
0
],
pos
[:,
1
],
c
=
rho
,
cmap
=
"PuBu"
,
edgecolors
=
'face'
,
s
=
4
,
vmin
=
0.8
,
vmax
=
2.2
)
text
(
0.97
,
0.97
,
"${
\\
rm{Density}}$"
,
ha
=
"right"
,
va
=
"top"
,
backgroundcolor
=
"w"
)
xlabel
(
"${
\\
rm{Position}}~x$"
,
labelpad
=
0
)
ylabel
(
"${
\\
rm{Position}}~y$"
,
labelpad
=
0
)
xlim
(
0
,
1
)
ylim
(
0
,
1
)
# Radial pressure profile --------------------------------
subplot
(
233
)
scatter
(
pos
[:,
0
],
pos
[:,
1
],
c
=
P
,
cmap
=
"PuBu"
,
edgecolors
=
'face'
,
s
=
4
,
vmin
=
1
,
vmax
=
4
)
text
(
0.97
,
0.97
,
"${
\\
rm{Pressure}}$"
,
ha
=
"right"
,
va
=
"top"
,
backgroundcolor
=
"w"
)
xlabel
(
"${
\\
rm{Position}}~x$"
,
labelpad
=
0
)
ylabel
(
"${
\\
rm{Position}}~y$"
,
labelpad
=
0
)
xlim
(
0
,
1
)
ylim
(
0
,
1
)
# Internal energy profile --------------------------------
subplot
(
234
)
scatter
(
pos
[:,
0
],
pos
[:,
1
],
c
=
u
,
cmap
=
"PuBu"
,
edgecolors
=
'face'
,
s
=
4
,
vmin
=
1.5
,
vmax
=
5.
)
text
(
0.97
,
0.97
,
"${
\\
rm{Internal~energy}}$"
,
ha
=
"right"
,
va
=
"top"
,
backgroundcolor
=
"w"
)
xlabel
(
"${
\\
rm{Position}}~x$"
,
labelpad
=
0
)
ylabel
(
"${
\\
rm{Position}}~y$"
,
labelpad
=
0
)
xlim
(
0
,
1
)
ylim
(
0
,
1
)
# Radial entropy profile --------------------------------
subplot
(
235
)
scatter
(
pos
[:,
0
],
pos
[:,
1
],
c
=
S
,
cmap
=
"PuBu"
,
edgecolors
=
'face'
,
s
=
4
,
vmin
=
0.5
,
vmax
=
3.
)
text
(
0.97
,
0.97
,
"${
\\
rm{Entropy}}$"
,
ha
=
"right"
,
va
=
"top"
,
backgroundcolor
=
"w"
)
xlabel
(
"${
\\
rm{Position}}~x$"
,
labelpad
=
0
)
ylabel
(
"${
\\
rm{Position}}~y$"
,
labelpad
=
0
)
xlim
(
0
,
1
)
ylim
(
0
,
1
)
# Image --------------------------------------------------
#subplot(234)
#scatter(pos[:,0], pos[:,1], c=v_norm, cmap="PuBu", edgecolors='face', s=4, vmin=0, vmax=1)
#text(0.95, 0.95, "$|v|$", ha="right", va="top")
#xlim(0,1)
#ylim(0,1)
#xlabel("$x$", labelpad=0)
#ylabel("$y$", labelpad=0)
# Information -------------------------------------
subplot
(
236
,
frameon
=
False
)
text
(
-
0.49
,
0.9
,
"Kelvin-Helmholtz instability at $t=%.2f$"
%
(
time
),
fontsize
=
10
)
text
(
-
0.49
,
0.8
,
"Centre:~~~ $(P,
\\
rho, v) = (%.3f, %.3f, %.3f)$"
%
(
P1
,
rho1
,
v1
),
fontsize
=
10
)
text
(
-
0.49
,
0.7
,
"Outskirts: $(P,
\\
rho, v) = (%.3f, %.3f, %.3f)$"
%
(
P2
,
rho2
,
v2
),
fontsize
=
10
)
plot
([
-
0.49
,
0.1
],
[
0.62
,
0.62
],
'k-'
,
lw
=
1
)
text
(
-
0.49
,
0.5
,
"$
\\
textsc{Swift}$ %s"
%
git
,
fontsize
=
10
)
text
(
-
0.49
,
0.4
,
scheme
,
fontsize
=
10
)
text
(
-
0.49
,
0.3
,
kernel
,
fontsize
=
10
)
text
(
-
0.49
,
0.2
,
"$%.2f$ neighbours ($
\\
eta=%.3f$)"
%
(
neighbours
,
eta
),
fontsize
=
10
)
xlim
(
-
0.5
,
0.5
)
ylim
(
0
,
1
)
xticks
([])
yticks
([])
savefig
(
"KelvinHelmholtz.png"
,
dpi
=
200
)
examples/KelvinHelmholtz_2D/run.sh
0 → 100755
View file @
9924b6e3
#!/bin/bash
# Generate the initial conditions if they are not present.
if
[
!
-e
kelvinHelmholtz.hdf5
]
then
echo
"Generating initial conditions for the Kelvin-Helmholtz example..."
python makeIC.py
fi
# Run SWIFT
../swift
-s
-t
1 kelvinHelmholtz.yml 2>&1 |
tee
output.log
# Plot the solution
python plotSolution.py 6
examples/MultiTypes/run.sh
View file @
9924b6e3
...
...
@@ -7,4 +7,4 @@ then
python makeIC.py 50 60
fi
../swift
-s
-g
-t
16 multiTypes.yml
../swift
-s
-g
-t
16 multiTypes.yml
2>&1 |
tee
output.log
examples/PerturbedBox_3D/run.sh
View file @
9924b6e3
...
