Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
SWIFT
SWIFTsim
Commits
66a6f87e
Commit
66a6f87e
authored
Mar 12, 2018
by
Matthieu Schaller
Browse files
Correct alignment of comments in vector_power.h
parent
d8d009af
Changes
1
Show whitespace changes
Inline
Side-by-side
src/vector_power.h
View file @
66a6f87e
...
...
@@ -415,273 +415,273 @@ __attribute__((always_inline)) INLINE static double X_112(const double v[3]) {
/***************************/
/**
* @brief Compute \f$ \frac{1}{(0,0,5)!}\vec{v}^{(0,0,5)} \f$.
*
* Note \f$ \vec{v}^{(0,0,5)} = v_z^5 \f$
* and \f$ \frac{1}{(0,0,5)!} = 1/(0!*0!*5!) = 1/120 = 8.333333e-03 \f$
*
* @param v vector (\f$ v \f$).
*/
* @brief Compute \f$ \frac{1}{(0,0,5)!}\vec{v}^{(0,0,5)} \f$.
*
* Note \f$ \vec{v}^{(0,0,5)} = v_z^5 \f$
* and \f$ \frac{1}{(0,0,5)!} = 1/(0!*0!*5!) = 1/120 = 8.333333e-03 \f$
*
* @param v vector (\f$ v \f$).
*/
__attribute__
((
always_inline
))
INLINE
static
double
X_005
(
const
double
v
[
3
])
{
return
8.333333333333333e-03
*
v
[
2
]
*
v
[
2
]
*
v
[
2
]
*
v
[
2
]
*
v
[
2
];
}
/**
* @brief Compute \f$ \frac{1}{(0,1,4)!}\vec{v}^{(0,1,4)} \f$.
*
* Note \f$ \vec{v}^{(0,1,4)} = v_y^1 v_z^4 \f$
* and \f$ \frac{1}{(0,1,4)!} = 1/(0!*1!*4!) = 1/24 = 4.166667e-02 \f$
*
* @param v vector (\f$ v \f$).
*/
* @brief Compute \f$ \frac{1}{(0,1,4)!}\vec{v}^{(0,1,4)} \f$.
*
* Note \f$ \vec{v}^{(0,1,4)} = v_y^1 v_z^4 \f$
* and \f$ \frac{1}{(0,1,4)!} = 1/(0!*1!*4!) = 1/24 = 4.166667e-02 \f$
*
* @param v vector (\f$ v \f$).
*/
__attribute__
((
always_inline
))
INLINE
static
double
X_014
(
const
double
v
[
3
])
{
return
4.166666666666666e-02
*
v
[
1
]
*
v
[
2
]
*
v
[
2
]
*
v
[
2
]
*
v
[
2
];
}
/**
* @brief Compute \f$ \frac{1}{(0,2,3)!}\vec{v}^{(0,2,3)} \f$.
*
* Note \f$ \vec{v}^{(0,2,3)} = v_y^2 v_z^3 \f$
* and \f$ \frac{1}{(0,2,3)!} = 1/(0!*2!*3!) = 1/12 = 8.333333e-02 \f$
*
* @param v vector (\f$ v \f$).
*/
* @brief Compute \f$ \frac{1}{(0,2,3)!}\vec{v}^{(0,2,3)} \f$.
*
* Note \f$ \vec{v}^{(0,2,3)} = v_y^2 v_z^3 \f$
* and \f$ \frac{1}{(0,2,3)!} = 1/(0!*2!*3!) = 1/12 = 8.333333e-02 \f$
*
* @param v vector (\f$ v \f$).
*/
__attribute__
((
always_inline
))
INLINE
static
double
X_023
(
const
double
v
[
3
])
{
return
8.333333333333333e-02
*
v
[
1
]
*
v
[
1
]
*
v
[
2
]
*
v
[
2
]
*
v
[
2
];
}
/**
* @brief Compute \f$ \frac{1}{(0,3,2)!}\vec{v}^{(0,3,2)} \f$.