...
@@ -7,4 +7,4 @@ then
python makeIC.py 50
fi
../swift
-s
-t
16 perturbedBox.yml
../swift
-s
-t
16 perturbedBox.yml
2>&1 |
tee
output.log
examples/SedovBlast_
3
D/makeIC
_fcc
.py
→
examples/SedovBlast_
1
D/makeIC.py
View file @
9924b6e3
###############################################################################
# This file is part of SWIFT.
# Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk),
# Matthieu Schaller (matthieu.schaller@durham.ac.uk)
# Copyright (c) 2016 Matthieu Schaller (matthieu.schaller@durham.ac.uk)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published
...
...
@@ -19,68 +18,42 @@
##############################################################################
import
h5py
import
random
from
numpy
import
*
# Generates a swift IC file for the Sedov blast test in a periodic cubic box
# Parameters
periodic
=
1
# 1 For periodic box
boxSize
=
5.
L
=
64
# Number of particles boxes along one axis
rho
=
1.
# Density
P
=
1.e-5
# Pressure
E0
=
1.e2
# Energy of the explosion
pert
=
0.025
gamma
=
5.
/
3.
# Gas adiabatic index
eta
=
1.2349
# 48 ngbs with cubic spline kernel
numPart
=
1000
gamma
=
5.
/
3.
# Gas adiabatic index
rho0
=
1.
# Background density
P0
=
1.e-6
# Background pressure
E0
=
1.
# Energy of the explosion
N_inject
=
3
# Number of particles in which to inject energy
fileName
=
"sedov.hdf5"
#---------------------------------------------------
numPart
=
4
*
(
L
**
3
)
mass
=
boxSize
**
3
*
rho
/
numPart
internalEnergy
=
P
/
((
gamma
-
1.
)
*
rho
)
off
=
array
(
[
[
0.0
,
0.0
,
0.0
]
,
[
0.0
,
0.5
,
0.5
]
,
[
0.5
,
0.0
,
0.5
]
,
[
0.5
,
0.5
,
0.0
]
]
);
hbox
=
boxSize
/
L
coords
=
zeros
((
numPart
,
3
))
h
=
zeros
(
numPart
)
vol
=
1.
# if L%2 == 0
:
#
print "Number of particles along each dimension must be odd."
#
exit()
for
i
in
range
(
numPart
)
:
coords
[
i
,
0
]
=
i
*
vol
/
numPart
+
vol
/
(
2.
*
numPart
)
h
[
i
]
=
1.2348
*
vol
/
numPart
#Generate particles
coords
=
zeros
((
numPart
,
3
))
v
=
zeros
((
numPart
,
3
))
m
=
zeros
(
numPart
)
h
=
zeros
(
numPart
)
u
=
zeros
(
numPart
)
ids
=
zeros
(
numPart
,
dtype
=
'L'
)
# Generate extra arrays
v
=
zeros
((
numPart
,
3
))
ids
=
linspace
(
1
,
numPart
,
numPart
)
m
=
zeros
(
numPart
)
u
=
zeros
(
numPart
)
r
=
zeros
(
numPart
)
for
i
in
range
(
L
):
for
j
in
range
(
L
):
for
k
in
range
(
L
):
x
=
(
i
+
0.25
)
*
hbox
y
=
(
j
+
0.25
)
*
hbox
z
=
(
k
+
0.25
)
*
hbox
for
ell
in
range
(
4
):
index
=
4
*
(
i
*
L
*
L
+
j
*
L
+
k
)
+
ell
coords
[
index
,
0
]
=
x
+
off
[
ell
,
0
]
*
hbox
coords
[
index
,
1
]
=
y
+
off
[
ell
,
1
]
*
hbox
coords
[
index
,
2
]
=
z
+
off
[
ell
,
2
]
*
hbox
v
[
index
,
0
]
=
0.
v
[
index
,
1
]
=
0.
v
[
index
,
2
]
=
0.
m
[
index
]
=
mass
h
[
index
]
=
eta
*
hbox
u
[
index
]
=
internalEnergy
ids
[
index
]
=
index
+
1
if
sqrt
((
x
-
boxSize
/
2.
)
**
2
+
(
y
-
boxSize
/
2.
)
**
2
+
(
z
-
boxSize
/
2.
)
**
2
)
<
1.2
*
hbox
:
u
[
index
]
=
u
[
index
]
+
E0
/
(
28.
*
mass
)
print
"Particle "
,
index
,
" set to detonate."
coords
[
index
,
0
]
+=
random
.
random
()
*
pert
*
hbox
coords
[
index
,
1
]
+=
random
.
random
()
*
pert
*
hbox
coords
[
index
,
2
]
+=
random
.
random
()
*
pert
*
hbox
r
=
abs
(
coords
[:,
0
]
-
0.5
)
m
[:]
=
rho0
*
vol
/
numPart
u
[:]
=
P0
/
(
rho0
*
(
gamma
-
1
))
# Make the central particle detonate
index
=
argsort
(
r
)
u
[
index
[
0
:
N_inject
]]
=
E0
/
(
N_inject
*
m
[
0
])
#--------------------------------------------------
...
...
@@ -89,7 +62,7 @@ file = h5py.File(fileName, 'w')
# Header
grp
=
file
.
create_group
(
"/Header"
)
grp
.
attrs
[
"BoxSize"
]
=
boxSize
grp
.
attrs
[
"BoxSize"
]
=
[
1.
,
1.
,
1.
]