*
* Note \f$ \vec{v}^{(0,3,2)} = v_y^3 v_z^2 \f$
* and \f$ \frac{1}{(0,3,2)!} = 1/(0!*3!*2!) = 1/12 = 8.333333e-02 \f$
*
* @param v vector (\f$ v \f$).
*/
* @brief Compute \f$ \frac{1}{(0,3,2)!}\vec{v}^{(0,3,2)} \f$.
*
* Note \f$ \vec{v}^{(0,3,2)} = v_y^3 v_z^2 \f$
* and \f$ \frac{1}{(0,3,2)!} = 1/(0!*3!*2!) = 1/12 = 8.333333e-02 \f$
*
* @param v vector (\f$ v \f$).
*/
__attribute__
((
always_inline
))
INLINE
static
double
X_032
(
const
double
v
[
3
])
{
return
8.333333333333333e-02
*
v
[
1
]
*
v
[
1
]
*
v
[
1
]
*
v
[
2
]
*
v
[
2
];
}
/**
* @brief Compute \f$ \frac{1}{(0,4,1)!}\vec{v}^{(0,4,1)} \f$.
*
* Note \f$ \vec{v}^{(0,4,1)} = v_y^4 v_z^1 \f$
* and \f$ \frac{1}{(0,4,1)!} = 1/(0!*4!*1!) = 1/24 = 4.166667e-02 \f$
*
* @param v vector (\f$ v \f$).
*/
* @brief Compute \f$ \frac{1}{(0,4,1)!}\vec{v}^{(0,4,1)} \f$.
*
* Note \f$ \vec{v}^{(0,4,1)} = v_y^4 v_z^1 \f$
* and \f$ \frac{1}{(0,4,1)!} = 1/(0!*4!*1!) = 1/24 = 4.166667e-02 \f$
*
* @param v vector (\f$ v \f$).
*/
__attribute__
((
always_inline
))
INLINE
static
double
X_041
(
const
double
v
[
3
])
{
return
4.166666666666666e-02
*
v
[
1
]
*
v
[
1
]
*
v
[
1
]
*
v
[
1
]
*
v
[
2
];
}
/**
* @brief Compute \f$ \frac{1}{(0,5,0)!}\vec{v}^{(0,5,0)} \f$.
*
* Note \f$ \vec{v}^{(0,5,0)} = v_y^5 \f$
* and \f$ \frac{1}{(0,5,0)!} = 1/(0!*5!*0!) = 1/120 = 8.333333e-03 \f$
*
* @param v vector (\f$ v \f$).
*/
* @brief Compute \f$ \frac{1}{(0,5,0)!}\vec{v}^{(0,5,0)} \f$.
*
* Note \f$ \vec{v}^{(0,5,0)} = v_y^5 \f$
* and \f$ \frac{1}{(0,5,0)!} = 1/(0!*5!*0!) = 1/120 = 8.333333e-03 \f$
*
* @param v vector (\f$ v \f$).
*/
__attribute__
((
always_inline
))
INLINE
static
double
X_050
(
const
double
v
[
3
])
{
return
8.333333333333333e-03
*
v
[
1
]
*
v
[
1
]
*
v
[
1
]
*
v
[
1
]
*
v
[
1
];
}
/**
* @brief Compute \f$ \frac{1}{(1,0,4)!}\vec{v}^{(1,0,4)} \f$.
*
* Note \f$ \vec{v}^{(1,0,4)} = v_x^1 v_z^4 \f$
* and \f$ \frac{1}{(1,0,4)!} = 1/(1!*0!*4!) = 1/24 = 4.166667e-02 \f$
*
* @param v vector (\f$ v \f$).
*/
* @brief Compute \f$ \frac{1}{(1,0,4)!}\vec{v}^{(1,0,4)} \f$.
*
* Note \f$ \vec{v}^{(1,0,4)} = v_x^1 v_z^4 \f$
* and \f$ \frac{1}{(1,0,4)!} = 1/(1!*0!*4!) = 1/24 = 4.166667e-02 \f$
*
* @param v vector (\f$ v \f$).
*/
__attribute__
((
always_inline
))
INLINE
static
double
X_104
(
const
double
v
[
3
])
{
return
4.166666666666666e-02
*
v
[
0
]
*
v
[
2
]
*
v
[
2
]
*
v
[
2
]
*
v
[
2
];
}
/**
* @brief Compute \f$ \frac{1}{(1,1,3)!}\vec{v}^{(1,1,3)} \f$.
*
* Note \f$ \vec{v}^{(1,1,3)} = v_x^1 v_y^1 v_z^3 \f$
* and \f$ \frac{1}{(1,1,3)!} = 1/(1!*1!*3!) = 1/6 = 1.666667e-01 \f$
*
* @param v vector (\f$ v \f$).
*/
* @brief Compute \f$ \frac{1}{(1,1,3)!}\vec{v}^{(1,1,3)} \f$.
*
* Note \f$ \vec{v}^{(1,1,3)} = v_x^1 v_y^1 v_z^3 \f$
* and \f$ \frac{1}{(1,1,3)!} = 1/(1!*1!*3!) = 1/6 = 1.666667e-01 \f$
*
* @param v vector (\f$ v \f$).
*/
__attribute__
((
always_inline
))
INLINE
static
double
X_113
(
const
double
v
[
3
])
{
return
1.666666666666667e-01
*
v
[
0
]
*
v
[
1
]
*
v
[
2
]
*
v
[
2
]
*
v
[
2
];
}
/**
* @brief Compute \f$ \frac{1}{(1,2,2)!}\vec{v}^{(1,2,2)} \f$.
*
* Note \f$ \vec{v}^{(1,2,2)} = v_x^1 v_y^2 v_z^2 \f$
* and \f$ \frac{1}{(1,2,2)!} = 1/(1!*2!*2!) = 1/4 = 2.500000e-01 \f$
*
* @param v vector (\f$ v \f$).
*/
* @brief Compute \f$ \frac{1}{(1,2,2)!}\vec{v}^{(1,2,2)} \f$.
*
* Note \f$ \vec{v}^{(1,2,2)} = v_x^1 v_y^2 v_z^2 \f$
* and \f$ \frac{1}{(1,2,2)!} = 1/(1!*2!*2!) = 1/4 = 2.500000e-01 \f$
*
* @param v vector (\f$ v \f$).
*/
__attribute__
((
always_inline
))
INLINE
static
double
X_122
(
const
double
v
[
3
])
{
return
2.500000000000000e-01
*
v
[
0
]
*
v
[
1
]
*
v
[
1
]
*
v
[
2
]
*
v
[
2
];
}
/**
* @brief Compute \f$ \frac{1}{(1,3,1)!}\vec{v}^{(1,3,1)} \f$.
*
* Note \f$ \vec{v}^{(1,3,1)} = v_x^1 v_y^3 v_z^1 \f$
* and \f$ \frac{1}{(1,3,1)!} = 1/(1!*3!*1!) = 1/6 = 1.666667e-01 \f$
*
* @param v vector (\f$ v \f$).
*/
* @brief Compute \f$ \frac{1}{(1,3,1)!}\vec{v}^{(1,3,1)} \f$.
*
* Note \f$ \vec{v}^{(1,3,1)} = v_x^1 v_y^3 v_z^1 \f$
* and \f$ \frac{1}{(1,3,1)!} = 1/(1!*3!*1!) = 1/6 = 1.666667e-01 \f$
*
* @param v vector (\f$ v \f$).
*/
__attribute__
((
always_inline
))
INLINE
static
double
X_131
(
const
double
v
[
3
])
{
return
1.666666666666667e-01
*
v
[
0
]
*
v
[
1
]
*
v
[
1
]
*
v
[
1
]
*
v
[
2
];
}
/**
* @brief Compute \f$ \frac{1}{(1,4,0)!}\vec{v}^{(1,4,0)} \f$.
*
* Note \f$ \vec{v}^{(1,4,0)} = v_x^1 v_y^4 \f$
* and \f$ \frac{1}{(1,4,0)!} = 1/(1!*4!*0!) = 1/24 = 4.166667e-02 \f$
*
* @param v vector (\f$ v \f$).
*/
* @brief Compute \f$ \frac{1}{(1,4,0)!}\vec{v}^{(1,4,0)} \f$.
*
* Note \f$ \vec{v}^{(1,4,0)} = v_x^1 v_y^4 \f$
* and \f$ \frac{1}{(1,4,0)!} = 1/(1!*4!*0!) = 1/24 = 4.166667e-02 \f$
*
* @param v vector (\f$ v \f$).
*/
__attribute__
((
always_inline
))
INLINE
static
double
X_140
(
const
double
v
[
3
])
{
return
4.166666666666666e-02
*
v
[
0
]
*
v
[
1
]
*
v
[
1
]
*
v
[
1
]
*
v
[
1
];
}
/**
* @brief Compute \f$ \frac{1}{(2,0,3)!}\vec{v}^{(2,0,3)} \f$.
*
* Note \f$ \vec{v}^{(2,0,3)} = v_x^2 v_z^3 \f$
* and \f$ \frac{1}{(2,0,3)!} = 1/(2!*0!*3!) = 1/12 = 8.333333e-02 \f$
*
* @param v vector (\f$ v \f$).
*/
* @brief Compute \f$ \frac{1}{(2,0,3)!}\vec{v}^{(2,0,3)} \f$.
*
* Note \f$ \vec{v}^{(2,0,3)} = v_x^2 v_z^3 \f$
* and \f$ \frac{1}{(2,0,3)!} = 1/(2!*0!*3!) = 1/12 = 8.333333e-02 \f$
*
* @param v vector (\f$ v \f$).
*/
__attribute__
((
always_inline
))
INLINE
static
double
X_203
(
const
double
v
[
3
])
{
return
8.333333333333333e-02
*
v
[
0
]
*
v
[
0
]
*
v
[
2
]
*
v
[
2
]
*
v
[
2
];
}
/**
* @brief Compute \f$ \frac{1}{(2,1,2)!}\vec{v}^{(2,1,2)} \f$.
*
* Note \f$ \vec{v}^{(2,1,2)} = v_x^2 v_y^1 v_z^2 \f$
* and \f$ \frac{1}{(2,1,2)!} = 1/(2!*1!*2!) = 1/4 = 2.500000e-01 \f$
*
* @param v vector (\f$ v \f$).
*/
* @brief Compute \f$ \frac{1}{(2,1,2)!}\vec{v}^{(2,1,2)} \f$.
*
* Note \f$ \vec{v}^{(2,1,2)} = v_x^2 v_y^1 v_z^2 \f$
* and \f$ \frac{1}{(2,1,2)!} = 1/(2!*1!*2!) = 1/4 = 2.500000e-01 \f$
*
* @param v vector (\f$ v \f$).
*/
__attribute__
((
always_inline
))
INLINE
static
double
X_212
(
const
double
v
[
3
])
{
return
2.500000000000000e-01
*
v
[
0
]
*
v
[
0
]
*
v
[
1
]
*
v
[
2
]
*
v
[
2
];
}
/**
* @brief Compute \f$ \frac{1}{(2,2,1)!}\vec{v}^{(2,2,1)} \f$.
*
* Note \f$ \vec{v}^{(2,2,1)} = v_x^2 v_y^2 v_z^1 \f$
* and \f$ \frac{1}{(2,2,1)!} = 1/(2!*2!*1!) = 1/4 = 2.500000e-01 \f$
*
* @param v vector (\f$ v \f$).
*/
* @brief Compute \f$ \frac{1}{(2,2,1)!}\vec{v}^{(2,2,1)} \f$.
*
* Note \f$ \vec{v}^{(2,2,1)} = v_x^2 v_y^2 v_z^1 \f$
* and \f$ \frac{1}{(2,2,1)!} = 1/(2!*2!*1!) = 1/4 = 2.500000e-01 \f$
*
* @param v vector (\f$ v \f$).
*/
__attribute__
((
always_inline
))
INLINE
static
double
X_221
(
const
double
v
[
3
])
{
return
2.500000000000000e-01
*
v
[
0
]
*
v
[
0
]
*
v
[
1
]
*
v
[
1
]
*
v
[
2
];
}
/**
* @brief Compute \f$ \frac{1}{(2,3,0)!}\vec{v}^{(2,3,0)} \f$.
*
* Note \f$ \vec{v}^{(2,3,0)} = v_x^2 v_y^3 \f$
* and \f$ \frac{1}{(2,3,0)!} = 1/(2!*3!*0!) = 1/12 = 8.333333e-02 \f$
*
* @param v vector (\f$ v \f$).
*/
* @brief Compute \f$ \frac{1}{(2,3,0)!}\vec{v}^{(2,3,0)} \f$.
*
* Note \f$ \vec{v}^{(2,3,0)} = v_x^2 v_y^3 \f$
* and \f$ \frac{1}{(2,3,0)!} = 1/(2!*3!*0!) = 1/12 = 8.333333e-02 \f$
*
* @param v vector (\f$ v \f$).
*/
__attribute__
((
always_inline
))
INLINE
static
double
X_230
(
const
double
v
[
3
])
{
return
8.333333333333333e-02
*
v
[
0
]
*
v
[
0
]
*
v
[
1
]
*
v
[
1
]
*
v
[
1
];
}
/**
* @brief Compute \f$ \frac{1}{(3,0,2)!}\vec{v}^{(3,0,2)} \f$.
*
* Note \f$ \vec{v}^{(3,0,2)} = v_x^3 v_z^2 \f$
* and \f$ \frac{1}{(3,0,2)!} = 1/(3!*0!*2!) = 1/12 = 8.333333e-02 \f$
*
* @param v vector (\f$ v \f$).
*/
* @brief Compute \f$ \frac{1}{(3,0,2)!}\vec{v}^{(3,0,2)} \f$.
*
* Note \f$ \vec{v}^{(3,0,2)} = v_x^3 v_z^2 \f$
* and \f$ \frac{1}{(3,0,2)!} = 1/(3!*0!*2!) = 1/12 = 8.333333e-02 \f$
*
* @param v vector (\f$ v \f$).
*/
__attribute__
((
always_inline
))
INLINE
static
double
X_302
(
const
double
v
[
3
])
{
return
8.333333333333333e-02
*
v
[
0
]
*
v
[
0
]
*
v
[
0
]
*
v
[
2
]
*
v
[
2
];
}
/**
* @brief Compute \f$ \frac{1}{(3,1,1)!}\vec{v}^{(3,1,1)} \f$.
*
* Note \f$ \vec{v}^{(3,1,1)} = v_x^3 v_y^1 v_z^1 \f$
* and \f$ \frac{1}{(3,1,1)!} = 1/(3!*1!*1!) = 1/6 = 1.666667e-01 \f$
*
* @param v vector (\f$ v \f$).
*/
* @brief Compute \f$ \frac{1}{(3,1,1)!}\vec{v}^{(3,1,1)} \f$.
*
* Note \f$ \vec{v}^{(3,1,1)} = v_x^3 v_y^1 v_z^1 \f$
* and \f$ \frac{1}{(3,1,1)!} = 1/(3!*1!*1!) = 1/6 = 1.666667e-01 \f$
*
* @param v vector (\f$ v \f$).
*/
__attribute__
((
always_inline
))
INLINE
static
double
X_311
(
const
double
v
[
3
])
{
return
1.666666666666667e-01
*
v
[
0
]
*
v
[
0
]
*
v
[
0
]
*
v
[
1
]
*
v
[
2
];
}
/**
* @brief Compute \f$ \frac{1}{(3,2,0)!}\vec{v}^{(3,2,0)} \f$.
*
* Note \f$ \vec{v}^{(3,2,0)} = v_x^3 v_y^2 \f$
* and \f$ \frac{1}{(3,2,0)!} = 1/(3!*2!*0!) = 1/12 = 8.333333e-02 \f$
*
* @param v vector (\f$ v \f$).
*/
* @brief Compute \f$ \frac{1}{(3,2,0)!}\vec{v}^{(3,2,0)} \f$.
*
* Note \f$ \vec{v}^{(3,2,0)} = v_x^3 v_y^2 \f$
* and \f$ \frac{1}{(3,2,0)!} = 1/(3!*2!*0!) = 1/12 = 8.333333e-02 \f$
*
* @param v vector (\f$ v \f$).
*/
__attribute__
((
always_inline
))
INLINE
static
double
X_320
(
const
double
v
[
3
])
{
return
8.333333333333333e-02
*
v
[
0
]
*
v
[
0
]
*
v
[
0
]
*
v
[
1
]
*
v
[
1
];
}
/**
* @brief Compute \f$ \frac{1}{(4,0,1)!}\vec{v}^{(4,0,1)} \f$.
*
* Note \f$ \vec{v}^{(4,0,1)} = v_x^4 v_z^1 \f$
* and \f$ \frac{1}{(4,0,1)!} = 1/(4!*0!*1!) = 1/24 = 4.166667e-02 \f$
*
* @param v vector (\f$ v \f$).
*/
* @brief Compute \f$ \frac{1}{(4,0,1)!}\vec{v}^{(4,0,1)} \f$.
*
* Note \f$ \vec{v}^{(4,0,1)} = v_x^4 v_z^1 \f$
* and \f$ \frac{1}{(4,0,1)!} = 1/(4!*0!*1!) = 1/24 = 4.166667e-02 \f$
*
* @param v vector (\f$ v \f$).
*/
__attribute__
((
always_inline
))
INLINE
static
double
X_401
(
const
double
v
[
3
])
{
return
4.166666666666666e-02
*
v
[
0
]
*
v
[
0
]
*
v
[
0
]
*
v
[
0
]
*
v
[
2
];
}
/**
* @brief Compute \f$ \frac{1}{(4,1,0)!}\vec{v}^{(4,1,0)} \f$.
*
* Note \f$ \vec{v}^{(4,1,0)} = v_x^4 v_y^1 \f$
* and \f$ \frac{1}{(4,1,0)!} = 1/(4!*1!*0!) = 1/24 = 4.166667e-02 \f$
*
* @param v vector (\f$ v \f$).
*/
* @brief Compute \f$ \frac{1}{(4,1,0)!}\vec{v}^{(4,1,0)} \f$.
*
* Note \f$ \vec{v}^{(4,1,0)} = v_x^4 v_y^1 \f$
* and \f$ \frac{1}{(4,1,0)!} = 1/(4!*1!*0!) = 1/24 = 4.166667e-02 \f$
*
* @param v vector (\f$ v \f$).
*/
__attribute__
((
always_inline
))
INLINE
static
double
X_410
(
const
double
v
[
3
])
{
return
4.166666666666666e-02
*
v
[
0
]
*
v
[
0
]
*
v
[
0
]
*
v
[
0
]
*
v
[
1
];
}
/**
* @brief Compute \f$ \frac{1}{(5,0,0)!}\vec{v}^{(5,0,0)} \f$.
*
* Note \f$ \vec{v}^{(5,0,0)} = v_x^5 \f$
* and \f$ \frac{1}{(5,0,0)!} = 1/(5!*0!*0!) = 1/120 = 8.333333e-03 \f$
*
* @param v vector (\f$ v \f$).
*/
* @brief Compute \f$ \frac{1}{(5,0,0)!}\vec{v}^{(5,0,0)} \f$.
*
* Note \f$ \vec{v}^{(5,0,0)} = v_x^5 \f$
* and \f$ \frac{1}{(5,0,0)!} = 1/(5!*0!*0!) = 1/120 = 8.333333e-03 \f$
*
* @param v vector (\f$ v \f$).
*/
__attribute__
((
always_inline
))
INLINE
static
double
X_500
(
const
double
v
[
3
])
{
return
8.333333333333333e-03
*
v
[
0
]
*
v
[
0
]
*
v
[
0
]
*
v
[
0
]
*
v
[
0
];
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment