diff --git a/.gitignore b/.gitignore
index 3c6ecf6ece8e10520e37bd5f305a533e28976e33..2a16a4a681b86d30940001fb2ce86dfb9d27a558 100644
--- a/.gitignore
+++ b/.gitignore
@@ -73,6 +73,9 @@ tests/testRiemannExact
 tests/testRiemannTRRS
 tests/testRiemannHLLC
 tests/testMatrixInversion
+tests/testVoronoi1D
+tests/testVoronoi2D
+tests/testVoronoi3D
 tests/testDump
 tests/testLogger
 tests/benchmarkInteractions
diff --git a/configure.ac b/configure.ac
index 9a7f2ba702151a27f2ae702756cfb3c3bc95bcf3..ec780d1f8d1114e2d42049cea46488535c487a18 100644
--- a/configure.ac
+++ b/configure.ac
@@ -460,7 +460,6 @@ fi
 
 # Check for HDF5. This is required.
 AX_LIB_HDF5
-
 if test "$with_hdf5" != "yes"; then
     AC_MSG_ERROR([Could not find a working HDF5 library])
 fi
@@ -468,8 +467,6 @@ fi
 # We want to know if this HDF5 supports MPI and whether we should use it.
 # The default is to use MPI support if it is available, i.e. this is
 # a parallel HDF5.
-# To do this need to ask the HDF5 compiler about its configuration,
-# -showconfig should have yes/no.
 have_parallel_hdf5="no"
 if test "$with_hdf5" = "yes"; then
     AC_ARG_ENABLE([parallel-hdf5],
@@ -482,7 +479,14 @@ if test "$with_hdf5" = "yes"; then
 
     if test "$enable_parallel_hdf5" = "yes"; then
         AC_MSG_CHECKING([for HDF5 parallel support])
-        parallel=`$H5CC -showconfig | grep "Parallel HDF5:" | awk '{print $3}'`
+# Check if the library is capable, the header should define H5_HAVE_PARALLEL.
+
+        AC_COMPILE_IFELSE([AC_LANG_SOURCE([[
+        #include "hdf5.h"
+        #ifndef H5_HAVE_PARALLEL
+        # error macro not defined
+        #endif
+        ]])], [parallel="yes"], [parallel="no"])
         if test "$parallel" = "yes"; then
             have_parallel_hdf5="yes"
             AC_DEFINE([HAVE_PARALLEL_HDF5],1,[HDF5 library supports parallel access])
@@ -583,7 +587,7 @@ fi
 # Hydro scheme.
 AC_ARG_WITH([hydro],
    [AS_HELP_STRING([--with-hydro=<scheme>],
-      [Hydro dynamics to use @<:@gadget2, minimal, hopkins, default, gizmo default: gadget2@:>@]
+      [Hydro dynamics to use @<:@gadget2, minimal, hopkins, default, gizmo, shadowfax default: gadget2@:>@]
    )],
    [with_hydro="$withval"],
    [with_hydro="gadget2"]
@@ -604,6 +608,9 @@ case "$with_hydro" in
    gizmo)
       AC_DEFINE([GIZMO_SPH], [1], [GIZMO SPH])
    ;; 
+   shadowfax)
+      AC_DEFINE([SHADOWFAX_SPH], [1], [Shadowfax SPH])
+   ;; 
 
    *)
       AC_MSG_ERROR([Unknown hydrodynamics scheme: $with_hydro])
diff --git a/m4/ax_lib_hdf5.m4 b/m4/ax_lib_hdf5.m4
index b0d04aa0bd64e0fa1f41ed20cd17b5957287038b..68528b15c083592cf76d4deb9a246b75cb2bb1c6 100644
--- a/m4/ax_lib_hdf5.m4
+++ b/m4/ax_lib_hdf5.m4
@@ -22,7 +22,10 @@
 #     yes  - do check for HDF5 library in standard locations.
 #     path - complete path to the HDF5 helper script h5cc or h5pcc.
 #
-#   SWIFT modification: HDF5 is required, so only path is described.
+#   SWIFT modifications: HDF5 is required, so only path is described,
+#   when the h5cc or h5pcc commands are not available, we check if
+#   HDF5 can be used anyway and no macros are defined except HAVE_HDF5
+#   and with_hdf5.
 #
 #   If HDF5 is successfully found, this macro calls
 #
@@ -155,11 +158,37 @@ if test "$with_hdf5" = "yes"; then
         AC_MSG_CHECKING([Using provided HDF5 C wrapper])
         AC_MSG_RESULT([$H5CC])
     fi
-    AC_MSG_CHECKING([for HDF5 libraries])
     if test ! -f "$H5CC" || test ! -x "$H5CC"; then
-        AC_MSG_RESULT([no])
-        AC_MSG_WARN(m4_case(m4_normalize([$1]),
-            [serial],  [
+
+dnl Check if we already have HDF5 for C.
+        AC_CHECK_HEADER([hdf5.h], [ac_cv_hhdf5_h=yes], [ac_cv_hhdf5_h=no], [AC_INCLUDES_DEFAULT])
+        AC_CHECK_LIB([hdf5], [H5Fcreate], [ac_cv_libhdf5=yes],
+                     [ac_cv_libhdf5=no])
+        if test "$ac_cv_hhdf5_h" = "yes" && test "$ac_cv_libhdf5" = "yes" ; then
+
+dnl Can compile and link, so we have a HDF5, just don't know which version.
+            AC_MSG_CHECKING([for HDF5 libraries])
+            AC_MSG_RESULT([yes])
+            with_hdf5="yes"
+            HDF5_VERSION="unknown"
+            HDF5_LIBS="-lhdf5"
+ 	    AC_SUBST([HDF5_VERSION])
+	    AC_SUBST([HDF5_CC])
+	    AC_SUBST([HDF5_CFLAGS])
+	    AC_SUBST([HDF5_CPPFLAGS])
+	    AC_SUBST([HDF5_LDFLAGS])
+	    AC_SUBST([HDF5_LIBS])
+	    AC_SUBST([HDF5_FC])
+	    AC_SUBST([HDF5_FFLAGS])
+	    AC_SUBST([HDF5_FLIBS])
+	    AC_DEFINE([HAVE_HDF5], [1], [Defined if you have HDF5 support])
+        else
+
+dnl Time to give up.
+            AC_MSG_CHECKING([for HDF5 libraries])
+            AC_MSG_RESULT([no])
+            AC_MSG_WARN(m4_case(m4_normalize([$1]),
+                    [serial],  [
 Unable to locate serial HDF5 compilation helper script 'h5cc'.
 Please specify --with-hdf5=<LOCATION> as the full path to h5cc.
 HDF5 support is being disabled.
@@ -172,9 +201,12 @@ Unable to locate HDF5 compilation helper scripts 'h5cc' or 'h5pcc'.
 Please specify --with-hdf5=<LOCATION> as the full path to h5cc or h5pcc.
 HDF5 support is being disabled.
 ]))
-        with_hdf5="no"
-        with_hdf5_fortran="no"
+            with_hdf5="no"
+            with_hdf5_fortran="no"
+        fi
     else
+        AC_MSG_CHECKING([for HDF5 libraries])
+
         dnl Get the h5cc output
         HDF5_SHOW=$(eval $H5CC -show)
 
diff --git a/src/Makefile.am b/src/Makefile.am
index dffe1861bb68fe3c59c89a7b4ee435b0b6c46576..e95a00125e3c86ec32d3ae632065fd1d071877ac 100644
--- a/src/Makefile.am
+++ b/src/Makefile.am
@@ -46,7 +46,7 @@ include_HEADERS = space.h runner.h queue.h task.h lock.h cell.h part.h const.h \
     hydro_properties.h riemann.h threadpool.h cooling.h cooling_struct.h sourceterms.h \
     sourceterms_struct.h statistics.h memswap.h cache.h runner_doiact_vec.h profiler.h \
     dump.h logger.h active.h timeline.h xmf.h gravity_properties.h gravity_derivatives.h \
-    vector_power.h
+    vector_power.h hydro_space.h
 
 # Common source files
 AM_SOURCES = space.c runner.c queue.c task.c cell.c engine.c \
@@ -56,7 +56,8 @@ AM_SOURCES = space.c runner.c queue.c task.c cell.c engine.c \
     physical_constants.c potential.c hydro_properties.c \
     runner_doiact_fft.c threadpool.c cooling.c sourceterms.c \
     statistics.c runner_doiact_vec.c profiler.c dump.c logger.c \
-    part_type.c xmf.c gravity_properties.c gravity.c
+    part_type.c xmf.c gravity_properties.c gravity.c \
+    hydro_space.c
 
 # Include files for distribution, not installation.
 nobase_noinst_HEADERS = align.h approx_math.h atomic.h cycle.h error.h inline.h kernel_hydro.h kernel_gravity.h \
diff --git a/src/const.h b/src/const.h
index 5ddbc3f2942c6c0887f74326f1a5ed3933448fd6..6962ee8bca32e92664e3f20cdb23e7cb6fbc4abd 100644
--- a/src/const.h
+++ b/src/const.h
@@ -54,6 +54,23 @@
 //#define GIZMO_FIX_PARTICLES
 //#define GIZMO_TOTAL_ENERGY
 
+/* Types of gradients to use for SHADOWFAX_SPH */
+/* If no option is chosen, no gradients are used (first order scheme) */
+#define SHADOWFAX_GRADIENTS
+
+/* SHADOWFAX_SPH slope limiters */
+#define SHADOWFAX_SLOPE_LIMITER_PER_FACE
+#define SHADOWFAX_SLOPE_LIMITER_CELL_WIDE
+
+/* Options to control SHADOWFAX_SPH */
+/* This option disables cell movement */
+//#define SHADOWFAX_FIX_CELLS
+/* This option enables cell steering, i.e. trying to keep the cells regular by
+   adding a correction to the cell velocities.*/
+#define SHADOWFAX_STEER_CELL_MOTION
+/* This option evolves the total energy instead of the thermal energy */
+//#define SHADOWFAX_TOTAL_ENERGY
+
 /* Source terms */
 #define SOURCETERMS_NONE
 //#define SOURCETERMS_SN_FEEDBACK
diff --git a/src/debug.c b/src/debug.c
index f5f2f4974a6f2d0e8da8fce71e98233a2ed3deeb..3732ee5e769277deb393926ea2dc6f04fba93782 100644
--- a/src/debug.c
+++ b/src/debug.c
@@ -49,6 +49,8 @@
 #include "./hydro/Default/hydro_debug.h"
 #elif defined(GIZMO_SPH)
 #include "./hydro/Gizmo/hydro_debug.h"
+#elif defined(SHADOWFAX_SPH)
+#include "./hydro/Shadowswift/hydro_debug.h"
 #else
 #error "Invalid choice of SPH variant"
 #endif
diff --git a/src/hydro.h b/src/hydro.h
index 3dce6df074767c15828c3a0c9eec738b32b5d7a3..abb49d35b204bbaf986f502d796883e7eb778e7f 100644
--- a/src/hydro.h
+++ b/src/hydro.h
@@ -47,6 +47,11 @@
 #include "./hydro/Gizmo/hydro.h"
 #include "./hydro/Gizmo/hydro_iact.h"
 #define SPH_IMPLEMENTATION "GIZMO (Hopkins 2015)"
+#elif defined(SHADOWFAX_SPH)
+#include "./hydro/Shadowswift/hydro.h"
+#include "./hydro/Shadowswift/hydro_iact.h"
+#define SPH_IMPLEMENTATION \
+  "Shadowfax moving mesh (Vandenbroucke and De Rijcke 2016)"
 #else
 #error "Invalid choice of SPH variant"
 #endif
diff --git a/src/hydro/Default/hydro.h b/src/hydro/Default/hydro.h
index a614d08c30b21f9e7d422bf6b6a09d10d2e89799..051c22f46b3ecdff5d3de910e0f75409b0e78f02 100644
--- a/src/hydro/Default/hydro.h
+++ b/src/hydro/Default/hydro.h
@@ -22,6 +22,7 @@
 #include "adiabatic_index.h"
 #include "approx_math.h"
 #include "equation_of_state.h"
+#include "hydro_space.h"
 #include "minmax.h"
 
 #include <float.h>
@@ -165,9 +166,10 @@ __attribute__((always_inline)) INLINE static void hydro_timestep_extra(
  * the variaous density tasks
  *
  * @param p The particle to act upon
+ * @param hs #hydro_space containing hydro specific space information.
  */
 __attribute__((always_inline)) INLINE static void hydro_init_part(
-    struct part *restrict p) {
+    struct part *restrict p, const struct hydro_space *hs) {
   p->density.wcount = 0.f;
   p->density.wcount_dh = 0.f;
   p->rho = 0.f;
@@ -400,7 +402,7 @@ __attribute__((always_inline)) INLINE static void hydro_first_init_part(
   xp->u_full = p->u;
 
   hydro_reset_acceleration(p);
-  hydro_init_part(p);
+  hydro_init_part(p, NULL);
 }
 
 #endif /* SWIFT_DEFAULT_HYDRO_H */
diff --git a/src/hydro/Gadget2/hydro.h b/src/hydro/Gadget2/hydro.h
index cc7b422ccbe7c678969df5779a4d4a054c65528e..747c81a8e64c18a06b04160cfab326a3521c5901 100644
--- a/src/hydro/Gadget2/hydro.h
+++ b/src/hydro/Gadget2/hydro.h
@@ -36,6 +36,7 @@
 #include "dimension.h"
 #include "equation_of_state.h"
 #include "hydro_properties.h"
+#include "hydro_space.h"
 #include "kernel_hydro.h"
 #include "minmax.h"
 
@@ -169,9 +170,10 @@ __attribute__((always_inline)) INLINE static void hydro_timestep_extra(
  * the variaous density tasks
  *
  * @param p The particle to act upon
+ * @param hs #hydro_space containing hydro specific space information.
  */
 __attribute__((always_inline)) INLINE static void hydro_init_part(
-    struct part *restrict p) {
+    struct part *restrict p, const struct hydro_space *hs) {
 
   p->rho = 0.f;
   p->density.wcount = 0.f;
@@ -456,7 +458,7 @@ __attribute__((always_inline)) INLINE static void hydro_first_init_part(
   xp->entropy_full = p->entropy;
 
   hydro_reset_acceleration(p);
-  hydro_init_part(p);
+  hydro_init_part(p, NULL);
 }
 
 #endif /* SWIFT_GADGET2_HYDRO_H */
diff --git a/src/hydro/Gizmo/hydro.h b/src/hydro/Gizmo/hydro.h
index 643489912a6c6b1db921e73b508910cc670d49ae..60ff8ccee0e1a1e9c3477a10293f8981ff9b837e 100644
--- a/src/hydro/Gizmo/hydro.h
+++ b/src/hydro/Gizmo/hydro.h
@@ -23,6 +23,7 @@
 #include "approx_math.h"
 #include "equation_of_state.h"
 #include "hydro_gradients.h"
+#include "hydro_space.h"
 #include "minmax.h"
 #include "riemann.h"
 
@@ -145,9 +146,10 @@ __attribute__((always_inline)) INLINE static void hydro_first_init_part(
  * Simply makes sure all necessary variables are initialized to zero.
  *
  * @param p The particle to act upon
+ * @param hs #hydro_space containing hydro specific space information.
  */
 __attribute__((always_inline)) INLINE static void hydro_init_part(
-    struct part* p) {
+    struct part* p, const struct hydro_space* hs) {
 
   p->density.wcount = 0.0f;
   p->density.wcount_dh = 0.0f;
diff --git a/src/hydro/Minimal/hydro.h b/src/hydro/Minimal/hydro.h
index 56078a82569fb0bc30347d5c01831e9eecfd48f4..8f216a550ae061d01a594ff23d57575e754f85dc 100644
--- a/src/hydro/Minimal/hydro.h
+++ b/src/hydro/Minimal/hydro.h
@@ -38,6 +38,7 @@
 #include "dimension.h"
 #include "equation_of_state.h"
 #include "hydro_properties.h"
+#include "hydro_space.h"
 #include "kernel_hydro.h"
 #include "minmax.h"
 
@@ -183,9 +184,10 @@ __attribute__((always_inline)) INLINE static void hydro_timestep_extra(
  * density sub-structure of a particle get zeroed in here.
  *
  * @param p The particle to act upon
+ * @param hs #hydro_space containing hydro specific space information.
  */
 __attribute__((always_inline)) INLINE static void hydro_init_part(
-    struct part *restrict p) {
+    struct part *restrict p, const struct hydro_space *hs) {
 
   p->density.wcount = 0.f;
   p->density.wcount_dh = 0.f;
@@ -429,7 +431,7 @@ __attribute__((always_inline)) INLINE static void hydro_first_init_part(
   xp->u_full = p->u;
 
   hydro_reset_acceleration(p);
-  hydro_init_part(p);
+  hydro_init_part(p, NULL);
 }
 
 #endif /* SWIFT_MINIMAL_HYDRO_H */
diff --git a/src/hydro/PressureEntropy/hydro.h b/src/hydro/PressureEntropy/hydro.h
index 20238896f1458d0abebacca4865968a3a671c886..4c4868cd3703e5ec5466d4878749a61284b19344 100644
--- a/src/hydro/PressureEntropy/hydro.h
+++ b/src/hydro/PressureEntropy/hydro.h
@@ -36,6 +36,7 @@
 #include "dimension.h"
 #include "equation_of_state.h"
 #include "hydro_properties.h"
+#include "hydro_space.h"
 #include "kernel_hydro.h"
 #include "minmax.h"
 
@@ -169,9 +170,10 @@ __attribute__((always_inline)) INLINE static void hydro_timestep_extra(
  * the variaous density tasks
  *
  * @param p The particle to act upon
+ * @param hs #hydro_space containing hydro specific space information.
  */
 __attribute__((always_inline)) INLINE static void hydro_init_part(
-    struct part *restrict p) {
+    struct part *restrict p, const struct hydro_space *hs) {
 
   p->rho = 0.f;
   p->rho_bar = 0.f;
@@ -474,7 +476,7 @@ __attribute__((always_inline)) INLINE static void hydro_first_init_part(
   xp->v_full[2] = p->v[2];
 
   hydro_reset_acceleration(p);
-  hydro_init_part(p);
+  hydro_init_part(p, NULL);
 }
 
 #endif /* SWIFT_PRESSURE_ENTROPY_HYDRO_H */
diff --git a/src/hydro/Shadowswift/hydro.h b/src/hydro/Shadowswift/hydro.h
new file mode 100644
index 0000000000000000000000000000000000000000..0568d47ee7ed33c59790cbca943cccbf1ceda58f
--- /dev/null
+++ b/src/hydro/Shadowswift/hydro.h
@@ -0,0 +1,591 @@
+/*******************************************************************************
+ * This file is part of SWIFT.
+ * Copyright (c) 2016 Bert Vandenbroucke (bert.vandenbroucke@gmail.com).
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as published
+ * by the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public License
+ * along with this program.  If not, see <http://www.gnu.org/licenses/>.
+ *
+ ******************************************************************************/
+
+#include <float.h>
+#include "adiabatic_index.h"
+#include "approx_math.h"
+#include "equation_of_state.h"
+#include "hydro_gradients.h"
+#include "hydro_space.h"
+#include "voronoi_algorithm.h"
+
+/**
+ * @brief Computes the hydro time-step of a given particle
+ *
+ * @param p Pointer to the particle data.
+ * @param xp Pointer to the extended particle data.
+ * @param hydro_properties Pointer to the hydro parameters.
+ */
+__attribute__((always_inline)) INLINE static float hydro_compute_timestep(
+    const struct part* restrict p, const struct xpart* restrict xp,
+    const struct hydro_props* restrict hydro_properties) {
+
+  const float CFL_condition = hydro_properties->CFL_condition;
+
+  float R = get_radius_dimension_sphere(p->cell.volume);
+
+  if (p->timestepvars.vmax == 0.) {
+    /* vmax can be zero in vacuum. We force the time step to become the maximal
+       time step in this case */
+    return FLT_MAX;
+  } else {
+    return CFL_condition * R / fabsf(p->timestepvars.vmax);
+  }
+}
+
+/**
+ * @brief Does some extra hydro operations once the actual physical time step
+ * for the particle is known.
+ *
+ * We use this to store the physical time step, since it is used for the flux
+ * exchange during the force loop.
+ *
+ * We also set the active flag of the particle to inactive. It will be set to
+ * active in hydro_init_part, which is called the next time the particle becomes
+ * active.
+ *
+ * @param p The particle to act upon.
+ * @param dt Physical time step of the particle during the next step.
+ */
+__attribute__((always_inline)) INLINE static void hydro_timestep_extra(
+    struct part* p, float dt) {
+
+  p->force.dt = dt;
+  p->force.active = 0;
+}
+
+/**
+ * @brief Initialises the particles for the first time
+ *
+ * This function is called only once just after the ICs have been
+ * read in to do some conversions.
+ *
+ * In this case, we copy the particle velocities into the corresponding
+ * primitive variable field. We do this because the particle velocities in GIZMO
+ * can be independent of the actual fluid velocity. The latter is stored as a
+ * primitive variable and integrated using the linear momentum, a conserved
+ * variable.
+ *
+ * @param p The particle to act upon
+ * @param xp The extended particle data to act upon
+ */
+__attribute__((always_inline)) INLINE static void hydro_first_init_part(
+    struct part* p, struct xpart* xp) {
+
+  const float mass = p->conserved.mass;
+
+  p->primitives.v[0] = p->v[0];
+  p->primitives.v[1] = p->v[1];
+  p->primitives.v[2] = p->v[2];
+
+  p->conserved.momentum[0] = mass * p->primitives.v[0];
+  p->conserved.momentum[1] = mass * p->primitives.v[1];
+  p->conserved.momentum[2] = mass * p->primitives.v[2];
+
+#ifdef EOS_ISOTHERMAL_GAS
+  p->conserved.energy = mass * const_isothermal_internal_energy;
+#else
+  p->conserved.energy *= mass;
+#endif
+
+#ifdef SHADOWFAX_TOTAL_ENERGY
+  p->conserved.energy += 0.5f * (p->conserved.momentum[0] * p->primitives.v[0] +
+                                 p->conserved.momentum[1] * p->primitives.v[1] +
+                                 p->conserved.momentum[2] * p->primitives.v[2]);
+#endif
+
+#if defined(SHADOWFAX_FIX_CELLS)
+  p->v[0] = 0.;
+  p->v[1] = 0.;
+  p->v[2] = 0.;
+#endif
+
+  /* set the initial velocity of the cells */
+  xp->v_full[0] = p->v[0];
+  xp->v_full[1] = p->v[1];
+  xp->v_full[2] = p->v[2];
+}
+
+/**
+ * @brief Prepares a particle for the volume calculation.
+ *
+ * Simply makes sure all necessary variables are initialized to zero.
+ * Initializes the Voronoi cell.
+ *
+ * @param p The particle to act upon
+ * @param hs #hydro_space containing extra information about the space.
+ */
+__attribute__((always_inline)) INLINE static void hydro_init_part(
+    struct part* p, const struct hydro_space* hs) {
+
+  p->density.wcount = 0.0f;
+  p->density.wcount_dh = 0.0f;
+
+  voronoi_cell_init(&p->cell, p->x, hs->anchor, hs->side);
+
+  /* Set the active flag to active. */
+  p->force.active = 1;
+}
+
+/**
+ * @brief Finishes the volume calculation.
+ *
+ * Calls the finalize method on the Voronoi cell, which calculates the volume
+ * and centroid of the cell. We use the return value of this function to set
+ * a new value for the smoothing length and possibly force another iteration
+ * of the volume calculation for this particle. We then use the volume to
+ * convert conserved variables into primitive variables.
+ *
+ * This method also initializes the gradient variables (if gradients are used).
+ *
+ * @param p The particle to act upon.
+ */
+__attribute__((always_inline)) INLINE static void hydro_end_density(
+    struct part* restrict p) {
+
+  float volume;
+  float m, momentum[3], energy;
+
+  hydro_gradients_init(p);
+
+  float hnew = voronoi_cell_finalize(&p->cell);
+  /* Enforce hnew as new smoothing length in the iteration
+     This is annoyingly difficult, as we do not have access to the variables
+     that govern the loop...
+     So here's an idea: let's force in some method somewhere that makes sure
+     r->e->hydro_properties->target_neighbours is 1, and
+     r->e->hydro_properties->delta_neighbours is 0.
+     This way, we can accept an iteration by setting p->density.wcount to 1.
+     To get the right correction for h, we set wcount to something else
+     (say 0), and then set p->density.wcount_dh to 1/(hnew-h). */
+  if (hnew < p->h) {
+    /* Iteration succesful: we accept, but manually set h to a smaller value
+       for the next time step */
+    p->density.wcount = 1.0f;
+    p->h = 1.1f * hnew;
+  } else {
+    /* Iteration not succesful: we force h to become 1.1*hnew */
+    p->density.wcount = 0.0f;
+    p->density.wcount_dh = 1.0f / (1.1f * hnew - p->h);
+    return;
+  }
+  volume = p->cell.volume;
+
+#ifdef SWIFT_DEBUG_CHECKS
+  /* the last condition checks for NaN: a NaN value always evaluates to false,
+     even when checked against itself */
+  if (volume == 0. || volume == INFINITY || volume != volume) {
+    error("Invalid value for cell volume (%g)!", volume);
+  }
+#endif
+
+  /* compute primitive variables */
+  /* eqns (3)-(5) */
+  m = p->conserved.mass;
+  if (m > 0.) {
+    momentum[0] = p->conserved.momentum[0];
+    momentum[1] = p->conserved.momentum[1];
+    momentum[2] = p->conserved.momentum[2];
+    p->primitives.rho = m / volume;
+    p->primitives.v[0] = momentum[0] / m;
+    p->primitives.v[1] = momentum[1] / m;
+    p->primitives.v[2] = momentum[2] / m;
+
+    energy = p->conserved.energy;
+
+#ifdef SHADOWFAX_TOTAL_ENERGY
+    energy -= 0.5f * (momentum[0] * p->primitives.v[0] +
+                      momentum[1] * p->primitives.v[1] +
+                      momentum[2] * p->primitives.v[2]);
+#endif
+
+    energy /= m;
+
+    p->primitives.P =
+        gas_pressure_from_internal_energy(p->primitives.rho, energy);
+  } else {
+    p->primitives.rho = 0.;
+    p->primitives.v[0] = 0.;
+    p->primitives.v[1] = 0.;
+    p->primitives.v[2] = 0.;
+    p->primitives.P = 0.;
+  }
+
+#ifdef SWIFT_DEBUG_CHECKS
+  if (p->primitives.rho < 0.) {
+    error("Negative density!");
+  }
+
+  if (p->primitives.P < 0.) {
+    error("Negative pressure!");
+  }
+#endif
+}
+
+/**
+ * @brief Prepare a particle for the gradient calculation.
+ *
+ * The name of this method is confusing, as this method is really called after
+ * the density loop and before the gradient loop.
+ *
+ * We use it to set the physical timestep for the particle and to copy the
+ * actual velocities, which we need to boost our interfaces during the flux
+ * calculation. We also initialize the variables used for the time step
+ * calculation.
+ *
+ * @param p The particle to act upon.
+ * @param xp The extended particle data to act upon.
+ */
+__attribute__((always_inline)) INLINE static void hydro_prepare_force(
+    struct part* restrict p, struct xpart* restrict xp) {
+
+  /* Initialize time step criterion variables */
+  p->timestepvars.vmax = 0.0f;
+
+  /* Set the actual velocity of the particle */
+  p->force.v_full[0] = xp->v_full[0];
+  p->force.v_full[1] = xp->v_full[1];
+  p->force.v_full[2] = xp->v_full[2];
+}
+
+/**
+ * @brief Finishes the gradient calculation.
+ *
+ * Just a wrapper around hydro_gradients_finalize, which can be an empty method,
+ * in which case no gradients are used.
+ *
+ * @param p The particle to act upon.
+ */
+__attribute__((always_inline)) INLINE static void hydro_end_gradient(
+    struct part* p) {
+
+  hydro_gradients_finalize(p);
+}
+
+/**
+ * @brief Reset acceleration fields of a particle
+ *
+ * This is actually not necessary for Shadowswift, since we just set the
+ * accelerations after the flux calculation.
+ *
+ * @param p The particle to act upon.
+ */
+__attribute__((always_inline)) INLINE static void hydro_reset_acceleration(
+    struct part* p) {
+
+  /* Reset the acceleration. */
+  p->a_hydro[0] = 0.0f;
+  p->a_hydro[1] = 0.0f;
+  p->a_hydro[2] = 0.0f;
+
+  /* Reset the time derivatives. */
+  p->force.h_dt = 0.0f;
+}
+
+/**
+ * @brief Sets the values to be predicted in the drifts to their values at a
+ * kick time
+ *
+ * @param p The particle.
+ * @param xp The extended data of this particle.
+ */
+__attribute__((always_inline)) INLINE static void hydro_reset_predicted_values(
+    struct part* restrict p, const struct xpart* restrict xp) {}
+
+/**
+ * @brief Converts the hydrodynamic variables from the initial condition file to
+ * conserved variables that can be used during the integration
+ *
+ * Requires the volume to be known.
+ *
+ * The initial condition file contains a mixture of primitive and conserved
+ * variables. Mass is a conserved variable, and we just copy the particle
+ * mass into the corresponding conserved quantity. We need the volume to
+ * also derive a density, which is then used to convert the internal energy
+ * to a pressure. However, we do not actually use these variables anymore.
+ * We do need to initialize the linear momentum, based on the mass and the
+ * velocity of the particle.
+ *
+ * @param p The particle to act upon.
+ * @param xp The extended particle data to act upon.
+ */
+__attribute__((always_inline)) INLINE static void hydro_convert_quantities(
+    struct part* p, struct xpart* xp) {}
+
+/**
+ * @brief Extra operations to be done during the drift
+ *
+ * Not used for Shadowswift.
+ *
+ * @param p Particle to act upon.
+ * @param xp The extended particle data to act upon.
+ * @param dt The drift time-step.
+ */
+__attribute__((always_inline)) INLINE static void hydro_predict_extra(
+    struct part* p, struct xpart* xp, float dt) {}
+
+/**
+ * @brief Set the particle acceleration after the flux loop.
+ *
+ * @param p Particle to act upon.
+ */
+__attribute__((always_inline)) INLINE static void hydro_end_force(
+    struct part* p) {}
+
+/**
+ * @brief Extra operations done during the kick
+ *
+ * Not used for Shadowswift.
+ *
+ * @param p Particle to act upon.
+ * @param xp Extended particle data to act upon.
+ * @param dt Physical time step.
+ */
+__attribute__((always_inline)) INLINE static void hydro_kick_extra(
+    struct part* p, struct xpart* xp, float dt) {
+
+  float vcell[3];
+
+  /* Update the conserved variables. We do this here and not in the kick,
+     since we need the updated variables below. */
+  p->conserved.mass += p->conserved.flux.mass;
+  p->conserved.momentum[0] += p->conserved.flux.momentum[0];
+  p->conserved.momentum[1] += p->conserved.flux.momentum[1];
+  p->conserved.momentum[2] += p->conserved.flux.momentum[2];
+  p->conserved.energy += p->conserved.flux.energy;
+
+#ifdef EOS_ISOTHERMAL_GAS
+  /* reset the thermal energy */
+  p->conserved.energy = p->conserved.mass * const_isothermal_internal_energy;
+
+#ifdef SHADOWFAX_TOTAL_ENERGY
+  p->conserved.energy += 0.5f * (p->conserved.momentum[0] * p->primitives.v[0] +
+                                 p->conserved.momentum[1] * p->primitives.v[1] +
+                                 p->conserved.momentum[2] * p->primitives.v[2]);
+#endif
+
+#endif
+
+  /* reset fluxes */
+  /* we can only do this here, since we need to keep the fluxes for inactive
+     particles */
+  p->conserved.flux.mass = 0.0f;
+  p->conserved.flux.momentum[0] = 0.0f;
+  p->conserved.flux.momentum[1] = 0.0f;
+  p->conserved.flux.momentum[2] = 0.0f;
+  p->conserved.flux.energy = 0.0f;
+
+  if (p->conserved.mass > 0.) {
+    /* We want the cell velocity to be as close as possible to the fluid
+       velocity */
+    vcell[0] = p->conserved.momentum[0] / p->conserved.mass;
+    vcell[1] = p->conserved.momentum[1] / p->conserved.mass;
+    vcell[2] = p->conserved.momentum[2] / p->conserved.mass;
+  } else {
+    vcell[0] = 0.;
+    vcell[1] = 0.;
+    vcell[2] = 0.;
+  }
+
+#ifdef SHADOWFAX_STEER_CELL_MOTION
+  /* To prevent stupid things like cell crossovers or generators that move
+     outside their cell, we steer the motion of the cell somewhat */
+  if (p->primitives.rho) {
+    float centroid[3], d[3];
+    float volume, csnd, R, vfac, fac, dnrm;
+    voronoi_get_centroid(&p->cell, centroid);
+    d[0] = centroid[0] - p->x[0];
+    d[1] = centroid[1] - p->x[1];
+    d[2] = centroid[2] - p->x[2];
+    dnrm = sqrtf(d[0] * d[0] + d[1] * d[1] + d[2] * d[2]);
+    csnd = sqrtf(hydro_gamma * p->primitives.P / p->primitives.rho);
+    volume = p->cell.volume;
+    R = get_radius_dimension_sphere(volume);
+    fac = 4.0f * dnrm / R;
+    if (fac > 0.9f) {
+      if (fac < 1.1f) {
+        vfac = csnd * (dnrm - 0.225f * R) / dnrm / (0.05f * R);
+      } else {
+        vfac = csnd / dnrm;
+      }
+    } else {
+      vfac = 0.0f;
+    }
+    vcell[0] += vfac * d[0];
+    vcell[1] += vfac * d[1];
+    vcell[2] += vfac * d[2];
+  }
+#endif
+
+#if defined(SHADOWFAX_FIX_CELLS)
+  xp->v_full[0] = 0.;
+  xp->v_full[1] = 0.;
+  xp->v_full[2] = 0.;
+
+  p->v[0] = 0.;
+  p->v[1] = 0.;
+  p->v[2] = 0.;
+#else
+  xp->v_full[0] = vcell[0];
+  xp->v_full[1] = vcell[1];
+  xp->v_full[2] = vcell[2];
+
+  p->v[0] = xp->v_full[0];
+  p->v[1] = xp->v_full[1];
+  p->v[2] = xp->v_full[2];
+#endif
+}
+
+/**
+ * @brief Returns the internal energy of a particle
+ *
+ * @param p The particle of interest.
+ * @return Internal energy of the particle.
+ */
+__attribute__((always_inline)) INLINE static float hydro_get_internal_energy(
+    const struct part* restrict p) {
+
+  if (p->primitives.rho > 0.) {
+    return gas_internal_energy_from_pressure(p->primitives.rho,
+                                             p->primitives.P);
+  } else {
+    return 0.;
+  }
+}
+
+/**
+ * @brief Returns the entropy of a particle
+ *
+ * @param p The particle of interest.
+ * @return Entropy of the particle.
+ */
+__attribute__((always_inline)) INLINE static float hydro_get_entropy(
+    const struct part* restrict p) {
+
+  if (p->primitives.rho > 0.) {
+    return gas_entropy_from_pressure(p->primitives.rho, p->primitives.P);
+  } else {
+    return 0.;
+  }
+}
+
+/**
+ * @brief Returns the sound speed of a particle
+ *
+ * @param p The particle of interest.
+ * @param Sound speed of the particle.
+ */
+__attribute__((always_inline)) INLINE static float hydro_get_soundspeed(
+    const struct part* restrict p) {
+
+  if (p->primitives.rho > 0.) {
+    return gas_soundspeed_from_pressure(p->primitives.rho, p->primitives.P);
+  } else {
+    return 0.;
+  }
+}
+
+/**
+ * @brief Returns the pressure of a particle
+ *
+ * @param p The particle of interest
+ * @param Pressure of the particle.
+ */
+__attribute__((always_inline)) INLINE static float hydro_get_pressure(
+    const struct part* restrict p) {
+
+  return p->primitives.P;
+}
+
+/**
+ * @brief Returns the mass of a particle
+ *
+ * @param p The particle of interest
+ */
+__attribute__((always_inline)) INLINE static float hydro_get_mass(
+    const struct part* restrict p) {
+
+  return p->conserved.mass;
+}
+
+/**
+ * @brief Returns the density of a particle
+ *
+ * @param p The particle of interest
+ */
+__attribute__((always_inline)) INLINE static float hydro_get_density(
+    const struct part* restrict p) {
+
+  return p->primitives.rho;
+}
+
+/**
+ * @brief Modifies the thermal state of a particle to the imposed internal
+ * energy
+ *
+ * This overrides the current state of the particle but does *not* change its
+ * time-derivatives
+ *
+ * @param p The particle
+ * @param u The new internal energy
+ */
+__attribute__((always_inline)) INLINE static void hydro_set_internal_energy(
+    struct part* restrict p, float u) {
+
+  if (p->primitives.rho > 0.) {
+    p->conserved.energy = u * p->conserved.mass;
+
+#ifdef SHADOWFAX_TOTAL_ENERGY
+    p->conserved.energy +=
+        0.5f * (p->conserved.momentum[0] * p->primitives.v[0] +
+                p->conserved.momentum[1] * p->primitives.v[1] +
+                p->conserved.momentum[2] * p->primitives.v[2]);
+#endif
+
+    p->primitives.P = gas_pressure_from_internal_energy(p->primitives.rho, u);
+  }
+}
+
+/**
+ * @brief Modifies the thermal state of a particle to the imposed entropy
+ *
+ * This overrides the current state of the particle but does *not* change its
+ * time-derivatives
+ *
+ * @param p The particle
+ * @param S The new entropy
+ */
+__attribute__((always_inline)) INLINE static void hydro_set_entropy(
+    struct part* restrict p, float S) {
+
+  if (p->primitives.rho > 0.) {
+    p->conserved.energy =
+        gas_internal_energy_from_entropy(p->primitives.rho, S) *
+        p->conserved.mass;
+
+#ifdef SHADOWFAX_TOTAL_ENERGY
+    p->conserved.energy +=
+        0.5f * (p->conserved.momentum[0] * p->primitives.v[0] +
+                p->conserved.momentum[1] * p->primitives.v[1] +
+                p->conserved.momentum[2] * p->primitives.v[2]);
+#endif
+
+    p->primitives.P = gas_pressure_from_entropy(p->primitives.rho, S);
+  }
+}
diff --git a/src/hydro/Shadowswift/hydro_debug.h b/src/hydro/Shadowswift/hydro_debug.h
new file mode 100644
index 0000000000000000000000000000000000000000..7cd7f89c8112ebcf1930c5ca52cb389139191975
--- /dev/null
+++ b/src/hydro/Shadowswift/hydro_debug.h
@@ -0,0 +1,69 @@
+/*******************************************************************************
+ * This file is part of SWIFT.
+ * Copyright (c) 2016 Matthieu Schaller (matthieu.schaller@durham.ac.uk)
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as published
+ * by the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public License
+ * along with this program.  If not, see <http://www.gnu.org/licenses/>.
+ *
+ ******************************************************************************/
+
+__attribute__((always_inline)) INLINE static void hydro_debug_particle(
+    const struct part* p, const struct xpart* xp) {
+  printf(
+      "x=[%.16e,%.16e,%.16e], "
+      "v=[%.3e,%.3e,%.3e], "
+      "a=[%.3e,%.3e,%.3e], "
+      "h=%.3e, "
+      "primitives={"
+      "v=[%.3e,%.3e,%.3e], "
+      "rho=%.3e, "
+      "P=%.3e, "
+      "gradients={"
+      "rho=[%.3e,%.3e,%.3e], "
+      "v=[[%.3e,%.3e,%.3e],[%.3e,%.3e,%.3e],[%.3e,%.3e,%.3e]], "
+      "P=[%.3e,%.3e,%.3e]}, "
+      "limiter={"
+      "rho=[%.3e,%.3e], "
+      "v=[[%.3e,%.3e],[%.3e,%.3e],[%.3e,%.3e]], "
+      "P=[%.3e,%.3e], "
+      "maxr=%.3e}}, "
+      "conserved={"
+      "momentum=[%.3e,%.3e,%.3e], "
+      "mass=%.3e, "
+      "energy=%.3e}, "
+      "timestepvars={"
+      "vmax=%.3e}, "
+      "density={"
+      "wcount_dh=%.3e, "
+      "wcount=%.3e}",
+      p->x[0], p->x[1], p->x[2], p->v[0], p->v[1], p->v[2], p->a_hydro[0],
+      p->a_hydro[1], p->a_hydro[2], p->h, p->primitives.v[0],
+      p->primitives.v[1], p->primitives.v[2], p->primitives.rho,
+      p->primitives.P, p->primitives.gradients.rho[0],
+      p->primitives.gradients.rho[1], p->primitives.gradients.rho[2],
+      p->primitives.gradients.v[0][0], p->primitives.gradients.v[0][1],
+      p->primitives.gradients.v[0][2], p->primitives.gradients.v[1][0],
+      p->primitives.gradients.v[1][1], p->primitives.gradients.v[1][2],
+      p->primitives.gradients.v[2][0], p->primitives.gradients.v[2][1],
+      p->primitives.gradients.v[2][2], p->primitives.gradients.P[0],
+      p->primitives.gradients.P[1], p->primitives.gradients.P[2],
+      p->primitives.limiter.rho[0], p->primitives.limiter.rho[1],
+      p->primitives.limiter.v[0][0], p->primitives.limiter.v[0][1],
+      p->primitives.limiter.v[1][0], p->primitives.limiter.v[1][1],
+      p->primitives.limiter.v[2][0], p->primitives.limiter.v[2][1],
+      p->primitives.limiter.P[0], p->primitives.limiter.P[1],
+      p->primitives.limiter.maxr, p->conserved.momentum[0],
+      p->conserved.momentum[1], p->conserved.momentum[2], p->conserved.mass,
+      p->conserved.energy, p->timestepvars.vmax, p->density.wcount_dh,
+      p->density.wcount);
+}
diff --git a/src/hydro/Shadowswift/hydro_gradients.h b/src/hydro/Shadowswift/hydro_gradients.h
new file mode 100644
index 0000000000000000000000000000000000000000..1aea49790d998d3912a80fa1376cbd1e183f26f7
--- /dev/null
+++ b/src/hydro/Shadowswift/hydro_gradients.h
@@ -0,0 +1,215 @@
+/*******************************************************************************
+ * This file is part of SWIFT.
+ * Copyright (c) 2016 Bert Vandenbroucke (bert.vandenbroucke@gmail.com)
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as published
+ * by the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public License
+ * along with this program.  If not, see <http://www.gnu.org/licenses/>.
+ *
+ ******************************************************************************/
+
+#ifndef SWIFT_HYDRO_GRADIENTS_H
+#define SWIFT_HYDRO_GRADIENTS_H
+
+#include "hydro_slope_limiters.h"
+
+#if defined(SHADOWFAX_GRADIENTS)
+
+#define HYDRO_GRADIENT_IMPLEMENTATION "Shadowfax gradients (Springel 2010)"
+#include "hydro_gradients_shadowfax.h"
+
+#else
+
+/* No gradients. Perfectly acceptable, but we have to provide empty functions */
+#define HYDRO_GRADIENT_IMPLEMENTATION "No gradients (first order scheme)"
+
+/**
+ * @brief Initialize gradient variables
+ *
+ * @param p Particle.
+ */
+__attribute__((always_inline)) INLINE static void hydro_gradients_init(
+    struct part* p) {}
+
+/**
+ * @brief Gradient calculations done during the neighbour loop
+ *
+ * @param r2 Squared distance between the two particles.
+ * @param dx Distance vector (pi->x - pj->x).
+ * @param hi Smoothing length of particle i.
+ * @param hj Smoothing length of particle j.
+ * @param pi Particle i.
+ * @param pj Particle j.
+ */
+__attribute__((always_inline)) INLINE static void hydro_gradients_collect(
+    float r2, float* dx, float hi, float hj, struct part* pi, struct part* pj) {
+}
+
+/**
+ * @brief Gradient calculations done during the neighbour loop: non-symmetric
+ * version
+ *
+ * @param r2 Squared distance between the two particles.
+ * @param dx Distance vector (pi->x - pj->x).
+ * @param hi Smoothing length of particle i.
+ * @param hj Smoothing length of particle j.
+ * @param pi Particle i.
+ * @param pj Particle j.
+ */
+__attribute__((always_inline)) INLINE static void
+hydro_gradients_nonsym_collect(float r2, float* dx, float hi, float hj,
+                               struct part* pi, struct part* pj) {}
+
+/**
+ * @brief Finalize the gradient variables after all data have been collected
+ *
+ * @param p Particle.
+ */
+__attribute__((always_inline)) INLINE static void hydro_gradients_finalize(
+    struct part* p) {}
+
+#endif
+
+/**
+ * @brief Gradients reconstruction. Is the same for all gradient types (although
+ * gradients_none does nothing, since all gradients are zero -- are they?).
+ */
+__attribute__((always_inline)) INLINE static void hydro_gradients_predict(
+    struct part* pi, struct part* pj, float hi, float hj, float* dx, float r,
+    float* xij_i, float* Wi, float* Wj, float mindt) {
+
+  float dWi[5], dWj[5];
+  float xij_j[3];
+
+  /* xij_j = real_midpoint - pj->x
+           = xij_i + pi->x - pj->x
+           = xij_i + dx */
+  xij_j[0] = xij_i[0] + dx[0];
+  xij_j[1] = xij_i[1] + dx[1];
+  xij_j[2] = xij_i[2] + dx[2];
+
+  dWi[0] = pi->primitives.gradients.rho[0] * xij_i[0] +
+           pi->primitives.gradients.rho[1] * xij_i[1] +
+           pi->primitives.gradients.rho[2] * xij_i[2];
+  dWi[1] = pi->primitives.gradients.v[0][0] * xij_i[0] +
+           pi->primitives.gradients.v[0][1] * xij_i[1] +
+           pi->primitives.gradients.v[0][2] * xij_i[2];
+  dWi[2] = pi->primitives.gradients.v[1][0] * xij_i[0] +
+           pi->primitives.gradients.v[1][1] * xij_i[1] +
+           pi->primitives.gradients.v[1][2] * xij_i[2];
+  dWi[3] = pi->primitives.gradients.v[2][0] * xij_i[0] +
+           pi->primitives.gradients.v[2][1] * xij_i[1] +
+           pi->primitives.gradients.v[2][2] * xij_i[2];
+  dWi[4] = pi->primitives.gradients.P[0] * xij_i[0] +
+           pi->primitives.gradients.P[1] * xij_i[1] +
+           pi->primitives.gradients.P[2] * xij_i[2];
+
+  dWj[0] = pj->primitives.gradients.rho[0] * xij_j[0] +
+           pj->primitives.gradients.rho[1] * xij_j[1] +
+           pj->primitives.gradients.rho[2] * xij_j[2];
+  dWj[1] = pj->primitives.gradients.v[0][0] * xij_j[0] +
+           pj->primitives.gradients.v[0][1] * xij_j[1] +
+           pj->primitives.gradients.v[0][2] * xij_j[2];
+  dWj[2] = pj->primitives.gradients.v[1][0] * xij_j[0] +
+           pj->primitives.gradients.v[1][1] * xij_j[1] +
+           pj->primitives.gradients.v[1][2] * xij_j[2];
+  dWj[3] = pj->primitives.gradients.v[2][0] * xij_j[0] +
+           pj->primitives.gradients.v[2][1] * xij_j[1] +
+           pj->primitives.gradients.v[2][2] * xij_j[2];
+  dWj[4] = pj->primitives.gradients.P[0] * xij_j[0] +
+           pj->primitives.gradients.P[1] * xij_j[1] +
+           pj->primitives.gradients.P[2] * xij_j[2];
+
+  hydro_slope_limit_face(Wi, Wj, dWi, dWj, xij_i, xij_j, r);
+
+  /* time */
+  dWi[0] -= 0.5 * mindt * (Wi[1] * pi->primitives.gradients.rho[0] +
+                           Wi[2] * pi->primitives.gradients.rho[1] +
+                           Wi[3] * pi->primitives.gradients.rho[2] +
+                           Wi[0] * (pi->primitives.gradients.v[0][0] +
+                                    pi->primitives.gradients.v[1][1] +
+                                    pi->primitives.gradients.v[2][2]));
+  dWi[1] -= 0.5 * mindt * (Wi[1] * pi->primitives.gradients.v[0][0] +
+                           Wi[2] * pi->primitives.gradients.v[0][1] +
+                           Wi[3] * pi->primitives.gradients.v[0][2] +
+                           pi->primitives.gradients.P[0] / Wi[0]);
+  dWi[2] -= 0.5 * mindt * (Wi[1] * pi->primitives.gradients.v[1][0] +
+                           Wi[2] * pi->primitives.gradients.v[1][1] +
+                           Wi[3] * pi->primitives.gradients.v[1][2] +
+                           pi->primitives.gradients.P[1] / Wi[0]);
+  dWi[3] -= 0.5 * mindt * (Wi[1] * pi->primitives.gradients.v[2][0] +
+                           Wi[2] * pi->primitives.gradients.v[2][1] +
+                           Wi[3] * pi->primitives.gradients.v[2][2] +
+                           pi->primitives.gradients.P[2] / Wi[0]);
+  dWi[4] -=
+      0.5 * mindt * (Wi[1] * pi->primitives.gradients.P[0] +
+                     Wi[2] * pi->primitives.gradients.P[1] +
+                     Wi[3] * pi->primitives.gradients.P[2] +
+                     hydro_gamma * Wi[4] * (pi->primitives.gradients.v[0][0] +
+                                            pi->primitives.gradients.v[1][1] +
+                                            pi->primitives.gradients.v[2][2]));
+
+  dWj[0] -= 0.5 * mindt * (Wj[1] * pj->primitives.gradients.rho[0] +
+                           Wj[2] * pj->primitives.gradients.rho[1] +
+                           Wj[3] * pj->primitives.gradients.rho[2] +
+                           Wj[0] * (pj->primitives.gradients.v[0][0] +
+                                    pj->primitives.gradients.v[1][1] +
+                                    pj->primitives.gradients.v[2][2]));
+  dWj[1] -= 0.5 * mindt * (Wj[1] * pj->primitives.gradients.v[0][0] +
+                           Wj[2] * pj->primitives.gradients.v[0][1] +
+                           Wj[3] * pj->primitives.gradients.v[0][2] +
+                           pj->primitives.gradients.P[0] / Wj[0]);
+  dWj[2] -= 0.5 * mindt * (Wj[1] * pj->primitives.gradients.v[1][0] +
+                           Wj[2] * pj->primitives.gradients.v[1][1] +
+                           Wj[3] * pj->primitives.gradients.v[1][2] +
+                           pj->primitives.gradients.P[1] / Wj[0]);
+  dWj[3] -= 0.5 * mindt * (Wj[1] * pj->primitives.gradients.v[2][0] +
+                           Wj[2] * pj->primitives.gradients.v[2][1] +
+                           Wj[3] * pj->primitives.gradients.v[2][2] +
+                           pj->primitives.gradients.P[2] / Wj[0]);
+  dWj[4] -=
+      0.5 * mindt * (Wj[1] * pj->primitives.gradients.P[0] +
+                     Wj[2] * pj->primitives.gradients.P[1] +
+                     Wj[3] * pj->primitives.gradients.P[2] +
+                     hydro_gamma * Wj[4] * (pj->primitives.gradients.v[0][0] +
+                                            pj->primitives.gradients.v[1][1] +
+                                            pj->primitives.gradients.v[2][2]));
+
+  Wi[0] += dWi[0];
+  Wi[1] += dWi[1];
+  Wi[2] += dWi[2];
+  Wi[3] += dWi[3];
+  Wi[4] += dWi[4];
+
+  Wj[0] += dWj[0];
+  Wj[1] += dWj[1];
+  Wj[2] += dWj[2];
+  Wj[3] += dWj[3];
+  Wj[4] += dWj[4];
+
+  /* Sanity check: if density or pressure becomes negative after the
+     interpolation, just reset them */
+  if (Wi[0] < 0.0f) {
+    Wi[0] -= dWi[0];
+  }
+  if (Wi[4] < 0.0f) {
+    Wi[4] -= dWi[4];
+  }
+  if (Wj[0] < 0.0f) {
+    Wj[0] -= dWj[0];
+  }
+  if (Wj[4] < 0.0f) {
+    Wj[4] -= dWj[4];
+  }
+}
+
+#endif  // SWIFT_HYDRO_GRADIENTS_H
diff --git a/src/hydro/Shadowswift/hydro_gradients_shadowfax.h b/src/hydro/Shadowswift/hydro_gradients_shadowfax.h
new file mode 100644
index 0000000000000000000000000000000000000000..9ca40a604da3dc12bbb48ac033cd078f0561d8ab
--- /dev/null
+++ b/src/hydro/Shadowswift/hydro_gradients_shadowfax.h
@@ -0,0 +1,217 @@
+/*******************************************************************************
+ * This file is part of SWIFT.
+ * Copyright (c) 2016 Bert Vandenbroucke (bert.vandenbroucke@gmail.com)
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as published
+ * by the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public License
+ * along with this program.  If not, see <http://www.gnu.org/licenses/>.
+ *
+ ******************************************************************************/
+
+#include "voronoi_algorithm.h"
+
+/**
+ * @brief Initialize gradient variables
+ *
+ * @param p Particle.
+ */
+__attribute__((always_inline)) INLINE static void hydro_gradients_init(
+    struct part *p) {
+
+  p->primitives.gradients.rho[0] = 0.0f;
+  p->primitives.gradients.rho[1] = 0.0f;
+  p->primitives.gradients.rho[2] = 0.0f;
+
+  p->primitives.gradients.v[0][0] = 0.0f;
+  p->primitives.gradients.v[0][1] = 0.0f;
+  p->primitives.gradients.v[0][2] = 0.0f;
+
+  p->primitives.gradients.v[1][0] = 0.0f;
+  p->primitives.gradients.v[1][1] = 0.0f;
+  p->primitives.gradients.v[1][2] = 0.0f;
+
+  p->primitives.gradients.v[2][0] = 0.0f;
+  p->primitives.gradients.v[2][1] = 0.0f;
+  p->primitives.gradients.v[2][2] = 0.0f;
+
+  p->primitives.gradients.P[0] = 0.0f;
+  p->primitives.gradients.P[1] = 0.0f;
+  p->primitives.gradients.P[2] = 0.0f;
+
+  hydro_slope_limit_cell_init(p);
+}
+
+/**
+ * @brief Add the gradient estimate for a single quantity due to a particle pair
+ * to the total gradient for that quantity
+ *
+ * This corresponds to one term of equation (21) in Springel (2010).
+ *
+ * @param qL Value of the quantity on the left.
+ * @param qR Value of the quantity on the right.
+ * @param cLR Vector pointing from the midpoint of the particle pair to the
+ * geometrical centroid of the face in between the particles.
+ * @param xLR Vector pointing from the right particle to the left particle.
+ * @param A Surface area of the face in between the particles.
+ * @param grad Current value of the gradient for the quantity (is updated).
+ */
+__attribute__((always_inline)) INLINE void hydro_gradients_single_quantity(
+    float qL, float qR, float *cLR, float *xLR, float rLR, float A,
+    float *grad) {
+
+  grad[0] += A * ((qR - qL) * cLR[0] / rLR - 0.5f * (qL + qR) * xLR[0] / rLR);
+  grad[1] += A * ((qR - qL) * cLR[1] / rLR - 0.5f * (qL + qR) * xLR[1] / rLR);
+  grad[2] += A * ((qR - qL) * cLR[2] / rLR - 0.5f * (qL + qR) * xLR[2] / rLR);
+}
+
+/**
+ * @brief Gradient calculations done during the neighbour loop
+ *
+ * @param r2 Squared distance between the two particles.
+ * @param dx Distance vector (pi->x - pj->x).
+ * @param hi Smoothing length of particle i.
+ * @param hj Smoothing length of particle j.
+ * @param pi Particle i.
+ * @param pj Particle j.
+ */
+__attribute__((always_inline)) INLINE static void hydro_gradients_collect(
+    float r2, float *dx, float hi, float hj, struct part *pi, struct part *pj) {
+
+  float A, midpoint[3];
+
+  A = voronoi_get_face(&pi->cell, pj->id, midpoint);
+  if (!A) {
+    /* particle is not a cell neighbour: do nothing */
+    return;
+  }
+
+  float c[3];
+  /* midpoint is relative w.r.t. pi->x, as is dx */
+  /* c is supposed to be the vector pointing from the midpoint of pi and pj to
+     the midpoint of the face between pi and pj:
+       c = real_midpoint - 0.5*(pi+pj)
+         = midpoint + pi - 0.5*(2*pi - dx)
+         = midpoint + 0.5*dx */
+  c[0] = midpoint[0] + 0.5f * dx[0];
+  c[1] = midpoint[1] + 0.5f * dx[1];
+  c[2] = midpoint[2] + 0.5f * dx[2];
+
+  float r = sqrtf(r2);
+  hydro_gradients_single_quantity(pi->primitives.rho, pj->primitives.rho, c, dx,
+                                  r, A, pi->primitives.gradients.rho);
+  hydro_gradients_single_quantity(pi->primitives.v[0], pj->primitives.v[0], c,
+                                  dx, r, A, pi->primitives.gradients.v[0]);
+  hydro_gradients_single_quantity(pi->primitives.v[1], pj->primitives.v[1], c,
+                                  dx, r, A, pi->primitives.gradients.v[1]);
+  hydro_gradients_single_quantity(pi->primitives.v[2], pj->primitives.v[2], c,
+                                  dx, r, A, pi->primitives.gradients.v[2]);
+  hydro_gradients_single_quantity(pi->primitives.P, pj->primitives.P, c, dx, r,
+                                  A, pi->primitives.gradients.P);
+
+  hydro_slope_limit_cell_collect(pi, pj, r);
+
+  float mindx[3];
+  mindx[0] = -dx[0];
+  mindx[1] = -dx[1];
+  mindx[2] = -dx[2];
+  hydro_gradients_single_quantity(pj->primitives.rho, pi->primitives.rho, c,
+                                  mindx, r, A, pj->primitives.gradients.rho);
+  hydro_gradients_single_quantity(pj->primitives.v[0], pi->primitives.v[0], c,
+                                  mindx, r, A, pj->primitives.gradients.v[0]);
+  hydro_gradients_single_quantity(pj->primitives.v[1], pi->primitives.v[1], c,
+                                  mindx, r, A, pj->primitives.gradients.v[1]);
+  hydro_gradients_single_quantity(pj->primitives.v[2], pi->primitives.v[2], c,
+                                  mindx, r, A, pj->primitives.gradients.v[2]);
+  hydro_gradients_single_quantity(pj->primitives.P, pi->primitives.P, c, mindx,
+                                  r, A, pj->primitives.gradients.P);
+
+  hydro_slope_limit_cell_collect(pj, pi, r);
+}
+
+/**
+ * @brief Gradient calculations done during the neighbour loop
+ *
+ * @param r2 Squared distance between the two particles.
+ * @param dx Distance vector (pi->x - pj->x).
+ * @param hi Smoothing length of particle i.
+ * @param hj Smoothing length of particle j.
+ * @param pi Particle i.
+ * @param pj Particle j.
+ */
+__attribute__((always_inline)) INLINE static void
+hydro_gradients_nonsym_collect(float r2, float *dx, float hi, float hj,
+                               struct part *pi, struct part *pj) {
+
+  float A, midpoint[3];
+
+  A = voronoi_get_face(&pi->cell, pj->id, midpoint);
+  if (!A) {
+    /* particle is not a cell neighbour: do nothing */
+    return;
+  }
+
+  float c[3];
+  /* midpoint is relative w.r.t. pi->x, as is dx */
+  /* c is supposed to be the vector pointing from the midpoint of pi and pj to
+     the midpoint of the face between pi and pj:
+       c = real_midpoint - 0.5*(pi+pj)
+         = midpoint + pi - 0.5*(2*pi - dx)
+         = midpoint + 0.5*dx */
+  c[0] = midpoint[0] + 0.5f * dx[0];
+  c[1] = midpoint[1] + 0.5f * dx[1];
+  c[2] = midpoint[2] + 0.5f * dx[2];
+
+  float r = sqrtf(r2);
+  hydro_gradients_single_quantity(pi->primitives.rho, pj->primitives.rho, c, dx,
+                                  r, A, pi->primitives.gradients.rho);
+  hydro_gradients_single_quantity(pi->primitives.v[0], pj->primitives.v[0], c,
+                                  dx, r, A, pi->primitives.gradients.v[0]);
+  hydro_gradients_single_quantity(pi->primitives.v[1], pj->primitives.v[1], c,
+                                  dx, r, A, pi->primitives.gradients.v[1]);
+  hydro_gradients_single_quantity(pi->primitives.v[2], pj->primitives.v[2], c,
+                                  dx, r, A, pi->primitives.gradients.v[2]);
+  hydro_gradients_single_quantity(pi->primitives.P, pj->primitives.P, c, dx, r,
+                                  A, pi->primitives.gradients.P);
+
+  hydro_slope_limit_cell_collect(pi, pj, r);
+}
+
+/**
+ * @brief Finalize the gradient variables after all data have been collected
+ *
+ * @param p Particle.
+ */
+__attribute__((always_inline)) INLINE static void hydro_gradients_finalize(
+    struct part *p) {
+
+  float volume = p->cell.volume;
+
+  p->primitives.gradients.rho[0] /= volume;
+  p->primitives.gradients.rho[1] /= volume;
+  p->primitives.gradients.rho[2] /= volume;
+
+  p->primitives.gradients.v[0][0] /= volume;
+  p->primitives.gradients.v[0][1] /= volume;
+  p->primitives.gradients.v[0][2] /= volume;
+  p->primitives.gradients.v[1][0] /= volume;
+  p->primitives.gradients.v[1][1] /= volume;
+  p->primitives.gradients.v[1][2] /= volume;
+  p->primitives.gradients.v[2][0] /= volume;
+  p->primitives.gradients.v[2][1] /= volume;
+  p->primitives.gradients.v[2][2] /= volume;
+
+  p->primitives.gradients.P[0] /= volume;
+  p->primitives.gradients.P[1] /= volume;
+  p->primitives.gradients.P[2] /= volume;
+
+  hydro_slope_limit_cell(p);
+}
diff --git a/src/hydro/Shadowswift/hydro_iact.h b/src/hydro/Shadowswift/hydro_iact.h
new file mode 100644
index 0000000000000000000000000000000000000000..63f7bdc6900c8fe9887879f3ff7e6c5eaff1b281
--- /dev/null
+++ b/src/hydro/Shadowswift/hydro_iact.h
@@ -0,0 +1,365 @@
+/*******************************************************************************
+ * This file is part of SWIFT.
+ * Copyright (c) 2016 Bert Vandenbroucke (bert.vandenbroucke@gmail.com)
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as published
+ * by the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public License
+ * along with this program.  If not, see <http://www.gnu.org/licenses/>.
+ *
+ ******************************************************************************/
+
+#include "adiabatic_index.h"
+#include "hydro_gradients.h"
+#include "riemann.h"
+#include "voronoi_algorithm.h"
+
+/**
+ * @brief Calculate the Voronoi cell by interacting particle pi and pj
+ *
+ * This method wraps around voronoi_cell_interact().
+ *
+ * @param r2 Squared distance between particle i and particle j.
+ * @param dx Distance vector between the particles (dx = pi->x - pj->x).
+ * @param hi Smoothing length of particle i.
+ * @param hj Smoothing length of particle j.
+ * @param pi Particle i.
+ * @param pj Particle j.
+ */
+__attribute__((always_inline)) INLINE static void runner_iact_density(
+    float r2, float *dx, float hi, float hj, struct part *pi, struct part *pj) {
+
+  float mindx[3];
+
+  voronoi_cell_interact(&pi->cell, dx, pj->id);
+  mindx[0] = -dx[0];
+  mindx[1] = -dx[1];
+  mindx[2] = -dx[2];
+  voronoi_cell_interact(&pj->cell, mindx, pi->id);
+}
+
+/**
+ * @brief Calculate the Voronoi cell by interacting particle pi with pj
+ *
+ * This method wraps around voronoi_cell_interact().
+ *
+ * @param r2 Squared distance between particle i and particle j.
+ * @param dx Distance vector between the particles (dx = pi->x - pj->x).
+ * @param hi Smoothing length of particle i.
+ * @param hj Smoothing length of particle j.
+ * @param pi Particle i.
+ * @param pj Particle j.
+ */
+__attribute__((always_inline)) INLINE static void runner_iact_nonsym_density(
+    float r2, float *dx, float hi, float hj, struct part *pi, struct part *pj) {
+
+  voronoi_cell_interact(&pi->cell, dx, pj->id);
+}
+
+/**
+ * @brief Calculate the gradient interaction between particle i and particle j
+ *
+ * This method wraps around hydro_gradients_collect, which can be an empty
+ * method, in which case no gradients are used.
+ *
+ * @param r2 Squared distance between particle i and particle j.
+ * @param dx Distance vector between the particles (dx = pi->x - pj->x).
+ * @param hi Smoothing length of particle i.
+ * @param hj Smoothing length of particle j.
+ * @param pi Particle i.
+ * @param pj Particle j.
+ */
+__attribute__((always_inline)) INLINE static void runner_iact_gradient(
+    float r2, float *dx, float hi, float hj, struct part *pi, struct part *pj) {
+
+  hydro_gradients_collect(r2, dx, hi, hj, pi, pj);
+}
+
+/**
+ * @brief Calculate the gradient interaction between particle i and particle j:
+ * non-symmetric version
+ *
+ * This method wraps around hydro_gradients_nonsym_collect, which can be an
+ * empty method, in which case no gradients are used.
+ *
+ * @param r2 Squared distance between particle i and particle j.
+ * @param dx Distance vector between the particles (dx = pi->x - pj->x).
+ * @param hi Smoothing length of particle i.
+ * @param hj Smoothing length of particle j.
+ * @param pi Particle i.
+ * @param pj Particle j.
+ */
+__attribute__((always_inline)) INLINE static void runner_iact_nonsym_gradient(
+    float r2, float *dx, float hi, float hj, struct part *pi, struct part *pj) {
+
+  hydro_gradients_nonsym_collect(r2, dx, hi, hj, pi, pj);
+}
+
+/**
+ * @brief Common part of the flux calculation between particle i and j
+ *
+ * Since the only difference between the symmetric and non-symmetric version
+ * of the flux calculation  is in the update of the conserved variables at the
+ * very end (which is not done for particle j if mode is 0 and particle j is
+ * active), both runner_iact_force and runner_iact_nonsym_force call this
+ * method, with an appropriate mode.
+ *
+ * This method retrieves the oriented surface area and face midpoint for the
+ * Voronoi face between pi and pj (if it exists). It uses the midpoint position
+ * to reconstruct the primitive quantities (if gradients are used) at the face
+ * and then uses the face quantities to estimate a flux through the face using
+ * a Riemann solver.
+ *
+ * This method also calculates the maximal velocity used to calculate the time
+ * step.
+ *
+ * @param r2 Squared distance between particle i and particle j.
+ * @param dx Distance vector between the particles (dx = pi->x - pj->x).
+ * @param hi Smoothing length of particle i.
+ * @param hj Smoothing length of particle j.
+ * @param pi Particle i.
+ * @param pj Particle j.
+ */
+__attribute__((always_inline)) INLINE static void runner_iact_fluxes_common(
+    float r2, float *dx, float hi, float hj, struct part *pi, struct part *pj,
+    int mode) {
+
+  float r = sqrtf(r2);
+  int k;
+  float A;
+  float xij_i[3];
+  float vmax, dvdotdx;
+  float vi[3], vj[3], vij[3];
+  float Wi[5], Wj[5];
+  float dti, dtj, mindt;
+  float n_unit[3];
+
+  A = voronoi_get_face(&pi->cell, pj->id, xij_i);
+  if (A == 0.0f) {
+    /* this neighbour does not share a face with the cell, return */
+    return;
+  }
+
+  /* Initialize local variables */
+  for (k = 0; k < 3; k++) {
+    vi[k] = pi->force.v_full[k]; /* particle velocities */
+    vj[k] = pj->force.v_full[k];
+  }
+  Wi[0] = pi->primitives.rho;
+  Wi[1] = pi->primitives.v[0];
+  Wi[2] = pi->primitives.v[1];
+  Wi[3] = pi->primitives.v[2];
+  Wi[4] = pi->primitives.P;
+  Wj[0] = pj->primitives.rho;
+  Wj[1] = pj->primitives.v[0];
+  Wj[2] = pj->primitives.v[1];
+  Wj[3] = pj->primitives.v[2];
+  Wj[4] = pj->primitives.P;
+
+  dti = pi->force.dt;
+  dtj = pj->force.dt;
+
+  /* calculate the maximal signal velocity */
+  vmax = 0.0f;
+  if (Wi[0] > 0.) {
+    vmax += gas_soundspeed_from_pressure(Wi[0], Wi[4]);
+  }
+
+  if (Wj[0] > 0.) {
+    vmax += gas_soundspeed_from_pressure(Wj[0], Wj[4]);
+  }
+
+  dvdotdx = (Wi[1] - Wj[1]) * dx[0] + (Wi[2] - Wj[2]) * dx[1] +
+            (Wi[3] - Wj[3]) * dx[2];
+  if (dvdotdx > 0.) {
+    vmax -= dvdotdx / r;
+  }
+
+  pi->timestepvars.vmax = fmaxf(pi->timestepvars.vmax, vmax);
+  if (mode == 1) {
+    pj->timestepvars.vmax = fmaxf(pj->timestepvars.vmax, vmax);
+  }
+
+  /* The flux will be exchanged using the smallest time step of the two
+   * particles */
+  mindt = fminf(dti, dtj);
+
+  /* compute the normal vector of the interface */
+  for (k = 0; k < 3; ++k) {
+    n_unit[k] = -dx[k] / r;
+  }
+
+  /* Compute interface velocity */
+  float fac = (vi[0] - vj[0]) * (xij_i[0] + 0.5f * dx[0]) +
+              (vi[1] - vj[1]) * (xij_i[1] + 0.5f * dx[1]) +
+              (vi[2] - vj[2]) * (xij_i[2] + 0.5f * dx[2]);
+  fac /= r;
+  vij[0] = 0.5f * (vi[0] + vj[0]) - fac * dx[0];
+  vij[1] = 0.5f * (vi[1] + vj[1]) - fac * dx[1];
+  vij[2] = 0.5f * (vi[2] + vj[2]) - fac * dx[2];
+
+  /* Boost the primitive variables to the frame of reference of the interface */
+  /* Note that velocities are indices 1-3 in W */
+  Wi[1] -= vij[0];
+  Wi[2] -= vij[1];
+  Wi[3] -= vij[2];
+  Wj[1] -= vij[0];
+  Wj[2] -= vij[1];
+  Wj[3] -= vij[2];
+
+  hydro_gradients_predict(pi, pj, hi, hj, dx, r, xij_i, Wi, Wj, mindt);
+
+  /* we don't need to rotate, we can use the unit vector in the Riemann problem
+   * itself (see GIZMO) */
+
+  if (Wi[0] < 0.0f || Wj[0] < 0.0f || Wi[4] < 0.0f || Wj[4] < 0.0f) {
+    printf("mindt: %g\n", mindt);
+    printf("WL: %g %g %g %g %g\n", pi->primitives.rho, pi->primitives.v[0],
+           pi->primitives.v[1], pi->primitives.v[2], pi->primitives.P);
+#ifdef USE_GRADIENTS
+    printf("dWL: %g %g %g %g %g\n", dWi[0], dWi[1], dWi[2], dWi[3], dWi[4]);
+#endif
+    printf("gradWL[0]: %g %g %g\n", pi->primitives.gradients.rho[0],
+           pi->primitives.gradients.rho[1], pi->primitives.gradients.rho[2]);
+    printf("gradWL[1]: %g %g %g\n", pi->primitives.gradients.v[0][0],
+           pi->primitives.gradients.v[0][1], pi->primitives.gradients.v[0][2]);
+    printf("gradWL[2]: %g %g %g\n", pi->primitives.gradients.v[1][0],
+           pi->primitives.gradients.v[1][1], pi->primitives.gradients.v[1][2]);
+    printf("gradWL[3]: %g %g %g\n", pi->primitives.gradients.v[2][0],
+           pi->primitives.gradients.v[2][1], pi->primitives.gradients.v[2][2]);
+    printf("gradWL[4]: %g %g %g\n", pi->primitives.gradients.P[0],
+           pi->primitives.gradients.P[1], pi->primitives.gradients.P[2]);
+    printf("WL': %g %g %g %g %g\n", Wi[0], Wi[1], Wi[2], Wi[3], Wi[4]);
+    printf("WR: %g %g %g %g %g\n", pj->primitives.rho, pj->primitives.v[0],
+           pj->primitives.v[1], pj->primitives.v[2], pj->primitives.P);
+#ifdef USE_GRADIENTS
+    printf("dWR: %g %g %g %g %g\n", dWj[0], dWj[1], dWj[2], dWj[3], dWj[4]);
+#endif
+    printf("gradWR[0]: %g %g %g\n", pj->primitives.gradients.rho[0],
+           pj->primitives.gradients.rho[1], pj->primitives.gradients.rho[2]);
+    printf("gradWR[1]: %g %g %g\n", pj->primitives.gradients.v[0][0],
+           pj->primitives.gradients.v[0][1], pj->primitives.gradients.v[0][2]);
+    printf("gradWR[2]: %g %g %g\n", pj->primitives.gradients.v[1][0],
+           pj->primitives.gradients.v[1][1], pj->primitives.gradients.v[1][2]);
+    printf("gradWR[3]: %g %g %g\n", pj->primitives.gradients.v[2][0],
+           pj->primitives.gradients.v[2][1], pj->primitives.gradients.v[2][2]);
+    printf("gradWR[4]: %g %g %g\n", pj->primitives.gradients.P[0],
+           pj->primitives.gradients.P[1], pj->primitives.gradients.P[2]);
+    printf("WR': %g %g %g %g %g\n", Wj[0], Wj[1], Wj[2], Wj[3], Wj[4]);
+    error("Negative density or pressure!\n");
+  }
+
+  float totflux[5];
+  riemann_solve_for_flux(Wi, Wj, n_unit, vij, totflux);
+
+  /* Update conserved variables */
+  /* eqn. (16) */
+  pi->conserved.flux.mass -= mindt * A * totflux[0];
+  pi->conserved.flux.momentum[0] -= mindt * A * totflux[1];
+  pi->conserved.flux.momentum[1] -= mindt * A * totflux[2];
+  pi->conserved.flux.momentum[2] -= mindt * A * totflux[3];
+  pi->conserved.flux.energy -= mindt * A * totflux[4];
+
+#ifndef SHADOWFAX_TOTAL_ENERGY
+  float ekin = 0.5f * (pi->primitives.v[0] * pi->primitives.v[0] +
+                       pi->primitives.v[1] * pi->primitives.v[1] +
+                       pi->primitives.v[2] * pi->primitives.v[2]);
+  pi->conserved.flux.energy += mindt * A * totflux[1] * pi->primitives.v[0];
+  pi->conserved.flux.energy += mindt * A * totflux[2] * pi->primitives.v[1];
+  pi->conserved.flux.energy += mindt * A * totflux[3] * pi->primitives.v[2];
+  pi->conserved.flux.energy -= mindt * A * totflux[0] * ekin;
+#endif
+
+  /* here is how it works:
+     Mode will only be 1 if both particles are ACTIVE and they are in the same
+     cell. In this case, this method IS the flux calculation for particle j, and
+     we HAVE TO UPDATE it.
+     Mode 0 can mean several things: it can mean that particle j is INACTIVE, in
+     which case we NEED TO UPDATE it, since otherwise the flux is lost from the
+     system and the conserved variable is not conserved.
+     It can also mean that particle j sits in another cell and is ACTIVE. In
+     this case, the flux exchange for particle j is done TWICE and we SHOULD NOT
+     UPDATE particle j.
+     ==> we update particle j if (MODE IS 1) OR (j IS INACTIVE)
+  */
+  if (mode == 1 || pj->force.active == 0) {
+    pj->conserved.flux.mass += mindt * A * totflux[0];
+    pj->conserved.flux.momentum[0] += mindt * A * totflux[1];
+    pj->conserved.flux.momentum[1] += mindt * A * totflux[2];
+    pj->conserved.flux.momentum[2] += mindt * A * totflux[3];
+    pj->conserved.flux.energy += mindt * A * totflux[4];
+
+#ifndef SHADOWFAX_TOTAL_ENERGY
+    ekin = 0.5f * (pj->primitives.v[0] * pj->primitives.v[0] +
+                   pj->primitives.v[1] * pj->primitives.v[1] +
+                   pj->primitives.v[2] * pj->primitives.v[2]);
+    pj->conserved.flux.energy -= mindt * A * totflux[1] * pj->primitives.v[0];
+    pj->conserved.flux.energy -= mindt * A * totflux[2] * pj->primitives.v[1];
+    pj->conserved.flux.energy -= mindt * A * totflux[3] * pj->primitives.v[2];
+    pj->conserved.flux.energy += mindt * A * totflux[0] * ekin;
+#endif
+  }
+}
+
+/**
+ * @brief Flux calculation between particle i and particle j
+ *
+ * This method calls runner_iact_fluxes_common with mode 1.
+ *
+ * @param r2 Squared distance between particle i and particle j.
+ * @param dx Distance vector between the particles (dx = pi->x - pj->x).
+ * @param hi Smoothing length of particle i.
+ * @param hj Smoothing length of particle j.
+ * @param pi Particle i.
+ * @param pj Particle j.
+ */
+__attribute__((always_inline)) INLINE static void runner_iact_force(
+    float r2, float *dx, float hi, float hj, struct part *pi, struct part *pj) {
+
+  runner_iact_fluxes_common(r2, dx, hi, hj, pi, pj, 1);
+}
+
+/**
+ * @brief Flux calculation between particle i and particle j: non-symmetric
+ * version
+ *
+ * This method calls runner_iact_fluxes_common with mode 0.
+ *
+ * @param r2 Squared distance between particle i and particle j.
+ * @param dx Distance vector between the particles (dx = pi->x - pj->x).
+ * @param hi Smoothing length of particle i.
+ * @param hj Smoothing length of particle j.
+ * @param pi Particle i.
+ * @param pj Particle j.
+ */
+__attribute__((always_inline)) INLINE static void runner_iact_nonsym_force(
+    float r2, float *dx, float hi, float hj, struct part *pi, struct part *pj) {
+
+  runner_iact_fluxes_common(r2, dx, hi, hj, pi, pj, 0);
+}
+
+//// EMPTY VECTORIZED VERSIONS (gradients methods are missing...)
+
+__attribute__((always_inline)) INLINE static void runner_iact_vec_density(
+    float *R2, float *Dx, float *Hi, float *Hj, struct part **pi,
+    struct part **pj) {}
+
+__attribute__((always_inline)) INLINE static void
+runner_iact_nonsym_vec_density(float *R2, float *Dx, float *Hi, float *Hj,
+                               struct part **pi, struct part **pj) {}
+
+__attribute__((always_inline)) INLINE static void runner_iact_vec_force(
+    float *R2, float *Dx, float *Hi, float *Hj, struct part **pi,
+    struct part **pj) {}
+
+__attribute__((always_inline)) INLINE static void runner_iact_nonsym_vec_force(
+    float *R2, float *Dx, float *Hi, float *Hj, struct part **pi,
+    struct part **pj) {}
diff --git a/src/hydro/Shadowswift/hydro_io.h b/src/hydro/Shadowswift/hydro_io.h
new file mode 100644
index 0000000000000000000000000000000000000000..de45b5d68c78f96cee3030eadef4b4410e550c22
--- /dev/null
+++ b/src/hydro/Shadowswift/hydro_io.h
@@ -0,0 +1,183 @@
+/*******************************************************************************
+ * This file is part of SWIFT.
+ * Copyright (c) 2016 Bert Vandenbroucke (bert.vandenbroucke@gmail.com)
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as published
+ * by the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public License
+ * along with this program.  If not, see <http://www.gnu.org/licenses/>.
+ *
+ ******************************************************************************/
+
+#include "adiabatic_index.h"
+#include "equation_of_state.h"
+#include "hydro_gradients.h"
+#include "hydro_slope_limiters.h"
+#include "io_properties.h"
+#include "riemann.h"
+
+/**
+ * @brief Specifies which particle fields to read from a dataset
+ *
+ * @param parts The particle array.
+ * @param list The list of i/o properties to read.
+ * @param num_fields The number of i/o fields to read.
+ */
+void hydro_read_particles(struct part* parts, struct io_props* list,
+                          int* num_fields) {
+
+  *num_fields = 8;
+
+  /* List what we want to read */
+  list[0] = io_make_input_field("Coordinates", DOUBLE, 3, COMPULSORY,
+                                UNIT_CONV_LENGTH, parts, x);
+  list[1] = io_make_input_field("Velocities", FLOAT, 3, COMPULSORY,
+                                UNIT_CONV_SPEED, parts, v);
+  list[2] = io_make_input_field("Masses", FLOAT, 1, COMPULSORY, UNIT_CONV_MASS,
+                                parts, conserved.mass);
+  list[3] = io_make_input_field("SmoothingLength", FLOAT, 1, COMPULSORY,
+                                UNIT_CONV_LENGTH, parts, h);
+  list[4] = io_make_input_field("InternalEnergy", FLOAT, 1, COMPULSORY,
+                                UNIT_CONV_ENERGY_PER_UNIT_MASS, parts,
+                                conserved.energy);
+  list[5] = io_make_input_field("ParticleIDs", ULONGLONG, 1, COMPULSORY,
+                                UNIT_CONV_NO_UNITS, parts, id);
+  list[6] = io_make_input_field("Accelerations", FLOAT, 3, OPTIONAL,
+                                UNIT_CONV_ACCELERATION, parts, a_hydro);
+  list[7] = io_make_input_field("Density", FLOAT, 1, OPTIONAL,
+                                UNIT_CONV_DENSITY, parts, primitives.rho);
+}
+
+/**
+ * @brief Get the internal energy of a particle
+ *
+ * @param e #engine.
+ * @param p Particle.
+ * @return Internal energy of the particle
+ */
+float convert_u(struct engine* e, struct part* p) {
+  if (p->primitives.rho > 0.) {
+    return gas_internal_energy_from_pressure(p->primitives.rho,
+                                             p->primitives.P);
+  } else {
+    return 0.;
+  }
+}
+
+/**
+ * @brief Get the entropic function of a particle
+ *
+ * @param e #engine.
+ * @param p Particle.
+ * @return Entropic function of the particle
+ */
+float convert_A(struct engine* e, struct part* p) {
+  if (p->primitives.rho > 0.) {
+    return gas_entropy_from_pressure(p->primitives.rho, p->primitives.P);
+  } else {
+    return 0.;
+  }
+}
+
+/**
+ * @brief Get the total energy of a particle
+ *
+ * @param e #engine.
+ * @param p Particle.
+ * @return Total energy of the particle
+ */
+float convert_Etot(struct engine* e, struct part* p) {
+#ifdef SHADOWFAX_TOTAL_ENERGY
+  return p->conserved.energy;
+#else
+  if (p->conserved.mass > 0.) {
+    float momentum2;
+
+    momentum2 = p->conserved.momentum[0] * p->conserved.momentum[0] +
+                p->conserved.momentum[1] * p->conserved.momentum[1] +
+                p->conserved.momentum[2] * p->conserved.momentum[2];
+
+    return p->conserved.energy + 0.5f * momentum2 / p->conserved.mass;
+  } else {
+    return 0.;
+  }
+#endif
+}
+
+/**
+ * @brief Specifies which particle fields to write to a dataset
+ *
+ * @param parts The particle array.
+ * @param list The list of i/o properties to write.
+ * @param num_fields The number of i/o fields to write.
+ */
+void hydro_write_particles(struct part* parts, struct io_props* list,
+                           int* num_fields) {
+
+  *num_fields = 13;
+
+  /* List what we want to write */
+  list[0] = io_make_output_field("Coordinates", DOUBLE, 3, UNIT_CONV_LENGTH,
+                                 parts, x);
+  list[1] = io_make_output_field("Velocities", FLOAT, 3, UNIT_CONV_SPEED, parts,
+                                 primitives.v);
+  list[2] = io_make_output_field("Masses", FLOAT, 1, UNIT_CONV_MASS, parts,
+                                 conserved.mass);
+  list[3] = io_make_output_field("SmoothingLength", FLOAT, 1, UNIT_CONV_LENGTH,
+                                 parts, h);
+  list[4] = io_make_output_field_convert_part("InternalEnergy", FLOAT, 1,
+                                              UNIT_CONV_ENERGY_PER_UNIT_MASS,
+                                              parts, primitives.P, convert_u);
+  list[5] = io_make_output_field("ParticleIDs", ULONGLONG, 1,
+                                 UNIT_CONV_NO_UNITS, parts, id);
+  list[6] = io_make_output_field("Acceleration", FLOAT, 3,
+                                 UNIT_CONV_ACCELERATION, parts, a_hydro);
+  list[7] = io_make_output_field("Density", FLOAT, 1, UNIT_CONV_DENSITY, parts,
+                                 primitives.rho);
+  list[8] = io_make_output_field("Volume", FLOAT, 1, UNIT_CONV_VOLUME, parts,
+                                 cell.volume);
+  list[9] = io_make_output_field("GradDensity", FLOAT, 3, UNIT_CONV_DENSITY,
+                                 parts, primitives.gradients.rho);
+  list[10] = io_make_output_field_convert_part(
+      "Entropy", FLOAT, 1, UNIT_CONV_ENTROPY, parts, primitives.P, convert_A);
+  list[11] = io_make_output_field("Pressure", FLOAT, 1, UNIT_CONV_PRESSURE,
+                                  parts, primitives.P);
+  list[12] =
+      io_make_output_field_convert_part("TotEnergy", FLOAT, 1, UNIT_CONV_ENERGY,
+                                        parts, conserved.energy, convert_Etot);
+}
+
+/**
+ * @brief Writes the current model of SPH to the file
+ * @param h_grpsph The HDF5 group in which to write
+ */
+void writeSPHflavour(hid_t h_grpsph) {
+  /* Gradient information */
+  io_write_attribute_s(h_grpsph, "Gradient reconstruction model",
+                       HYDRO_GRADIENT_IMPLEMENTATION);
+
+  /* Slope limiter information */
+  io_write_attribute_s(h_grpsph, "Cell wide slope limiter model",
+                       HYDRO_SLOPE_LIMITER_CELL_IMPLEMENTATION);
+  io_write_attribute_s(h_grpsph, "Piecewise slope limiter model",
+                       HYDRO_SLOPE_LIMITER_FACE_IMPLEMENTATION);
+
+  /* Riemann solver information */
+  io_write_attribute_s(h_grpsph, "Riemann solver type",
+                       RIEMANN_SOLVER_IMPLEMENTATION);
+}
+
+/**
+ * @brief Are we writing entropy in the internal energy field ?
+ *
+ * @return 1 if entropy is in 'internal energy', 0 otherwise.
+ */
+int writeEntropyFlag() { return 0; }
diff --git a/src/hydro/Shadowswift/hydro_part.h b/src/hydro/Shadowswift/hydro_part.h
new file mode 100644
index 0000000000000000000000000000000000000000..43237d9c80a5dfa5bed2fe409281b4f89b6aa172
--- /dev/null
+++ b/src/hydro/Shadowswift/hydro_part.h
@@ -0,0 +1,185 @@
+/*******************************************************************************
+ * This file is part of SWIFT.
+ * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
+ *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
+ *               2016 Bert Vandenbroucke (bert.vandenbroucke@gmail.com)
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as published
+ * by the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public License
+ * along with this program.  If not, see <http://www.gnu.org/licenses/>.
+ *
+ ******************************************************************************/
+
+#include "cooling_struct.h"
+#include "voronoi_cell.h"
+
+/* Extra particle data not needed during the computation. */
+struct xpart {
+
+  /* Offset between current position and position at last tree rebuild. */
+  float x_diff[3];
+
+  /* Velocity at the last full step. */
+  float v_full[3];
+
+  /* Additional data used to record cooling information */
+  struct cooling_xpart_data cooling_data;
+
+} SWIFT_STRUCT_ALIGN;
+
+/* Data of a single particle. */
+struct part {
+
+  /* Particle ID. */
+  long long id;
+
+  /* Associated gravitas. */
+  struct gpart *gpart;
+
+  /* Particle position. */
+  double x[3];
+
+  /* Particle predicted velocity. */
+  float v[3];
+
+  /* Particle acceleration. */
+  float a_hydro[3];
+
+  /* Particle cutoff radius. */
+  float h;
+
+  /* The primitive hydrodynamical variables. */
+  struct {
+
+    /* Fluid velocity. */
+    float v[3];
+
+    /* Density. */
+    float rho;
+
+    /* Pressure. */
+    float P;
+
+    /* Gradients of the primitive variables. */
+    struct {
+
+      /* Density gradients. */
+      float rho[3];
+
+      /* Fluid velocity gradients. */
+      float v[3][3];
+
+      /* Pressure gradients. */
+      float P[3];
+
+    } gradients;
+
+    /* Quantities needed by the slope limiter. */
+    struct {
+
+      /* Extreme values of the density among the neighbours. */
+      float rho[2];
+
+      /* Extreme values of the fluid velocity among the neighbours. */
+      float v[3][2];
+
+      /* Extreme values of the pressure among the neighbours. */
+      float P[2];
+
+      /* Maximal distance to all neighbouring faces. */
+      float maxr;
+
+    } limiter;
+
+  } primitives;
+
+  /* The conserved hydrodynamical variables. */
+  struct {
+
+    /* Fluid momentum. */
+    float momentum[3];
+
+    /* Fluid mass (this field already exists outside of this struct as well). */
+    float mass;
+
+    /* Fluid thermal energy (not per unit mass!). */
+    float energy;
+
+    /* Fluxes. */
+    struct {
+
+      /* Mass flux. */
+      float mass;
+
+      /* Momentum flux. */
+      float momentum[3];
+
+      /* Energy flux. */
+      float energy;
+
+    } flux;
+
+  } conserved;
+
+  /* Variables used for timestep calculation (currently not used). */
+  struct {
+
+    /* Maximum fluid velocity among all neighbours. */
+    float vmax;
+
+  } timestepvars;
+
+  /* Quantities used during the volume (=density) loop. */
+  struct {
+
+    /* Derivative of particle number density. */
+    float wcount_dh;
+
+    /* Particle number density. */
+    float wcount;
+
+  } density;
+
+  /* Quantities used during the force loop. */
+  struct {
+
+    /* Needed to drift the primitive variables. */
+    float h_dt;
+
+    /* Physical time step of the particle. */
+    float dt;
+
+    /* Active flag. */
+    char active;
+
+    /* Actual velocity of the particle. */
+    float v_full[3];
+
+  } force;
+
+  /* Time-step length */
+  timebin_t time_bin;
+
+#ifdef SWIFT_DEBUG_CHECKS
+
+  /* Time of the last drift */
+  integertime_t ti_drift;
+
+  /* Time of the last kick */
+  integertime_t ti_kick;
+
+#endif
+
+  /* Voronoi cell. */
+  struct voronoi_cell cell;
+
+} SWIFT_STRUCT_ALIGN;
diff --git a/src/hydro/Shadowswift/hydro_slope_limiters.h b/src/hydro/Shadowswift/hydro_slope_limiters.h
new file mode 100644
index 0000000000000000000000000000000000000000..a443007b4df3833964b7ec1780e2bc55bf02a03e
--- /dev/null
+++ b/src/hydro/Shadowswift/hydro_slope_limiters.h
@@ -0,0 +1,94 @@
+/*******************************************************************************
+ * This file is part of SWIFT.
+ * Copyright (c) 2016 Bert Vandenbroucke (bert.vandenbroucke@gmail.com)
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as published
+ * by the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public License
+ * along with this program.  If not, see <http://www.gnu.org/licenses/>.
+ *
+ ******************************************************************************/
+
+#ifndef SWIFT_HYDRO_SLOPE_LIMITERS_H
+#define SWIFT_HYDRO_SLOPE_LIMITERS_H
+
+#include "dimension.h"
+#include "kernel_hydro.h"
+
+#ifdef SHADOWFAX_SLOPE_LIMITER_PER_FACE
+
+#define HYDRO_SLOPE_LIMITER_FACE_IMPLEMENTATION \
+  "GIZMO piecewise slope limiter (Hopkins 2015)"
+#include "hydro_slope_limiters_face.h"
+
+#else
+
+#define HYDRO_SLOPE_LIMITER_FACE_IMPLEMENTATION "No piecewise slope limiter"
+
+/**
+ * @brief Slope limit the slopes at the interface between two particles
+ *
+ * @param Wi Hydrodynamic variables of particle i.
+ * @param Wj Hydrodynamic variables of particle j.
+ * @param dWi Difference between the hydrodynamic variables of particle i at the
+ * position of particle i and at the interface position.
+ * @param dWj Difference between the hydrodynamic variables of particle j at the
+ * position of particle j and at the interface position.
+ * @param xij_i Relative position vector of the interface w.r.t. particle i.
+ * @param xij_j Relative position vector of the interface w.r.t. partilce j.
+ * @param r Distance between particle i and particle j.
+ */
+__attribute__((always_inline)) INLINE static void hydro_slope_limit_face(
+    float *Wi, float *Wj, float *dWi, float *dWj, float *xij_i, float *xij_j,
+    float r) {}
+
+#endif
+
+#ifdef SHADOWFAX_SLOPE_LIMITER_CELL_WIDE
+
+#define HYDRO_SLOPE_LIMITER_CELL_IMPLEMENTATION \
+  "Cell wide slope limiter (Springel 2010)"
+#include "hydro_slope_limiters_cell.h"
+
+#else
+
+#define HYDRO_SLOPE_LIMITER_CELL_IMPLEMENTATION "No cell wide slope limiter"
+
+/**
+ * @brief Initialize variables for the cell wide slope limiter
+ *
+ * @param p Particle.
+ */
+__attribute__((always_inline)) INLINE static void hydro_slope_limit_cell_init(
+    struct part *p) {}
+
+/**
+ * @brief Collect information for the cell wide slope limiter during the
+ * neighbour loop
+ *
+ * @param pi Particle i.
+ * @param pj Particle j.
+ * @param r Distance between particle i and particle j.
+ */
+__attribute__((always_inline)) INLINE static void
+hydro_slope_limit_cell_collect(struct part *pi, struct part *pj, float r) {}
+
+/**
+ * @brief Slope limit cell gradients
+ *
+ * @param p Particle.
+ */
+__attribute__((always_inline)) INLINE static void hydro_slope_limit_cell(
+    struct part *p) {}
+
+#endif
+
+#endif  // SWIFT_HYDRO_SLOPE_LIMITERS_H
diff --git a/src/hydro/Shadowswift/hydro_slope_limiters_cell.h b/src/hydro/Shadowswift/hydro_slope_limiters_cell.h
new file mode 100644
index 0000000000000000000000000000000000000000..a7b3f7511fa7cd247fd9d2399cd200d8d943630e
--- /dev/null
+++ b/src/hydro/Shadowswift/hydro_slope_limiters_cell.h
@@ -0,0 +1,141 @@
+/*******************************************************************************
+ * This file is part of SWIFT.
+ * Copyright (c) 2016 Bert Vandenbroucke (bert.vandenbroucke@gmail.com)
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as published
+ * by the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public License
+ * along with this program.  If not, see <http://www.gnu.org/licenses/>.
+ *
+ ******************************************************************************/
+
+#include <float.h>
+
+/**
+ * @brief Initialize variables for the cell wide slope limiter
+ *
+ * @param p Particle.
+ */
+__attribute__((always_inline)) INLINE static void hydro_slope_limit_cell_init(
+    struct part* p) {
+
+  p->primitives.limiter.rho[0] = FLT_MAX;
+  p->primitives.limiter.rho[1] = -FLT_MAX;
+  p->primitives.limiter.v[0][0] = FLT_MAX;
+  p->primitives.limiter.v[0][1] = -FLT_MAX;
+  p->primitives.limiter.v[1][0] = FLT_MAX;
+  p->primitives.limiter.v[1][1] = -FLT_MAX;
+  p->primitives.limiter.v[2][0] = FLT_MAX;
+  p->primitives.limiter.v[2][1] = -FLT_MAX;
+  p->primitives.limiter.P[0] = FLT_MAX;
+  p->primitives.limiter.P[1] = -FLT_MAX;
+
+  p->primitives.limiter.maxr = -FLT_MAX;
+}
+
+/**
+ * @brief Collect information for the cell wide slope limiter during the
+ * neighbour loop
+ *
+ * @param pi Particle i.
+ * @param pj Particle j.
+ * @param r Distance between particle i and particle j.
+ */
+__attribute__((always_inline)) INLINE static void
+hydro_slope_limit_cell_collect(struct part* pi, struct part* pj, float r) {
+
+  /* basic slope limiter: collect the maximal and the minimal value for the
+   * primitive variables among the ngbs */
+  pi->primitives.limiter.rho[0] =
+      fmin(pj->primitives.rho, pi->primitives.limiter.rho[0]);
+  pi->primitives.limiter.rho[1] =
+      fmax(pj->primitives.rho, pi->primitives.limiter.rho[1]);
+
+  pi->primitives.limiter.v[0][0] =
+      fmin(pj->primitives.v[0], pi->primitives.limiter.v[0][0]);
+  pi->primitives.limiter.v[0][1] =
+      fmax(pj->primitives.v[0], pi->primitives.limiter.v[0][1]);
+  pi->primitives.limiter.v[1][0] =
+      fmin(pj->primitives.v[1], pi->primitives.limiter.v[1][0]);
+  pi->primitives.limiter.v[1][1] =
+      fmax(pj->primitives.v[1], pi->primitives.limiter.v[1][1]);
+  pi->primitives.limiter.v[2][0] =
+      fmin(pj->primitives.v[2], pi->primitives.limiter.v[2][0]);
+  pi->primitives.limiter.v[2][1] =
+      fmax(pj->primitives.v[2], pi->primitives.limiter.v[2][1]);
+
+  pi->primitives.limiter.P[0] =
+      fmin(pj->primitives.P, pi->primitives.limiter.P[0]);
+  pi->primitives.limiter.P[1] =
+      fmax(pj->primitives.P, pi->primitives.limiter.P[1]);
+
+  pi->primitives.limiter.maxr = fmax(r, pi->primitives.limiter.maxr);
+}
+
+/**
+ * @brief Apply the cell wide slope limiter to the gradient of a single quantity
+ *
+ * This corresponds to equation (B2) in Hopkins (2015).
+ *
+ * @param grad Gradient to slope limit
+ * @param qval Value of the quantity at the cell generator
+ * @param qmin Minimal value of the quantity among all cell neighbours
+ * @param qmax Maximal value of the quantity among all cell neighbours
+ * @param maxr Maximal distance between the generator and all of its neighbours
+ */
+__attribute__((always_inline)) INLINE static void
+hydro_slope_limit_cell_quantity(float* grad, float qval, float qmin, float qmax,
+                                float maxr) {
+
+  float gradtrue, gradmax, gradmin, alpha;
+
+  gradtrue = sqrtf(grad[0] * grad[0] + grad[1] * grad[1] + grad[2] * grad[2]);
+  if (gradtrue) {
+    gradtrue *= maxr;
+    gradmax = qmax - qval;
+    gradmin = qval - qmin;
+    alpha = fmin(1.0f, fmin(gradmax / gradtrue, gradmin / gradtrue));
+    grad[0] *= alpha;
+    grad[1] *= alpha;
+    grad[2] *= alpha;
+  }
+}
+
+/**
+ * @brief Slope limit cell gradients
+ *
+ * @param p Particle.
+ */
+__attribute__((always_inline)) INLINE static void hydro_slope_limit_cell(
+    struct part* p) {
+
+  hydro_slope_limit_cell_quantity(
+      p->primitives.gradients.rho, p->primitives.rho,
+      p->primitives.limiter.rho[0], p->primitives.limiter.rho[1],
+      p->primitives.limiter.maxr);
+
+  hydro_slope_limit_cell_quantity(
+      p->primitives.gradients.v[0], p->primitives.v[0],
+      p->primitives.limiter.v[0][0], p->primitives.limiter.v[0][1],
+      p->primitives.limiter.maxr);
+  hydro_slope_limit_cell_quantity(
+      p->primitives.gradients.v[1], p->primitives.v[1],
+      p->primitives.limiter.v[1][0], p->primitives.limiter.v[1][1],
+      p->primitives.limiter.maxr);
+  hydro_slope_limit_cell_quantity(
+      p->primitives.gradients.v[2], p->primitives.v[2],
+      p->primitives.limiter.v[2][0], p->primitives.limiter.v[2][1],
+      p->primitives.limiter.maxr);
+
+  hydro_slope_limit_cell_quantity(
+      p->primitives.gradients.P, p->primitives.P, p->primitives.limiter.P[0],
+      p->primitives.limiter.P[1], p->primitives.limiter.maxr);
+}
diff --git a/src/hydro/Shadowswift/hydro_slope_limiters_face.h b/src/hydro/Shadowswift/hydro_slope_limiters_face.h
new file mode 100644
index 0000000000000000000000000000000000000000..7ae5dd2eb073d9aae8ab6f2efffdf8df15b4bb4a
--- /dev/null
+++ b/src/hydro/Shadowswift/hydro_slope_limiters_face.h
@@ -0,0 +1,121 @@
+/*******************************************************************************
+ * This file is part of SWIFT.
+ * Copyright (c) 2016 Bert Vandenbroucke (bert.vandenbroucke@gmail.com)
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as published
+ * by the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public License
+ * along with this program.  If not, see <http://www.gnu.org/licenses/>.
+ *
+ ******************************************************************************/
+
+/**
+ * @brief Slope limit a single quantity at the interface
+ *
+ * @param phi_i Value of the quantity at the particle position.
+ * @param phi_j Value of the quantity at the neighbouring particle position.
+ * @param phi_mid0 Extrapolated value of the quantity at the interface position.
+ * @param xij_norm Distance between the particle position and the interface
+ * position.
+ * @param r Distance between the particle and its neighbour.
+ * @return The slope limited difference between the quantity at the particle
+ * position and the quantity at the interface position.
+ */
+__attribute__((always_inline)) INLINE static float
+hydro_slope_limit_face_quantity(float phi_i, float phi_j, float phi_mid0,
+                                float xij_norm, float r) {
+
+  float delta1, delta2, phimin, phimax, phibar, phiplus, phiminus, phi_mid;
+  const float psi1 = 0.5f;
+  const float psi2 = 0.25f;
+
+  if (phi_i == phi_j) {
+    return 0.0f;
+  }
+
+  delta1 = psi1 * fabs(phi_i - phi_j);
+  delta2 = psi2 * fabs(phi_i - phi_j);
+
+  phimin = fmin(phi_i, phi_j);
+  phimax = fmax(phi_i, phi_j);
+
+  phibar = phi_i + xij_norm / r * (phi_j - phi_i);
+
+  /* if sign(phimax+delta1) == sign(phimax) */
+  if ((phimax + delta1) * phimax > 0.0f) {
+    phiplus = phimax + delta1;
+  } else {
+    phiplus = phimax / (1.0f + delta1 / fabs(phimax));
+  }
+
+  /* if sign(phimin-delta1) == sign(phimin) */
+  if ((phimin - delta1) * phimin > 0.0f) {
+    phiminus = phimin - delta1;
+  } else {
+    phiminus = phimin / (1.0f + delta1 / fabs(phimin));
+  }
+
+  if (phi_i < phi_j) {
+    phi_mid = fmax(phiminus, fmin(phibar + delta2, phi_mid0));
+  } else {
+    phi_mid = fmin(phiplus, fmax(phibar - delta2, phi_mid0));
+  }
+
+  return phi_mid - phi_i;
+}
+
+/**
+ * @brief Slope limit the slopes at the interface between two particles
+ *
+ * @param Wi Hydrodynamic variables of particle i.
+ * @param Wj Hydrodynamic variables of particle j.
+ * @param dWi Difference between the hydrodynamic variables of particle i at the
+ * position of particle i and at the interface position.
+ * @param dWj Difference between the hydrodynamic variables of particle j at the
+ * position of particle j and at the interface position.
+ * @param xij_i Relative position vector of the interface w.r.t. particle i.
+ * @param xij_j Relative position vector of the interface w.r.t. partilce j.
+ * @param r Distance between particle i and particle j.
+ */
+__attribute__((always_inline)) INLINE static void hydro_slope_limit_face(
+    float *Wi, float *Wj, float *dWi, float *dWj, float *xij_i, float *xij_j,
+    float r) {
+
+  float xij_i_norm, xij_j_norm;
+
+  xij_i_norm =
+      sqrtf(xij_i[0] * xij_i[0] + xij_i[1] * xij_i[1] + xij_i[2] * xij_i[2]);
+
+  xij_j_norm =
+      sqrtf(xij_j[0] * xij_j[0] + xij_j[1] * xij_j[1] + xij_j[2] * xij_j[2]);
+
+  dWi[0] = hydro_slope_limit_face_quantity(Wi[0], Wj[0], Wi[0] + dWi[0],
+                                           xij_i_norm, r);
+  dWi[1] = hydro_slope_limit_face_quantity(Wi[1], Wj[1], Wi[1] + dWi[1],
+                                           xij_i_norm, r);
+  dWi[2] = hydro_slope_limit_face_quantity(Wi[2], Wj[2], Wi[2] + dWi[2],
+                                           xij_i_norm, r);
+  dWi[3] = hydro_slope_limit_face_quantity(Wi[3], Wj[3], Wi[3] + dWi[3],
+                                           xij_i_norm, r);
+  dWi[4] = hydro_slope_limit_face_quantity(Wi[4], Wj[4], Wi[4] + dWi[4],
+                                           xij_i_norm, r);
+
+  dWj[0] = hydro_slope_limit_face_quantity(Wj[0], Wi[0], Wj[0] + dWj[0],
+                                           xij_j_norm, r);
+  dWj[1] = hydro_slope_limit_face_quantity(Wj[1], Wi[1], Wj[1] + dWj[1],
+                                           xij_j_norm, r);
+  dWj[2] = hydro_slope_limit_face_quantity(Wj[2], Wi[2], Wj[2] + dWj[2],
+                                           xij_j_norm, r);
+  dWj[3] = hydro_slope_limit_face_quantity(Wj[3], Wi[3], Wj[3] + dWj[3],
+                                           xij_j_norm, r);
+  dWj[4] = hydro_slope_limit_face_quantity(Wj[4], Wi[4], Wj[4] + dWj[4],
+                                           xij_j_norm, r);
+}
diff --git a/src/hydro/Shadowswift/voronoi1d_algorithm.h b/src/hydro/Shadowswift/voronoi1d_algorithm.h
new file mode 100644
index 0000000000000000000000000000000000000000..74cc5f1dbf3a2d72df55ce73de0321b5493193a7
--- /dev/null
+++ b/src/hydro/Shadowswift/voronoi1d_algorithm.h
@@ -0,0 +1,192 @@
+/*******************************************************************************
+ * This file is part of SWIFT.
+ * Copyright (c) 2016 Bert Vandenbroucke (bert.vandenbroucke@gmail.com).
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as published
+ * by the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public License
+ * along with this program.  If not, see <http://www.gnu.org/licenses/>.
+ *
+ ******************************************************************************/
+
+#ifndef SWIFT_VORONOIXD_ALGORITHM_H
+#define SWIFT_VORONOIXD_ALGORITHM_H
+
+#include <math.h>
+#include <stdlib.h>
+#include "error.h"
+#include "inline.h"
+#include "voronoi1d_cell.h"
+
+/**
+ * @brief Store the extents of the simulation box in the global variables.
+ *
+ * @param anchor Corner of the simulation box with the lowest coordinate values.
+ * @param side Side lengths of the simulation box.
+ */
+__attribute__((always_inline)) INLINE static void voronoi_set_box(
+    const float *anchor, const float *side) {}
+
+/**
+ * @brief Initialize a 1D Voronoi cell.
+ *
+ * Sets the positions of left and right neighbours to very large values, the
+ * generator position to the given particle position, and all other quantities
+ * to zero.
+ *
+ * @param cell 1D Voronoi cell to initialize.
+ * @param x Position of the generator of the cell.
+ * @param anchor Anchor of the simulation box.
+ * @param side Side lengths of the simulation box.
+ */
+__attribute__((always_inline)) INLINE void voronoi_cell_init(
+    struct voronoi_cell *cell, const double *x, const double *anchor,
+    const double *side) {
+  cell->x = x[0];
+  cell->xL = anchor[0] - cell->x;
+  cell->xR = anchor[0] + side[0] - cell->x;
+  cell->idL = 0;
+  cell->idR = 0;
+  cell->volume = 0.0f;
+  cell->centroid = 0.0f;
+}
+
+/**
+ * @brief Interact a 1D Voronoi cell with a particle with given relative
+ * position and ID.
+ *
+ * This method checks if the given relative position is closer to the cell
+ * generator than the current left or right neighbour and updates neighbours
+ * accordingly.
+ *
+ * @param cell 1D Voronoi cell.
+ * @param dx Relative position of the interacting generator w.r.t. the cell
+ * generator (in fact: dx = generator - neighbour).
+ * @param id ID of the interacting neighbour.
+ */
+__attribute__((always_inline)) INLINE void voronoi_cell_interact(
+    struct voronoi_cell *cell, const float *dx, unsigned long long id) {
+
+  /* Check for stupidity */
+  if (dx[0] == 0.0f) {
+    error("Cannot interact a Voronoi cell generator with itself!");
+  }
+
+  if (-dx[0] < 0.0f) {
+    /* New left neighbour? */
+    if (-dx[0] > cell->xL) {
+      cell->xL = -dx[0];
+      cell->idL = id;
+    }
+  } else {
+    /* New right neighbour? */
+    if (-dx[0] < cell->xR) {
+      cell->xR = -dx[0];
+      cell->idR = id;
+    }
+  }
+}
+
+/**
+ * @brief Finalize a 1D Voronoi cell.
+ *
+ * Calculates the relative positions of the midpoints of the faces (which in
+ * this case are just the midpoints of the segments connecting the generator
+ * with the two neighbours) w.r.t. the generator, and the cell volume (length)
+ * and centroid (midpoint of the segment connecting the midpoints of the faces).
+ * This function returns the maximal radius at which a particle could still
+ * change the structure of the cell, i.e. twice the largest distance between
+ * the cell generator and one of its faces. If the cell has been interacted with
+ * all neighbours within this radius, we know for sure that the cell is
+ * complete.
+ *
+ * @param cell 1D Voronoi cell.
+ * @return Maximal radius that could still change the structure of the cell.
+ */
+__attribute__((always_inline)) INLINE float voronoi_cell_finalize(
+    struct voronoi_cell *cell) {
+
+  float xL, xR;
+  float max_radius;
+
+  max_radius = fmax(-cell->xL, cell->xR);
+  cell->xL = xL = 0.5f * cell->xL;
+  cell->xR = xR = 0.5f * cell->xR;
+
+  cell->volume = xR - xL;
+  cell->centroid = cell->x + 0.5f * (xL + xR);
+
+  return max_radius;
+}
+
+/**
+ * @brief Get the oriented surface area and midpoint of the face between a
+ * 1D Voronoi cell and the given neighbour.
+ *
+ * This function also checks if the given neighbour is in fact a neighbour of
+ * this cell. Since we perform gradient and flux calculations for all neighbour
+ * pairs within the smoothing length, which assumes the cell to be spherical,
+ * it can happen that this is not the case. It is the responsibility of the
+ * routine that calls this function to check for a zero return value and
+ * deal with it appropriately.
+ *
+ * For this specific case, we simply check if the neighbour is the left or
+ * right neighbour and set the surface area to 1. The midpoint is set to the
+ * relative position vector of the appropriate face.
+ *
+ * @param cell 1D Voronoi cell.
+ * @param ngb ID of a particle that is possibly a neighbour of this cell.
+ * @param midpoint Array to store the relative position of the face in.
+ * @return 0 if the given neighbour is not a neighbour, surface area 1.0f
+ * otherwise.
+ */
+__attribute__((always_inline)) INLINE float voronoi_get_face(
+    const struct voronoi_cell *cell, unsigned long long ngb, float *midpoint) {
+
+  if (ngb != cell->idL && ngb != cell->idR) {
+    /* this is perfectly possible: we interact with all particles within the
+       smoothing length, and they do not need to be all neighbours.
+       If this happens, we return 0, so that the flux method can return */
+    return 0.0f;
+  }
+
+  if (ngb == cell->idL) {
+    /* Left face */
+    midpoint[0] = cell->xL;
+  } else {
+    /* Right face */
+    midpoint[0] = cell->xR;
+  }
+  /* The other components of midpoint are just zero */
+  midpoint[1] = 0.0f;
+  midpoint[2] = 0.0f;
+
+  return 1.0f;
+}
+
+/**
+ * @brief Get the centroid of a 1D Voronoi cell.
+ *
+ * We store only the relevant coordinate of the centroid, but need to return
+ * a 3D vector.
+ *
+ * @param cell 1D Voronoi cell.
+ * @param centroid Array to store the centroid in.
+ */
+__attribute__((always_inline)) INLINE void voronoi_get_centroid(
+    const struct voronoi_cell *cell, float *centroid) {
+
+  centroid[0] = cell->centroid;
+  centroid[1] = 0.0f;
+  centroid[2] = 0.0f;
+}
+
+#endif  // SWIFT_VORONOIXD_ALGORITHM_H
diff --git a/src/hydro/Shadowswift/voronoi1d_cell.h b/src/hydro/Shadowswift/voronoi1d_cell.h
new file mode 100644
index 0000000000000000000000000000000000000000..29fff097c4129b1b3ac81f6e1d4291c4efcbce90
--- /dev/null
+++ b/src/hydro/Shadowswift/voronoi1d_cell.h
@@ -0,0 +1,48 @@
+/*******************************************************************************
+ * This file is part of SWIFT.
+ * Copyright (c) 2016 Bert Vandenbroucke (bert.vandenbroucke@gmail.com).
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as published
+ * by the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public License
+ * along with this program.  If not, see <http://www.gnu.org/licenses/>.
+ *
+ ******************************************************************************/
+
+#ifndef SWIFT_VORONOIXD_CELL_H
+#define SWIFT_VORONOIXD_CELL_H
+
+/* 1D Voronoi cell */
+struct voronoi_cell {
+
+  /* The position of the generator of the cell. */
+  double x;
+
+  /* The position of the left neighbour of the cell. */
+  double xL;
+
+  /* The position of the right neighbour of the cell. */
+  double xR;
+
+  /* The particle ID of the left neighbour. */
+  unsigned long long idL;
+
+  /* The particle ID of the right neighbour. */
+  unsigned long long idR;
+
+  /* The "volume" of the 1D cell. */
+  float volume;
+
+  /* The centroid of the cell. */
+  float centroid;
+};
+
+#endif  // SWIFT_VORONOIXD_CELL_H
diff --git a/src/hydro/Shadowswift/voronoi2d_algorithm.h b/src/hydro/Shadowswift/voronoi2d_algorithm.h
new file mode 100644
index 0000000000000000000000000000000000000000..ad4d565fbf817da7b7116a0c619a93b5aee1917c
--- /dev/null
+++ b/src/hydro/Shadowswift/voronoi2d_algorithm.h
@@ -0,0 +1,545 @@
+/*******************************************************************************
+ * This file is part of SWIFT.
+ * Copyright (c) 2017 Bert Vandenbroucke (bert.vandenbroucke@gmail.com).
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as published
+ * by the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public License
+ * along with this program.  If not, see <http://www.gnu.org/licenses/>.
+ *
+ ******************************************************************************/
+
+#ifndef SWIFT_VORONOIXD_ALGORITHM_H
+#define SWIFT_VORONOIXD_ALGORITHM_H
+
+#include <float.h>
+#include <math.h>
+#include <stdlib.h>
+#include "error.h"
+#include "inline.h"
+#include "minmax.h"
+#include "voronoi2d_cell.h"
+
+/* Check if the number of vertices exceeds the maximal allowed number */
+#define VORONOI_CHECK_SIZE()          \
+  if (nvert > VORONOI2D_MAXNUMVERT) { \
+    error("Too many vertices!");      \
+  }
+
+/* IDs used to keep track of cells neighbouring walls of the simulation box
+   This will only work if these IDs are never used for actual particles (which
+   in practice means you want to have less than 2^63-4 (~9e18) particles in your
+   simulation) */
+#define VORONOI2D_BOX_LEFT 18446744073709551602llu
+#define VORONOI2D_BOX_RIGHT 18446744073709551603llu
+#define VORONOI2D_BOX_TOP 18446744073709551604llu
+#define VORONOI2D_BOX_BOTTOM 18446744073709551605llu
+
+/**
+ * @brief Initialize a 2D Voronoi cell.
+ *
+ * @param cell 2D Voronoi cell to initialize.
+ * @param x Position of the generator of the cell.
+ * @param anchor Anchor of the simulation box containing all particles.
+ * @param side Side lengths of the simulation box containing all particles.
+ */
+__attribute__((always_inline)) INLINE void voronoi_cell_init(
+    struct voronoi_cell *cell, const double *x, const double *anchor,
+    const double *side) {
+
+  /* Set the position of the generator of the cell (for reference) */
+  cell->x[0] = x[0];
+  cell->x[1] = x[1];
+
+  /* Initialize the cell as a box with the same extents as the simulation box
+     (note: all vertex coordinates are relative w.r.t. the cell generator) */
+  cell->nvert = 4;
+
+  cell->vertices[0][0] = anchor[0] - cell->x[0];
+  cell->vertices[0][1] = anchor[1] - cell->x[1];
+
+  cell->vertices[1][0] = anchor[0] - cell->x[0];
+  cell->vertices[1][1] = anchor[1] + side[1] - cell->x[1];
+
+  cell->vertices[2][0] = anchor[0] + side[0] - cell->x[0];
+  cell->vertices[2][1] = anchor[1] + side[1] - cell->x[1];
+
+  cell->vertices[3][0] = anchor[0] + side[0] - cell->x[0];
+  cell->vertices[3][1] = anchor[1] - cell->x[1];
+
+  /* The neighbours are ordered such that neighbour i shares the face in between
+     vertices i and i+1 (with last vertex + 1 = first vertex)
+     We walk around the cell in clockwise direction */
+  cell->ngbs[0] = VORONOI2D_BOX_LEFT;
+  cell->ngbs[1] = VORONOI2D_BOX_TOP;
+  cell->ngbs[2] = VORONOI2D_BOX_RIGHT;
+  cell->ngbs[3] = VORONOI2D_BOX_BOTTOM;
+
+  /* These variables are initialized to zero, we will compute them after the
+     neighbour iteration has finished */
+  cell->volume = 0.0f;
+  cell->centroid[0] = 0.0f;
+  cell->centroid[1] = 0.0f;
+}
+
+/**
+ * @brief Interact a 2D Voronoi cell with a particle with given relative
+ * position and ID.
+ *
+ * @param cell 2D Voronoi cell.
+ * @param dx Relative position of the interacting generator w.r.t. the cell
+ * generator (in fact: dx = generator - neighbour).
+ * @param id ID of the interacting neighbour.
+ */
+__attribute__((always_inline)) INLINE void voronoi_cell_interact(
+    struct voronoi_cell *cell, const float *dx, unsigned long long id) {
+
+  /* variables used for geometrical tests */
+  float half_dx[2];
+  float r2;
+  /* variables used to store test results */
+  float test, b1, b2, a1, a2;
+  /* general loop index */
+  int i;
+  /* variables used to store indices of intersected edges */
+  int index_above1, index_above2;
+  int index_below1, index_below2;
+  /* variable used to store directionality in edge traversal */
+  int increment;
+  /* new number of vertices and new vertex coordinates */
+  int nvert;
+  float vertices[VORONOI2D_MAXNUMVERT][2];
+  unsigned long long ngbs[VORONOI2D_MAXNUMVERT];
+
+  /* The process of cutting the current cell with the midline of the generator
+     and the given relative neighbour position proceeds in two steps:
+      - first we need to locate an edge of the current cell that is intersected
+        by this midline. Such an edge does not necessarily exist; in this case
+        the given neighbour is not an actual neighbour of this cell
+      - Once we have an intersected edge, we create a new edge starting at the
+        intersection point. We follow the edges connected to the intersected
+        edge until we find another intersected edge, and use its intersection
+        point as end point of the new edge. */
+
+  /* First, we set up some variables that are used to check if a vertex is above
+     or below the midplane. */
+
+  /* we need a vector with half the size of the vector joining generator and
+     neighbour, pointing to the neighbour */
+  half_dx[0] = -0.5f * dx[0];
+  half_dx[1] = -0.5f * dx[1];
+
+  /* we need the squared length of this vector */
+  r2 = half_dx[0] * half_dx[0] + half_dx[1] * half_dx[1];
+
+  /* a vertex v = (vx, vy) is above the midline if
+       vx*half_dx[0] + vy*half_dx[1] > r2
+     i.e., if the length of the projected vertex position is longer than the
+     length of the vector pointing to the closest point on the midline (both
+     vectors originate at the position of the generator)
+     the vertex is below the midline if the projected position vector is shorter
+     if the projected position vector has the same length, the vertex is on the
+     midline */
+
+  /* start testing a random vertex: the first one */
+  test = cell->vertices[0][0] * half_dx[0] + cell->vertices[0][1] * half_dx[1] -
+         r2;
+  if (test < 0.) {
+/* vertex is below midline */
+#ifdef VORONOI_VERBOSE
+    message("First vertex is below midline (%g %g --> %g)!",
+            cell->vertices[0][0] + cell->x[0],
+            cell->vertices[0][1] + cell->x[1], test);
+#endif
+
+    /* store the test result; we might need it to compute the intersection
+       coordinates */
+    b1 = test;
+
+    /* move on until we find a vertex that is above or on the midline */
+    i = 1;
+    test = cell->vertices[i][0] * half_dx[0] +
+           cell->vertices[i][1] * half_dx[1] - r2;
+    while (i < cell->nvert && test < 0.) {
+      /* make sure we always store the latest test result */
+      b1 = test;
+      ++i;
+      test = cell->vertices[i][0] * half_dx[0] +
+             cell->vertices[i][1] * half_dx[1] - r2;
+    }
+
+    /* loop finished, there are two possibilities:
+        - i == cell->nvert, all vertices lie below the midline and the given
+          neighbour is not an actual neighbour of this cell
+        - test >= 0., we found a vertex above (or on) the midline */
+    if (i == cell->nvert) {
+/* the given neighbour is not an actual neighbour: exit the routine */
+#ifdef VORONOI_VERBOSE
+      message("Not a neighbour!");
+#endif
+      return;
+    }
+
+    /* we have found an intersected edge: i-1 -> i
+       we store the index of the vertices above and below the midline, make sure
+       we store the test result for later intersection computation, and set the
+       increment to positive, so that we look for the other intersected edge in
+       clockwise direction */
+    index_below1 = i - 1;
+    index_above1 = i;
+    a1 = test;
+    increment = 1;
+  } else {
+/* vertex is above or on midline
+   in the case where it is on the midline, we count that as above as well:
+   the vertex will be removed, and a new vertex will be created at the same
+   position */
+#ifdef VORONOI_VERBOSE
+    message("First vertex is above midline (%g %g --> %g)!",
+            cell->vertices[0][0] + cell->x[0],
+            cell->vertices[0][1] + cell->x[1], test);
+#endif
+
+    /* store the test result */
+    a1 = test;
+
+    /* move on until we find a vertex that is below the midline */
+    i = 1;
+    test = cell->vertices[i][0] * half_dx[0] +
+           cell->vertices[i][1] * half_dx[1] - r2;
+    while (i < cell->nvert && test >= 0.) {
+      /* make sure we always store the most recent test result */
+      a1 = test;
+      ++i;
+      test = cell->vertices[i][0] * half_dx[0] +
+             cell->vertices[i][1] * half_dx[1] - r2;
+    }
+
+    /* loop finished, there are two possibilities:
+        - i == cell->nvert, all vertices lie above the midline. This should
+          never happen.
+        - test <= 0., we found a vertex below (or on) the midline */
+    if (i == cell->nvert) {
+      /* fatal error! */
+      error("Could not find a vertex below the midline!");
+    }
+
+    /* we have found an intersected edge: i-1 -> i
+       we store the index of the vertices above and below the midline, make sure
+       we store the test result for later intersection computation, and set the
+       increment to negative, so that we look for the other intersected edge in
+       counterclockwise direction */
+    index_below1 = i;
+    index_above1 = i - 1;
+    increment = -1;
+    b1 = test;
+  }
+
+#ifdef VORONOI_VERBOSE
+  message("First intersected edge: %g %g --> %g %g (%i --> %i)",
+          cell->vertices[index_below1][0] + cell->x[0],
+          cell->vertices[index_below1][1] + cell->x[1],
+          cell->vertices[index_above1][0] + cell->x[0],
+          cell->vertices[index_above1][1] + cell->x[1], index_below1,
+          index_above1);
+#endif
+
+  /* now we need to find the second intersected edge
+     we start from the vertex above (or on) the midline and search in the
+     direction opposite to the intersected edge direction until we find a vertex
+     below the midline */
+
+  /* we make sure we store the test result for the second vertex above the
+     midline as well, since we need this for intersection point computations
+     the second vertex can be equal to the first */
+  a2 = a1;
+  i = index_above1 + increment;
+  if (i < 0) {
+    i = cell->nvert - 1;
+  }
+  if (i == cell->nvert) {
+    i = 0;
+  }
+  test = cell->vertices[i][0] * half_dx[0] + cell->vertices[i][1] * half_dx[1] -
+         r2;
+  /* this loop can never deadlock, as we know there is at least 1 vertex below
+     the midline */
+  while (test >= 0.) {
+    /* make sure we always store the most recent test result */
+    a2 = test;
+    i += increment;
+    if (i < 0) {
+      i = cell->nvert - 1;
+    }
+    if (i == cell->nvert) {
+      i = 0;
+    }
+    test = cell->vertices[i][0] * half_dx[0] +
+           cell->vertices[i][1] * half_dx[1] - r2;
+  }
+
+  index_below2 = i;
+  index_above2 = i - increment;
+  if (index_above2 < 0) {
+    index_above2 = cell->nvert - 1;
+  }
+  if (index_above2 == cell->nvert) {
+    index_above2 = 0;
+  }
+  /* we also store the test result for the second vertex below the midline */
+  b2 = test;
+
+  if (index_above1 == index_above2 && index_below1 == index_below2) {
+    /* There can be only 1 vertex above or below the midline, but we need 2
+       intersected edges, so if the vertices above the midline are the same, the
+       ones below need to be different and vice versa */
+    error("Only 1 intersected edge found!");
+  }
+
+  /* there is exactly one degenerate case we have not addressed yet: the case
+     where index_above1 and index_above2 are the same and are on the midline.
+     In this case we don't want to create 2 new vertices. Instead, we just keep
+     index_above1, which basically means nothing happens at all and we can just
+     return */
+  if (index_above1 == index_above2 && a1 == 0.) {
+    return;
+  }
+
+  /* to make the code below more clear, we make sure index_above1 always holds
+     the first vertex to remove, and index_above2 the last one, in clockwise
+     order
+     This means we need to interchange 1 and 2 if we were searching in counter-
+     clockwise direction above */
+  if (increment < 0) {
+    i = index_below1;
+    index_below1 = index_below2;
+    index_below2 = i;
+    i = index_above1;
+    index_above1 = index_above2;
+    index_above2 = i;
+    test = b1;
+    b1 = b2;
+    b2 = test;
+    test = a1;
+    a1 = a2;
+    a2 = test;
+  }
+
+#ifdef VORONOI_VERBOSE
+  message("First vertex below: %g %g (%i, %g)",
+          cell->vertices[index_below1][0] + cell->x[0],
+          cell->vertices[index_below1][1] + cell->x[1], index_below1, b1);
+  message("First vertex above: %g %g (%i, %g)",
+          cell->vertices[index_above1][0] + cell->x[0],
+          cell->vertices[index_above1][1] + cell->x[1], index_above1, a1);
+  message("Second vertex below: %g %g (%i, %g)",
+          cell->vertices[index_below2][0] + cell->x[0],
+          cell->vertices[index_below2][1] + cell->x[1], index_below2, b2);
+  message("Second vertex above: %g %g (%i, %g)",
+          cell->vertices[index_above2][0] + cell->x[0],
+          cell->vertices[index_above2][1] + cell->x[1], index_above2, a2);
+#endif
+
+  if (b1 == 0. || b2 == 0.) {
+    error("Vertex below midline is on midline!");
+  }
+
+  /* convert the test results (which correspond to the projected distance
+     between the vertex and the midline) to the fractions of the intersected
+     edges above and below the midline */
+  test = a1 / (a1 - b1);
+  a1 = test;
+  b1 = 1.0f - test;
+
+  test = a2 / (a2 - b2);
+  a2 = test;
+  b2 = 1.0f - test;
+
+  /* remove the vertices above the midline, and insert two new vertices,
+     corresponding to the intersection points of the intersected edges and the
+     midline
+     In practice, we just copy all remaining vertices, starting from the first
+     vertex below the midline (in clockwise order) */
+  nvert = 0;
+  i = index_below2;
+  while (i != index_above1) {
+    vertices[nvert][0] = cell->vertices[i][0];
+    vertices[nvert][1] = cell->vertices[i][1];
+    ngbs[nvert] = cell->ngbs[i];
+    ++nvert;
+    VORONOI_CHECK_SIZE();
+    ++i;
+    if (i == cell->nvert) {
+      i = 0;
+    }
+  }
+  /* now add the new vertices, they are always last */
+  vertices[nvert][0] = a1 * cell->vertices[index_below1][0] +
+                       b1 * cell->vertices[index_above1][0];
+  vertices[nvert][1] = a1 * cell->vertices[index_below1][1] +
+                       b1 * cell->vertices[index_above1][1];
+  ngbs[nvert] = id;
+  ++nvert;
+  VORONOI_CHECK_SIZE();
+  vertices[nvert][0] = a2 * cell->vertices[index_below2][0] +
+                       b2 * cell->vertices[index_above2][0];
+  vertices[nvert][1] = a2 * cell->vertices[index_below2][1] +
+                       b2 * cell->vertices[index_above2][1];
+  ngbs[nvert] = cell->ngbs[index_above2];
+  ++nvert;
+  VORONOI_CHECK_SIZE();
+
+  /* overwrite the original vertices */
+  cell->nvert = nvert;
+  for (i = 0; i < cell->nvert; ++i) {
+    cell->vertices[i][0] = vertices[i][0];
+    cell->vertices[i][1] = vertices[i][1];
+    cell->ngbs[i] = ngbs[i];
+  }
+}
+
+/**
+ * @brief Finalize a 2D Voronoi cell.
+ *
+ * @param cell 2D Voronoi cell.
+ * @return Maximal radius that could still change the structure of the cell.
+ */
+__attribute__((always_inline)) INLINE float voronoi_cell_finalize(
+    struct voronoi_cell *cell) {
+
+  int i;
+  float vertices[VORONOI2D_MAXNUMVERT][2];
+  float A, x[2], y[2], r2, r2max;
+
+  /* make a copy of the vertices (they are overwritten when the face midpoints
+     are computed */
+  for (i = 0; i < cell->nvert; ++i) {
+    vertices[i][0] = cell->vertices[i][0];
+    vertices[i][1] = cell->vertices[i][1];
+  }
+
+  r2max = 0.0f;
+  for (i = 0; i < cell->nvert; ++i) {
+    if (i < cell->nvert - 1) {
+      x[0] = vertices[i][0];
+      y[0] = vertices[i][1];
+      x[1] = vertices[i + 1][0];
+      y[1] = vertices[i + 1][1];
+    } else {
+      x[0] = vertices[i][0];
+      y[0] = vertices[i][1];
+      x[1] = vertices[0][0];
+      y[1] = vertices[0][1];
+    }
+    A = x[1] * y[0] - x[0] * y[1];
+    cell->volume += A;
+    cell->centroid[0] += (x[0] + x[1]) * A;
+    cell->centroid[1] += (y[0] + y[1]) * A;
+
+    /* Note that we only need the RELATIVE positions of the midpoints */
+    cell->face_midpoints[i][0] = 0.5f * (x[0] + x[1]);
+    cell->face_midpoints[i][1] = 0.5f * (y[0] + y[1]);
+
+    r2 = x[0] * x[0] + y[0] * y[0];
+    r2max = max(r2max, r2);
+
+    x[0] -= x[1];
+    y[0] -= y[1];
+    cell->face_lengths[i] = sqrtf(x[0] * x[0] + y[0] * y[0]);
+  }
+
+  cell->volume *= 0.5f;
+  A = 6 * cell->volume;
+  cell->centroid[0] /= A;
+  cell->centroid[1] /= A;
+
+  cell->centroid[0] += cell->x[0];
+  cell->centroid[1] += cell->x[1];
+
+  return 2.0f * sqrtf(r2max);
+}
+
+/**
+ * @brief Get the oriented surface area and midpoint of the face between a
+ * 2D Voronoi cell and the given neighbour.
+ *
+ * @param cell 2D Voronoi cell.
+ * @param ngb ID of a particle that is possibly a neighbour of this cell.
+ * @param midpoint Array to store the relative position of the face in.
+ * @return 0 if the given neighbour is not a neighbour, surface area otherwise.
+ */
+__attribute__((always_inline)) INLINE float voronoi_get_face(
+    const struct voronoi_cell *cell, unsigned long long ngb, float *midpoint) {
+
+  /* look up the neighbour */
+  int i = 0;
+  while (i < cell->nvert && cell->ngbs[i] != ngb) {
+    ++i;
+  }
+
+  if (i == cell->nvert) {
+    /* The given cell is not a neighbour. */
+    return 0.0f;
+  }
+
+  midpoint[0] = cell->face_midpoints[i][0];
+  midpoint[1] = cell->face_midpoints[i][1];
+  midpoint[2] = 0.0f;
+
+  return cell->face_lengths[i];
+}
+
+/**
+ * @brief Get the centroid of a 2D Voronoi cell.
+ *
+ * @param cell 2D Voronoi cell.
+ * @param centroid Array to store the centroid in.
+ */
+__attribute__((always_inline)) INLINE void voronoi_get_centroid(
+    const struct voronoi_cell *cell, float *centroid) {
+
+  centroid[0] = cell->centroid[0];
+  centroid[1] = cell->centroid[1];
+  centroid[2] = 0.0f;
+}
+
+/*******************************************************************************
+ ** EXTRA FUNCTIONS USED FOR DEBUGGING *****************************************
+ ******************************************************************************/
+
+/**
+ * @brief Print the given cell to the stdout in a format that can be plotted
+ * using gnuplot.
+ *
+ * @param cell voronoi_cell to print.
+ */
+__attribute__((always_inline)) INLINE void voronoi_print_cell(
+    const struct voronoi_cell *cell) {
+
+  int i, ip1;
+
+  /* print cell generator */
+  printf("%g %g\n\n", cell->x[0], cell->x[1]);
+
+  /* print cell vertices */
+  for (i = 0; i < cell->nvert; ++i) {
+    ip1 = i + 1;
+    if (ip1 == cell->nvert) {
+      ip1 = 0;
+    }
+    printf("%g %g\n%g %g\n\n", cell->vertices[i][0] + cell->x[0],
+           cell->vertices[i][1] + cell->x[1],
+           cell->vertices[ip1][0] + cell->x[0],
+           cell->vertices[ip1][1] + cell->x[1]);
+  }
+}
+
+#endif  // SWIFT_VORONOIXD_ALGORITHM_H
diff --git a/src/hydro/Shadowswift/voronoi2d_cell.h b/src/hydro/Shadowswift/voronoi2d_cell.h
new file mode 100644
index 0000000000000000000000000000000000000000..3c54ea8d0aa9ca1c915da1f245f889ebab2073d3
--- /dev/null
+++ b/src/hydro/Shadowswift/voronoi2d_cell.h
@@ -0,0 +1,58 @@
+/*******************************************************************************
+ * This file is part of SWIFT.
+ * Copyright (c) 2017 Bert Vandenbroucke (bert.vandenbroucke@gmail.com).
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as published
+ * by the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public License
+ * along with this program.  If not, see <http://www.gnu.org/licenses/>.
+ *
+ ******************************************************************************/
+
+#ifndef SWIFT_VORONOIXD_CELL_H
+#define SWIFT_VORONOIXD_CELL_H
+
+/* Maximal number of vertices (and neighbours) that can be stored in a
+   voronoi_cell struct. */
+#define VORONOI2D_MAXNUMVERT 100
+
+/* 2D Voronoi cell */
+struct voronoi_cell {
+
+  /* The position of the generator of the cell. */
+  double x[2];
+
+  /* The "volume" of the 2D cell. */
+  float volume;
+
+  /* The centroid of the cell. */
+  float centroid[2];
+
+  /* Number of cell vertices (and neighbours). */
+  int nvert;
+
+  /* We only need to store one of these at the same time. */
+  union {
+    /* The relative positions of the vertices of the cell. */
+    float vertices[VORONOI2D_MAXNUMVERT][2];
+
+    /* The midpoints of the faces. */
+    float face_midpoints[VORONOI2D_MAXNUMVERT][2];
+  };
+
+  /* The ids of the neighbouring cells. */
+  unsigned long long ngbs[VORONOI2D_MAXNUMVERT];
+
+  /* The lengths of the faces. */
+  float face_lengths[VORONOI2D_MAXNUMVERT];
+};
+
+#endif  // SWIFT_VORONOIXD_CELL_H
diff --git a/src/hydro/Shadowswift/voronoi3d_algorithm.h b/src/hydro/Shadowswift/voronoi3d_algorithm.h
new file mode 100644
index 0000000000000000000000000000000000000000..13242ad167f1936d12714af918bce7f41ac77335
--- /dev/null
+++ b/src/hydro/Shadowswift/voronoi3d_algorithm.h
@@ -0,0 +1,2211 @@
+/*******************************************************************************
+ * This file is part of SWIFT.
+ * Copyright (c) 2016 Bert Vandenbroucke (bert.vandenbroucke@gmail.com).
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as published
+ * by the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public License
+ * along with this program.  If not, see <http://www.gnu.org/licenses/>.
+ *
+ ******************************************************************************/
+
+#ifndef SWIFT_VORONOIXD_ALGORITHM_H
+#define SWIFT_VORONOIXD_ALGORITHM_H
+
+#include <float.h>
+#include <math.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include "error.h"
+#include "inline.h"
+#include "voronoi3d_cell.h"
+
+/* For debugging purposes */
+//#define LOOP_CHECK 1000
+
+#ifdef LOOP_CHECK
+/* We need to do the trickery below to get a unique counter for each call to the
+   macro. This only works if the macro is never called twice on the same line.
+ */
+#define MERGE(a, b) a##b
+#define LOOPCOUNTER_NAME(line) MERGE(loopcount, line)
+
+/**
+ * @brief Increase the given counter variable and check if it is still valid.
+ *
+ * @param counter Counter to increase.
+ * @param line_number Line number where the while is called.
+ * @return 1 if the counter is still valid, 0 otherwise.
+ */
+__attribute__((always_inline)) INLINE int check_counter(int *counter,
+                                                        int line_number) {
+  ++(*counter);
+  if ((*counter) == LOOP_CHECK) {
+    error("Number of iterations reached maximum (=%i) in while on line %i!",
+          LOOP_CHECK, line_number);
+  }
+  return 1;
+}
+
+/* safewhile is a wrapper around a while that adds a unique counter variable to
+   the loop that is increased by 1 for each time the loop is executed, and
+   causes the code to crash if this number exceeds a given value.
+   We use this to quickly enable or disable number of iterations checks for a
+   large number of while loops */
+#define safewhile(condition)          \
+  int LOOPCOUNTER_NAME(__LINE__) = 0; \
+  while (check_counter(&LOOPCOUNTER_NAME(__LINE__), __LINE__) && (condition))
+
+#else /* LOOP_CHECK */
+
+/* If LOOP_CHECK is not defined, safewhile and while are EXACTLY the same */
+#define safewhile(condition) while (condition)
+
+#endif /* LOOP_CHECK */
+
+/* This flag activates a number of expensive geometrical checks that help
+   finding bugs. */
+//#define VORONOI3D_EXPENSIVE_CHECKS
+
+/* Tolerance parameter used to decide when to use more precise geometric
+   criteria */
+#define VORONOI3D_TOLERANCE 1.e-6f
+
+/* Box boundary flags used to signal cells neighbouring the box boundary
+   These values correspond to the top range of possible 64-bit integers, and
+   we make the strong assumption that there will never be a particle that has
+   one of these as particle ID. */
+#define VORONOI3D_BOX_FRONT 18446744073709551600llu
+#define VORONOI3D_BOX_BACK 18446744073709551601llu
+#define VORONOI3D_BOX_TOP 18446744073709551602llu
+#define VORONOI3D_BOX_BOTTOM 18446744073709551603llu
+#define VORONOI3D_BOX_LEFT 18446744073709551604llu
+#define VORONOI3D_BOX_RIGHT 18446744073709551605llu
+
+/*******************************************************************************
+ * 3D specific methods
+ *
+ * Most of these methods are based on the source code of voro++:
+ *  http://math.lbl.gov/voro++/
+ ******************************************************************************/
+
+/**
+ * @brief Print the given cell to the stderr in a format that can be easily
+ * plotted using gnuplot.
+ *
+ * This method prints to the stderr instead of stdout to make it possible to use
+ * it right before crashing the code.
+ *
+ * @param c Voronoi cell to print.
+ */
+__attribute__((always_inline)) INLINE void voronoi_print_gnuplot_c(
+    const struct voronoi_cell *c) {
+
+  int i, j, v;
+  const double *x = c->x;
+
+  fprintf(stderr, "%g\t%g\t%g\n\n", x[0], x[1], x[2]);
+
+  for (i = 0; i < c->nvert; ++i) {
+    for (j = 0; j < c->orders[i]; ++j) {
+      v = c->edges[c->offsets[i] + j];
+      if (v < 0) {
+        v = -v - 1;
+      }
+      fprintf(stderr, "%g\t%g\t%g\n", c->vertices[3 * i + 0] + x[0],
+              c->vertices[3 * i + 1] + x[1], c->vertices[3 * i + 2] + x[2]);
+      fprintf(stderr, "%g\t%g\t%g\n\n", c->vertices[3 * v + 0] + x[0],
+              c->vertices[3 * v + 1] + x[1], c->vertices[3 * v + 2] + x[2]);
+    }
+  }
+  fprintf(stderr, "\n");
+}
+
+/**
+ * @brief Print the contents of a 3D Voronoi cell
+ *
+ * @param cell 3D Voronoi cell
+ */
+__attribute__((always_inline)) INLINE void voronoi_print_cell(
+    const struct voronoi_cell *cell) {
+
+  int i, j;
+
+  fprintf(stderr, "x: %g %g %g\n", cell->x[0], cell->x[1], cell->x[2]);
+  fprintf(stderr, "nvert: %i\n", cell->nvert);
+
+  for (i = 0; i < cell->nvert; ++i) {
+    fprintf(stderr, "%i: %g %g %g (%i)\n", i, cell->vertices[3 * i],
+            cell->vertices[3 * i + 1], cell->vertices[3 * i + 2],
+            cell->orders[i]);
+    for (j = 0; j < cell->orders[i]; ++j) {
+      fprintf(stderr, "%i (%i)\n", cell->edges[cell->offsets[i] + j],
+              cell->edgeindices[cell->offsets[i] + j]);
+    }
+  }
+  fprintf(stderr, "\n");
+}
+
+/**
+ * @brief Get the index of the vertex pointed to by the given edge of the given
+ * vertex.
+ *
+ * @param c 3D Voronoi cell.
+ * @param vertex Index of a vertex of the cell.
+ * @param edge Edge of that vertex.
+ * @return Index of the vertex on the other side of the edge.
+ */
+__attribute__((always_inline)) INLINE int voronoi_get_edge(
+    const struct voronoi_cell *c, int vertex, int edge) {
+  return c->edges[c->offsets[vertex] + edge];
+}
+
+/**
+ * @brief Get the index of the given edge in the edge list of the vertex on the
+ * other side of the edge of the given vertex.
+ *
+ * Suppose that the given vertex has edges [edge1, edge2, given_edge], and that
+ * the vertex on the other side of given_edge has edges [edge1, given_edge,
+ * edge2], then this method returns 1.
+ *
+ * @param c 3D Voronoi cell.
+ * @param vertex Index of a vertex of the cell.
+ * @param edge Edge of that vertex.
+ * @return Index of that edge in the edge list of the vertex on the other side
+ * of the edge.
+ */
+__attribute__((always_inline)) INLINE int voronoi_get_edgeindex(
+    const struct voronoi_cell *c, int vertex, int edge) {
+  return c->edgeindices[c->offsets[vertex] + edge];
+}
+
+/**
+ * @brief Set the index of the vertex on the other side of the given edge of the
+ * given vertex.
+ *
+ * @param c 3D Voronoi cell.
+ * @param vertex Index of a vertex of the cell.
+ * @param edge Edge of that vertex.
+ * @param value Index of the vertex on the other side of that edge.
+ */
+__attribute__((always_inline)) INLINE void voronoi_set_edge(
+    struct voronoi_cell *c, int vertex, int edge, int value) {
+  c->edges[c->offsets[vertex] + edge] = value;
+}
+
+/**
+ * @brief Set the index of the given edge in the edge list of the vertex on the
+ * other side of the edge of the given vertex.
+ *
+ * Suppose that the given vertex has edges [edge1, edge2, given_edge], and we
+ * want to tell this method that the vertex on the other side of given_edge has
+ * edges [edge1, given_edge, edge2], then we need to pass on a value of 1 to
+ * this method.
+ *
+ * @param c 3D Voronoi cell.
+ * @param vertex Index of a vertex of that cell.
+ * @param edge Edge of that vertex.
+ * @param value Index of that edge in the edge list of the vertex on the other
+ * side of the edge.
+ */
+__attribute__((always_inline)) INLINE void voronoi_set_edgeindex(
+    struct voronoi_cell *c, int vertex, int edge, int value) {
+  c->edgeindices[c->offsets[vertex] + edge] = value;
+}
+
+/**
+ * @brief Get the neighbour for the given edge of the given vertex.
+ *
+ * An edge is shared by two faces, and each face has a neighbour. Luckily, each
+ * edge also has two endpoints, so we can get away with storing only one
+ * neighbour per endpoint of an edge. We have complete freedom in choosing which
+ * neighbour to store in which endpoint, but we need to be consistent about it.
+ * Here we use the following convention: if we take a vector pointing away from
+ * the given vertex along the given edge direction, then we store the neighbour
+ * that corresponds to the face to the right if looking to the cell from the
+ * outside. This is the face that you encounter first when rotating counter-
+ * clockwise around that vector, starting from outside the cell.
+ *
+ * @param c 3D Voronoi cell.
+ * @param vertex Index of a vertex of that cell.
+ * @param edge Edge of that vertex.
+ * @return Index of the neighbour corresponding to that edge and vertex.
+ */
+__attribute__((always_inline)) INLINE int voronoi_get_ngb(
+    const struct voronoi_cell *c, int vertex, int edge) {
+  return c->ngbs[c->offsets[vertex] + edge];
+}
+
+/**
+ * @brief Set the neighbour for the given edge of the given vertex.
+ *
+ * An edge is shared by two faces, and each face has a neighbour. Luckily, each
+ * edge also has two endpoints, so we can get away with storing only one
+ * neighbour per endpoint of an edge. We have complete freedom in choosing which
+ * neighbour to store in which endpoint, but we need to be consistent about it.
+ * Here we use the following convention: if we take a vector pointing away from
+ * the given vertex along the given edge direction, then we store the neighbour
+ * that corresponds to the face to the right if looking to the cell from the
+ * outside. This is the face that you encounter first when rotating counter-
+ * clockwise around that vector, starting from outside the cell.
+ *
+ * @param c 3D Voronoi cell.
+ * @param vertex Index of a vertex of that cell.
+ * @param edge Edge of that vertex.
+ * @param value Index of the neighbour corresponding to that edge and vertex.
+ */
+__attribute__((always_inline)) INLINE void voronoi_set_ngb(
+    struct voronoi_cell *c, int vertex, int edge, int value) {
+  c->ngbs[c->offsets[vertex] + edge] = value;
+}
+
+/**
+ * @brief Check if the 3D Voronoi cell is still consistent.
+ *
+ * A cell is consistent if its edges are consistent, i.e. if edge e of vertex v1
+ * points to vertex v2, then v2 should have an edge that points to v1 as well,
+ * and then the edge index of vertex v1 should contain the index of that edge
+ * in the edge list of v2. We also check if all vertices have orders of at least
+ * 3, and if all vertices are actually part of the vertex list.
+ * Oh, and we check if the cell actually has vertices.
+ *
+ * @param cell 3D Voronoi cell to check
+ */
+__attribute__((always_inline)) INLINE void voronoi_check_cell_consistency(
+    const struct voronoi_cell *c) {
+
+  int i, j, e, l, m;
+
+  if (c->nvert < 4) {
+    error("Found cell with only %i vertices!", c->nvert);
+  }
+
+  for (i = 0; i < c->nvert; ++i) {
+    if (c->orders[i] < 3) {
+      voronoi_print_cell(c);
+      error("Found cell with vertex of order %i!", c->orders[i]);
+    }
+    for (j = 0; j < c->orders[i]; ++j) {
+      e = voronoi_get_edge(c, i, j);
+      if (e >= c->nvert) {
+        voronoi_print_cell(c);
+        error("Found cell with edges that lead to non-existing vertices!");
+      }
+      if (e < 0) {
+        continue;
+      }
+      l = voronoi_get_edgeindex(c, i, j);
+      m = voronoi_get_edge(c, e, l);
+      if (m != i) {
+        /* voronoi_print_gnuplot_c(c); */
+        voronoi_print_cell(c);
+        fprintf(stderr, "i: %i, j: %i, e: %i, l: %i, m: %i\n", i, j, e, l, m);
+        error("Cell inconsistency!");
+      }
+    }
+  }
+}
+
+/**
+ * @brief Check if the given vertex is above, below or on the cutting plane
+ * defined by the given parameters.
+ *
+ * @param v Coordinates of a cell vertex, relative w.r.t. the position of the
+ * generator of the cell.
+ * @param dx Half of the relative distance vector between the position of the
+ * generator of the cell and the position of the neighbouring cell that
+ * generates the cutting plane, pointing from the generator position to the
+ * cutting plane.
+ * @param r2 Squared length of dx.
+ * @param test Variable to store the result of the geometric test in, which
+ * corresponds to the projected distance between the generator and the vertex
+ * along dx.
+ * @param teststack Stack to store the results of the N last tests in (for
+ * debugging purposes only).
+ * @param teststack_size Next available field in the teststack, is reset to 0 if
+ * the teststack is full (so the N+1th results is overwritten; for debugging
+ * purposes only).
+ * @return Result of the test: -1 if the vertex is below the cutting plane, +1
+ * if it is above, and 0 if it is on the cutting plane.
+ */
+__attribute__((always_inline)) INLINE int voronoi_test_vertex(
+    const float *v, const float *dx, float r2, float *test, float *teststack,
+    int *teststack_size) {
+
+  *test = v[0] * dx[0] + v[1] * dx[1] + v[2] * dx[2] - r2;
+
+  teststack[*teststack_size] = *test;
+  *teststack_size = *teststack_size + 1;
+  if (*teststack_size == 2 * VORONOI3D_MAXNUMVERT) {
+    *teststack_size = 0;
+  }
+
+  if (*test < -VORONOI3D_TOLERANCE) {
+    return -1;
+  }
+  if (*test > VORONOI3D_TOLERANCE) {
+    return 1;
+  }
+  return 0;
+}
+
+/**
+ * @brief Initialize the cell as a cube that spans the entire simulation box.
+ *
+ * @param c 3D Voronoi cell to initialize.
+ * @param anchor Anchor of the simulation box.
+ * @param side Side lengths of the simulation box.
+ */
+__attribute__((always_inline)) INLINE void voronoi_initialize(
+    struct voronoi_cell *cell, const double *anchor, const double *side) {
+
+  cell->nvert = 8;
+
+  /* (0, 0, 0) -- 0 */
+  cell->vertices[0] = anchor[0] - cell->x[0];
+  cell->vertices[1] = anchor[1] - cell->x[1];
+  cell->vertices[2] = anchor[2] - cell->x[2];
+
+  /* (0, 0, 1)-- 1 */
+  cell->vertices[3] = anchor[0] - cell->x[0];
+  cell->vertices[4] = anchor[1] - cell->x[1];
+  cell->vertices[5] = anchor[2] + side[2] - cell->x[2];
+
+  /* (0, 1, 0) -- 2 */
+  cell->vertices[6] = anchor[0] - cell->x[0];
+  cell->vertices[7] = anchor[1] + side[1] - cell->x[1];
+  cell->vertices[8] = anchor[2] - cell->x[2];
+
+  /* (0, 1, 1) -- 3 */
+  cell->vertices[9] = anchor[0] - cell->x[0];
+  cell->vertices[10] = anchor[1] + side[1] - cell->x[1];
+  cell->vertices[11] = anchor[2] + side[2] - cell->x[2];
+
+  /* (1, 0, 0) -- 4 */
+  cell->vertices[12] = anchor[0] + side[0] - cell->x[0];
+  cell->vertices[13] = anchor[1] - cell->x[1];
+  cell->vertices[14] = anchor[2] - cell->x[2];
+
+  /* (1, 0, 1) -- 5 */
+  cell->vertices[15] = anchor[0] + side[0] - cell->x[0];
+  cell->vertices[16] = anchor[1] - cell->x[1];
+  cell->vertices[17] = anchor[2] + side[2] - cell->x[2];
+
+  /* (1, 1, 0) -- 6 */
+  cell->vertices[18] = anchor[0] + side[0] - cell->x[0];
+  cell->vertices[19] = anchor[1] + side[1] - cell->x[1];
+  cell->vertices[20] = anchor[2] - cell->x[2];
+
+  /* (1, 1, 1) -- 7 */
+  cell->vertices[21] = anchor[0] + side[0] - cell->x[0];
+  cell->vertices[22] = anchor[1] + side[1] - cell->x[1];
+  cell->vertices[23] = anchor[2] + side[2] - cell->x[2];
+
+  cell->orders[0] = 3;
+  cell->orders[1] = 3;
+  cell->orders[2] = 3;
+  cell->orders[3] = 3;
+  cell->orders[4] = 3;
+  cell->orders[5] = 3;
+  cell->orders[6] = 3;
+  cell->orders[7] = 3;
+
+  /* edges are ordered counterclockwise w.r.t. a vector pointing from the
+     cell generator to the vertex
+     (0, 0, 0) corner */
+  cell->offsets[0] = 0;
+  cell->edges[0] = 1;
+  cell->edges[1] = 2;
+  cell->edges[2] = 4;
+  cell->edgeindices[0] = 0;
+  cell->edgeindices[1] = 2;
+  cell->edgeindices[2] = 0;
+
+  /* (0, 0, 1) corner */
+  cell->offsets[1] = 3;
+  cell->edges[3] = 0;
+  cell->edges[4] = 5;
+  cell->edges[5] = 3;
+  cell->edgeindices[3] = 0;
+  cell->edgeindices[4] = 2;
+  cell->edgeindices[5] = 1;
+
+  /* (0, 1, 0) corner */
+  cell->offsets[2] = 6;
+  cell->edges[6] = 3;
+  cell->edges[7] = 6;
+  cell->edges[8] = 0;
+  cell->edgeindices[6] = 0;
+  cell->edgeindices[7] = 0;
+  cell->edgeindices[8] = 1;
+
+  /* (0, 1, 1) corner */
+  cell->offsets[3] = 9;
+  cell->edges[9] = 2;
+  cell->edges[10] = 1;
+  cell->edges[11] = 7;
+  cell->edgeindices[9] = 0;
+  cell->edgeindices[10] = 2;
+  cell->edgeindices[11] = 0;
+
+  /* (1, 0, 0) corner */
+  cell->offsets[4] = 12;
+  cell->edges[12] = 0;
+  cell->edges[13] = 6;
+  cell->edges[14] = 5;
+  cell->edgeindices[12] = 2;
+  cell->edgeindices[13] = 2;
+  cell->edgeindices[14] = 0;
+
+  /* (1, 0, 1) corner */
+  cell->offsets[5] = 15;
+  cell->edges[15] = 4;
+  cell->edges[16] = 7;
+  cell->edges[17] = 1;
+  cell->edgeindices[15] = 2;
+  cell->edgeindices[16] = 1;
+  cell->edgeindices[17] = 1;
+
+  /* (1, 1, 0) corner */
+  cell->offsets[6] = 18;
+  cell->edges[18] = 2;
+  cell->edges[19] = 7;
+  cell->edges[20] = 4;
+  cell->edgeindices[18] = 1;
+  cell->edgeindices[19] = 2;
+  cell->edgeindices[20] = 1;
+
+  /* (1, 1, 1) corner */
+  cell->offsets[7] = 21;
+  cell->edges[21] = 3;
+  cell->edges[22] = 5;
+  cell->edges[23] = 6;
+  cell->edgeindices[21] = 2;
+  cell->edgeindices[22] = 1;
+  cell->edgeindices[23] = 1;
+
+  /* ngbs[3*i+j] is the neighbour corresponding to the plane clockwise of
+     edge j of vertex i (when going from edge j to vertex i)
+     we set them to a ridiculously large value to be able to track faces without
+     neighbour */
+  cell->ngbs[0] = VORONOI3D_BOX_FRONT;  /* (000) - (001) */
+  cell->ngbs[1] = VORONOI3D_BOX_LEFT;   /* (000) - (010) */
+  cell->ngbs[2] = VORONOI3D_BOX_BOTTOM; /* (000) - (100) */
+
+  cell->ngbs[3] = VORONOI3D_BOX_LEFT;  /* (001) - (000) */
+  cell->ngbs[4] = VORONOI3D_BOX_FRONT; /* (001) - (101) */
+  cell->ngbs[5] = VORONOI3D_BOX_TOP;   /* (001) - (011) */
+
+  cell->ngbs[6] = VORONOI3D_BOX_LEFT;   /* (010) - (011) */
+  cell->ngbs[7] = VORONOI3D_BOX_BACK;   /* (010) - (110) */
+  cell->ngbs[8] = VORONOI3D_BOX_BOTTOM; /* (010) - (000) */
+
+  cell->ngbs[9] = VORONOI3D_BOX_BACK;  /* (011) - (010) */
+  cell->ngbs[10] = VORONOI3D_BOX_LEFT; /* (011) - (001) */
+  cell->ngbs[11] = VORONOI3D_BOX_TOP;  /* (011) - (111) */
+
+  cell->ngbs[12] = VORONOI3D_BOX_FRONT;  /* (100) - (000) */
+  cell->ngbs[13] = VORONOI3D_BOX_BOTTOM; /* (100) - (110) */
+  cell->ngbs[14] = VORONOI3D_BOX_RIGHT;  /* (100) - (101) */
+
+  cell->ngbs[15] = VORONOI3D_BOX_FRONT; /* (101) - (100) */
+  cell->ngbs[16] = VORONOI3D_BOX_RIGHT; /* (101) - (111) */
+  cell->ngbs[17] = VORONOI3D_BOX_TOP;   /* (101) - (001) */
+
+  cell->ngbs[18] = VORONOI3D_BOX_BOTTOM; /* (110) - (010) */
+  cell->ngbs[19] = VORONOI3D_BOX_BACK;   /* (110) - (111) */
+  cell->ngbs[20] = VORONOI3D_BOX_RIGHT;  /* (110) - (100) */
+
+  cell->ngbs[21] = VORONOI3D_BOX_BACK;  /* (111) - (011) */
+  cell->ngbs[22] = VORONOI3D_BOX_TOP;   /* (111) - (101) */
+  cell->ngbs[23] = VORONOI3D_BOX_RIGHT; /* (111) - (110) */
+}
+
+/**
+ * @brief Find an edge of the voronoi_cell that intersects the cutting plane.
+ *
+ * There is a large number of possible paths through this method, each of which
+ * is covered by a separate unit test in testVoronoi3D. Paths have been numbered
+ * in the inline comments to help identify them.
+ *
+ * @param c 3D Voronoi cell.
+ * @param dx Vector pointing from pj to the midpoint of the line segment between
+ * pi and pj.
+ * @param r2 Squared length of dx.
+ * @param u Projected distance between the plane and the closest vertex above
+ * the plane, along dx.
+ * @param up Index of the closest vertex above the plane.
+ * @param us Index of the edge of vertex up that intersects the plane.
+ * @param uw Result of the last test_vertex call for vertex up.
+ * @param l Projected distance between the plane and the closest vertex below
+ * the plane, along dx.
+ * @param lp Index of the closest vertex below the plane.
+ * @param ls Index of the edge of vertex lp that intersects the plane.
+ * @param lw Result of the last test_vertex call for vertex lp.
+ * @param q Projected distance between the plane and a test vertex, along dx.
+ * @param qp Index of the test vertex.
+ * @param qs Index of the edge of the test vertex that is connected to up.
+ * @param qw Result of the last test_vertex call involving qp.
+ * @return A negative value if an error occurred, 0 if the plane does not
+ * intersect the cell, 1 if nothing special happened and 2 if we have a
+ * complicated setup.
+ */
+__attribute__((always_inline)) INLINE int voronoi_intersect_find_closest_vertex(
+    struct voronoi_cell *c, const float *dx, float r2, float *u, int *up,
+    int *us, int *uw, float *l, int *lp, int *ls, int *lw, float *q, int *qp,
+    int *qs, int *qw) {
+
+  /* stack to store all vertices that have already been tested (debugging
+     only) */
+  float teststack[2 * VORONOI3D_MAXNUMVERT];
+  /* size of the used part of the stack */
+  int teststack_size = 0;
+  /* flag signalling a complicated setup */
+  int complicated;
+
+  /* test the first vertex: uw = -1 if it is below the plane, 1 if it is above
+     0 if it is very close to the plane, and things become complicated... */
+  *uw = voronoi_test_vertex(&c->vertices[0], dx, r2, u, teststack,
+                            &teststack_size);
+  *up = 0;
+  complicated = 0;
+  if ((*uw) == 0) {
+
+    /* PATH 0 */
+    complicated = 1;
+
+  } else {
+
+    /* two options: either the vertex is above or below the plane */
+
+    if ((*uw) == 1) {
+
+      /* PATH 1 */
+
+      /* above: try to find a vertex below
+         we test all edges of the current vertex stored in up (vertex 0) until
+         we either find one below the plane or closer to the plane */
+      *lp = voronoi_get_edge(c, (*up), 0);
+      *lw = voronoi_test_vertex(&c->vertices[3 * (*lp)], dx, r2, l, teststack,
+                                &teststack_size);
+      *us = 1;
+      /* Not in while: PATH 1.0 */
+      /* somewhere in while: PATH 1.1 */
+      /* last valid option of while: PATH 1.2 */
+      safewhile((*us) < c->orders[(*up)] && (*l) >= (*u)) {
+        *lp = voronoi_get_edge(c, (*up), (*us));
+        *lw = voronoi_test_vertex(&c->vertices[3 * (*lp)], dx, r2, l, teststack,
+                                  &teststack_size);
+        ++(*us);
+      }
+      /* we increased us too much, correct this */
+      --(*us);
+      if ((*l) >= (*u)) {
+        /* PATH 1.3 */
+        /* up is the closest vertex to the plane, but is above the plane
+           since the entire cell is convex, up is the closest vertex of all
+           vertices of the cell
+           this means the entire cell is supposedly above the plane, which is
+           impossible */
+        message(
+            "Cell completely gone! This should not happen. (l >= u, l = %g, u "
+            "= %g)",
+            (*l), (*u));
+        return -1;
+      }
+      /* we know that lp is closer to the plane or below the plane
+         now find the index of the edge up-lp in the edge list of lp */
+      *ls = voronoi_get_edgeindex(c, (*up), (*us));
+
+      /* if lp is also above the plane, replace up by lp and repeat the process
+         until lp is below the plane */
+      safewhile((*lw) == 1) {
+        /* PATH 1.4 */
+        *u = (*l);
+        *up = (*lp);
+        *us = 0;
+        /* no while: PATH 1.4.0 */
+        /* somewhere in while: PATH 1.4.1 */
+        /* last valid option of while: PATH 1.4.2 */
+        safewhile((*us) < (*ls) && (*l) >= (*u)) {
+          *lp = voronoi_get_edge(c, (*up), (*us));
+          *lw = voronoi_test_vertex(&c->vertices[3 * (*lp)], dx, r2, l,
+                                    teststack, &teststack_size);
+          ++(*us);
+        }
+        if ((*l) >= (*u)) {
+          ++(*us);
+          /* no while: PATH 1.4.3 */
+          /* somewhere in while: PATH 1.4.4 */
+          /* last valid option of while: PATH 1.4.5 */
+          safewhile((*us) < c->orders[(*up)] && (*l) >= (*u)) {
+            *lp = voronoi_get_edge(c, (*up), (*us));
+            *lw = voronoi_test_vertex(&c->vertices[3 * (*lp)], dx, r2, l,
+                                      teststack, &teststack_size);
+            ++(*us);
+          }
+          if ((*l) >= (*u)) {
+            /* PATH 1.4.6 */
+            message(
+                "Cell completely gone! This should not happen. (l >= u, l = "
+                "%g, u = %g)",
+                (*l), (*u));
+            return -1;
+          }
+        }
+        --(*us);
+        *ls = voronoi_get_edgeindex(c, (*up), (*us));
+      }
+      /* if lp is too close to the plane, replace up by lp and proceed to
+         complicated setup */
+      if ((*lw) == 0) {
+        /* PATH 1.5 */
+        *up = (*lp);
+        complicated = 1;
+      }
+    } else { /* if(uw == 1) */
+
+      /* PATH 2 */
+
+      /* below: try to find a vertex above
+         we test all edges of the current vertex stored in up (vertex 0) until
+         we either find one above the plane or closer to the plane */
+
+      *qp = voronoi_get_edge(c, (*up), 0);
+      *qw = voronoi_test_vertex(&c->vertices[3 * (*qp)], dx, r2, q, teststack,
+                                &teststack_size);
+      *us = 1;
+      /* not in while: PATH 2.0 */
+      /* somewhere in while: PATH 2.1 */
+      /* last valid option of while: PATH 2.2 */
+      safewhile((*us) < c->orders[(*up)] && (*u) >= (*q)) {
+        *qp = voronoi_get_edge(c, (*up), (*us));
+        *qw = voronoi_test_vertex(&c->vertices[3 * (*qp)], dx, r2, q, teststack,
+                                  &teststack_size);
+        ++(*us);
+      }
+      if ((*u) >= (*q)) {
+        /* PATH 2.3 */
+        /* up is the closest vertex to the plane and is below the plane
+           since the cell is convex, up is the closest vertex of all vertices of
+           the cell
+           this means that the entire cell is below the plane
+           The cell is unaltered. */
+        return 0;
+      } else {
+        /* the last increase in the loop pushed us too far, correct this */
+        --(*us);
+      }
+
+      /* repeat the above process until qp is closer or above the plane */
+      safewhile((*qw) == -1) {
+        /* PATH 2.4 */
+        *qs = voronoi_get_edgeindex(c, (*up), (*us));
+        *u = (*q);
+        *up = (*qp);
+        *us = 0;
+        /* no while: PATH 2.4.0 */
+        /* somewhere in while: PATH 2.4.1 */
+        /* last valid option of while: 2.4.2 */
+        safewhile((*us) < (*qs) && (*u) >= (*q)) {
+          *qp = voronoi_get_edge(c, (*up), (*us));
+          *qw = voronoi_test_vertex(&c->vertices[3 * (*qp)], dx, r2, q,
+                                    teststack, &teststack_size);
+          ++(*us);
+        }
+        if ((*u) >= (*q)) {
+          ++(*us);
+          /* no while: PATH 2.4.3 */
+          /* somewhere in while: PATH 2.4.4 */
+          /* last valid option of while: PATH 2.4.5 */
+          safewhile((*us) < c->orders[(*up)] && (*u) >= (*q)) {
+            *qp = voronoi_get_edge(c, (*up), (*us));
+            *qw = voronoi_test_vertex(&c->vertices[3 * (*qp)], dx, r2, q,
+                                      teststack, &teststack_size);
+            ++(*us);
+          }
+          if ((*u) >= (*q)) {
+            /* PATH 2.4.6 */
+            /* cell unaltered */
+            return 0;
+          }
+        }
+        --(*us);
+      }
+      if ((*qw) == 1) {
+        /* qp is above the plane: initialize lp to up and replace up by qp */
+        *lp = (*up);
+        *ls = (*us);
+        *l = (*u);
+        *up = (*qp);
+        *us = voronoi_get_edgeindex(c, (*lp), (*ls));
+        *u = (*q);
+      } else {
+        /* PATH 2.5 */
+        /* too close to call: go to complicated setup */
+        *up = (*qp);
+        complicated = 1;
+      }
+
+    } /* if(uw == 1) */
+
+  } /* if(uw == 0) */
+
+  if (complicated) {
+    return 2;
+  } else {
+    return 1;
+  }
+}
+
+/**
+ * @brief Intersect the given cell with the midplane between the cell generator
+ * and a neighbouring cell at the given relative position and with the given ID.
+ *
+ * This method is the core of the Voronoi algorithm. If anything goes wrong
+ * geometrically, it most likely goes wrong somewhere within this method.
+ *
+ * @param c 3D Voronoi cell.
+ * @param odx The original relative distance vector between the cell generator
+ * and the intersecting neighbour, as it is passed on to runner_iact_density
+ * (remember: odx = pi->x - pj->x).
+ * @param ngb ID of the intersecting neighbour (pj->id in runner_iact_density).
+ */
+__attribute__((always_inline)) INLINE void voronoi_intersect(
+    struct voronoi_cell *c, const float *odx, unsigned long long ngb) {
+
+  /* vector pointing from pi to the midpoint of the line segment between pi and
+     pj. This corresponds to -0.5*odx */
+  float dx[3];
+  /* squared norm of dx */
+  float r2;
+  /* u: distance between the plane and the closest vertex above the plane (up)
+     l: distance between the plane and the closest vertex below the plane (lp)
+     q: distance between the plane and the vertex that is currently being
+     tested (qp) */
+  float u = 0.0f, l = 0.0f, q = 0.0f;
+  /* up: index of the closest vertex above the plane
+     us: index of the edge of vertex up that intersects the plane
+     uw: result of the last orientation test involving vertex u
+     same naming used for vertex l and vertex q */
+  int up = -1, us = -1, uw = -1, lp = -1, ls = -1, lw = -1, qp = -1, qs = -1,
+      qw = -1;
+  /* auxiliary flag used to capture degeneracies */
+  int complicated = -1;
+
+  /* stack to store all vertices that have already been tested (debugging
+     only) */
+  float teststack[2 * VORONOI3D_MAXNUMVERT];
+  /* size of the used part of the stack */
+  int teststack_size = 0;
+
+#ifdef VORONOI3D_EXPENSIVE_CHECKS
+  voronoi_check_cell_consistency(c);
+#endif
+
+  /* initialize dx and r2 */
+  dx[0] = -0.5f * odx[0];
+  dx[1] = -0.5f * odx[1];
+  dx[2] = -0.5f * odx[2];
+  r2 = dx[0] * dx[0] + dx[1] * dx[1] + dx[2] * dx[2];
+
+  /* find an intersected edge of the cell */
+  int result = voronoi_intersect_find_closest_vertex(
+      c, dx, r2, &u, &up, &us, &uw, &l, &lp, &ls, &lw, &q, &qp, &qs, &qw);
+  if (result < 0) {
+    /* the closest_vertex test only found vertices above the intersecting plane
+       this would mean that the entire cell lies above the midplane of the line
+       segment connecting a point inside the cell (the generator) and a point
+       that could be inside or outside the cell (the neighbour). This is
+       geometrically absurd and should NEVER happen. */
+    voronoi_print_gnuplot_c(c);
+    error("Error while searching intersected edge!");
+  }
+  if (result == 0) {
+    /* no intersection */
+    return;
+  }
+  if (result == 2) {
+    complicated = 1;
+  } else {
+    complicated = 0;
+  }
+
+  /* At this point:
+      up contains a vertex above the plane
+      lp contains a vertex below the plane
+      us and ls contain the index of the edge that connects up and lp, this edge
+      is intersected by the midplane
+      u and l contain the projected distances of up and lp to the midplane,
+      along dx
+     IF complicated is 1, up contains a vertex that is considered to be on the
+     plane. All other variables can be considered to be uninitialized in this
+     case. */
+
+  int vindex = -1;
+  int visitflags[VORONOI3D_MAXNUMVERT];
+  int dstack[2 * VORONOI3D_MAXNUMVERT];
+  int dstack_size = 0;
+  float r = 0.0f;
+  int cs = -1, rp = -1;
+  int double_edge = 0;
+  int i = -1, j = -1, k = -1;
+
+  /* initialize visitflags */
+  for (i = 0; i < VORONOI3D_MAXNUMVERT; ++i) {
+    visitflags[i] = 0;
+  }
+
+  if (complicated) {
+
+    /* We've entered the complicated setup, which means that somewhere along the
+       way we found a vertex that is on or very close to the midplane. The index
+       of that vertex is stored in up, all other variables are meaningless at
+       this point. */
+
+    /* first of all, we need to find a vertex which has edges that extend below
+       the plane (since the remainder of our algorithm depends on that). This is
+       not necessarily the case: in principle a vertex can only have edges that
+       extend inside or above the plane.
+       we create a stack of vertices to test (we use dstack for this), and add
+       vertex up. For each vertex on the stack, we then traverse its edges. If
+       the edge extends above the plane, we ignore it. If it extends below, we
+       stop. If the edge lies in the plane, we add the vertex on the other end
+       to the stack.
+       We make sure that up contains the index of a vertex extending beyond the
+       plane on exit. */
+    dstack[dstack_size] = up;
+    ++dstack_size;
+    lw = 0;
+    j = 0;
+    safewhile(j < dstack_size && lw != -1) {
+      up = dstack[j];
+      for (i = 0; i < c->orders[up]; ++i) {
+        lp = voronoi_get_edge(c, up, i);
+        lw = voronoi_test_vertex(&c->vertices[3 * lp], dx, r2, &l, teststack,
+                                 &teststack_size);
+        if (lw == -1) {
+          /* jump out of the for loop */
+          break;
+        }
+        if (lw == 0) {
+          /* only add each vertex to the stack once */
+          k = 0;
+          safewhile(k < dstack_size && dstack[k] != lp) { ++k; }
+          if (k == dstack_size) {
+            dstack[dstack_size] = lp;
+            ++dstack_size;
+          }
+        }
+      }
+      ++j;
+    }
+
+    /* we increased j after lw was calculated, so only the value of lw should be
+       used to determine whether or not the loop was successful */
+    if (lw != -1) {
+      /* we did not find an edge that extends below the plane. There are two
+         possible reasons for this: either all vertices of the cell lie above
+         or inside the midplane of the segment connecting a point inside the
+         cell (the generator) with a point inside or outside the cell (the
+         neighbour). This is geometrically absurd.
+         Another reason might be that somehow all vertices in the midplane only
+         have edges that extend outwards. This is contradictory to the fact that
+         a Voronoi cell is convex, and therefore also unacceptable.
+         We conclude that we should NEVER end up here. */
+      voronoi_print_cell(c);
+      error("Unable to find a vertex below the midplane!");
+    }
+    /* reset the delete stack, we need it later on */
+    dstack_size = 0;
+
+    /* the search routine detected a vertex very close to or in the midplane
+       the index of this vertex is stored in up
+       we proceed by checking the edges of this vertex */
+
+    lp = voronoi_get_edge(c, up, 0);
+    lw = voronoi_test_vertex(&c->vertices[3 * lp], dx, r2, &l, teststack,
+                             &teststack_size);
+
+    /* the first edge can be below, above or on the plane */
+    if (lw != -1) {
+
+      /* above or on the plane: we try to find one below the plane */
+
+      rp = lw;
+      i = 1;
+      lp = voronoi_get_edge(c, up, i);
+      lw = voronoi_test_vertex(&c->vertices[3 * lp], dx, r2, &l, teststack,
+                               &teststack_size);
+      safewhile(lw != -1) {
+        ++i;
+        if (i == c->orders[up]) {
+          /* none of the edges of up is below the plane. Since the cell is
+             supposed to be convex, this means the entire cell is above or on
+             the plane. This should not happen...
+             Furthermore, we should really NEVER end up here, as in this case
+             an error should already have be thrown above. */
+          voronoi_print_gnuplot_c(c);
+          error(
+              "Cell completely gone! This should not happen. (i == "
+              "c->order[up], i = %d, c->orders[up] = %d, up = %d)\n"
+              "dx: [%g %g %g]\nv[up]: [%g %g %g]\nx: [%g %g %g]",
+              i, c->orders[up], up, dx[0], dx[1], dx[2], c->vertices[3 * up],
+              c->vertices[3 * up + 1], c->vertices[3 * up + 2], c->x[0],
+              c->x[1], c->x[2]);
+        }
+        lp = voronoi_get_edge(c, up, i);
+        lw = voronoi_test_vertex(&c->vertices[3 * lp], dx, r2, &l, teststack,
+                                 &teststack_size);
+      }
+
+      /* lp, l and lw now contain values corresponding to an edge below the
+         plane
+         rp contains the result of test_vertex for the first edge of up, for
+         reference */
+
+      /* we go on to the next edge of up, and see if we can find an edge that
+         does not extend below the plane */
+
+      j = i + 1;
+      safewhile(j < c->orders[up] && lw == -1) {
+        lp = voronoi_get_edge(c, up, j);
+        lw = voronoi_test_vertex(&c->vertices[3 * lp], dx, r2, &l, teststack,
+                                 &teststack_size);
+        ++j;
+      }
+
+      if (lw != -1) {
+        /* the last iteration increased j by 1 too many, correct this */
+        --j;
+      }
+
+      /* j-i now contains the number of edges below the plane. We will replace
+         up by a new vertex of order this number + 2 (since 2 new edges will be
+         created inside the plane)
+         however, we do not do this if there is exactly one edge that lies in
+         the plane, and all other edges lie below, because in this case we can
+         just keep vertex up as is */
+
+      if (j == c->orders[up] && i == 1 && rp == 0) {
+        /* keep the order of up, and flag this event for later reference */
+        k = c->orders[up];
+        double_edge = 1;
+      } else {
+        /* general case: keep all edges below the plane, and create 2 new ones
+           in the plane */
+        k = j - i + 2;
+      }
+
+      /* create new order k vertex */
+      vindex = c->nvert;
+      ++c->nvert;
+      if (c->nvert == VORONOI3D_MAXNUMVERT) {
+        error("Too many vertices!");
+      }
+      c->orders[vindex] = k;
+      c->offsets[vindex] = c->offsets[vindex - 1] + c->orders[vindex - 1];
+      if (c->offsets[vindex] + k >= VORONOI3D_MAXNUMEDGE) {
+        error("Too many edges!");
+      }
+
+      visitflags[vindex] = -vindex;
+      /* the new vertex adopts the coordinates of the old vertex */
+      c->vertices[3 * vindex + 0] = c->vertices[3 * up + 0];
+      c->vertices[3 * vindex + 1] = c->vertices[3 * up + 1];
+      c->vertices[3 * vindex + 2] = c->vertices[3 * up + 2];
+
+      /* us contains the index of the last edge NOT below the plane
+         note that i is at least 1, so there is no need to wrap in this case */
+      us = i - 1;
+
+      /* copy all edges of up below the plane into the new vertex, starting from
+         edge 1 (edge 0 is reserved to connect to a newly created vertex
+         below) */
+      k = 1;
+      safewhile(i < j) {
+        qp = voronoi_get_edge(c, up, i);
+        qs = voronoi_get_edgeindex(c, up, i);
+        voronoi_set_ngb(c, vindex, k, voronoi_get_ngb(c, up, i));
+        voronoi_set_edge(c, vindex, k, qp);
+        voronoi_set_edgeindex(c, vindex, k, qs);
+        voronoi_set_edge(c, qp, qs, vindex);
+        voronoi_set_edgeindex(c, qp, qs, k);
+        /* disconnect up, since this vertex will be removed */
+        voronoi_set_edge(c, up, i, -1);
+        ++i;
+        ++k;
+      }
+
+      /* store the index of the first edge not below the plane */
+      if (i == c->orders[up]) {
+        qs = 0;
+      } else {
+        qs = i;
+      }
+    } else { /* if(lw != -1) */
+
+      /* the first edge lies below the plane, try to find one that does not */
+
+      /* we first do a reverse search */
+      i = c->orders[up] - 1;
+      lp = voronoi_get_edge(c, up, i);
+      lw = voronoi_test_vertex(&c->vertices[3 * lp], dx, r2, &l, teststack,
+                               &teststack_size);
+      safewhile(lw == -1) {
+        --i;
+        if (i == 0) {
+          /* No edge above or in the plane found: the cell is unaltered */
+          return;
+        }
+        lp = voronoi_get_edge(c, up, i);
+        lw = voronoi_test_vertex(&c->vertices[3 * lp], dx, r2, &l, teststack,
+                                 &teststack_size);
+      }
+
+      /* now we do a forward search */
+      j = 1;
+      qp = voronoi_get_edge(c, up, j);
+      qw = voronoi_test_vertex(&c->vertices[3 * qp], dx, r2, &q, teststack,
+                               &teststack_size);
+      safewhile(qw == -1) {
+        ++j;
+        qp = voronoi_get_edge(c, up, j);
+        qw = voronoi_test_vertex(&c->vertices[3 * qp], dx, r2, &l, teststack,
+                                 &teststack_size);
+      }
+
+      /* at this point j contains the index of the first edge not below the
+         plane, i the index of the last edge not below the plane
+         we use this to compute the number of edges below the plane. up is
+         replaced by a new vertex that has that number + 2 edges (since 2 new
+         edges are created inside the plane). We again capture the special event
+         where there is only one edge not below the plane, which lies inside the
+         plane. In this case up is copied as is. */
+
+      if (i == j && qw == 0) {
+        /* we keep up as is, and flag this event */
+        double_edge = 1;
+        k = c->orders[up];
+      } else {
+        /* (c->orders[up]-1 - i) + j is the number of edges below the plane */
+        k = c->orders[up] - i + j + 1;
+      }
+
+      /* create new order k vertex */
+      vindex = c->nvert;
+      ++c->nvert;
+      if (c->nvert == VORONOI3D_MAXNUMVERT) {
+        error("Too many vertices!");
+      }
+      c->orders[vindex] = k;
+      c->offsets[vindex] = c->offsets[vindex - 1] + c->orders[vindex - 1];
+      if (c->offsets[vindex] + k >= VORONOI3D_MAXNUMEDGE) {
+        error("Too many edges!");
+      }
+
+      visitflags[vindex] = -vindex;
+      /* the new vertex is just a copy of vertex up */
+      c->vertices[3 * vindex + 0] = c->vertices[3 * up + 0];
+      c->vertices[3 * vindex + 1] = c->vertices[3 * up + 1];
+      c->vertices[3 * vindex + 2] = c->vertices[3 * up + 2];
+
+      /* as above, us stores the index of the last edge NOT below the plane */
+      us = i;
+
+      /* copy all edges below the plane into the new vertex, starting from edge
+         1 (edge 0 will be connected to a newly created vertex below)
+         We have to do this in two steps: first we copy the high index edges of
+         up, then the low index ones (since the edges below the plane are not a
+         continuous block of indices in this case) */
+      k = 1;
+      ++i;
+      safewhile(i < c->orders[up]) {
+        qp = voronoi_get_edge(c, up, i);
+        qs = voronoi_get_edgeindex(c, up, i);
+        voronoi_set_ngb(c, vindex, k, voronoi_get_ngb(c, up, i));
+        voronoi_set_edge(c, vindex, k, qp);
+        voronoi_set_edgeindex(c, vindex, k, qs);
+        voronoi_set_edge(c, qp, qs, vindex);
+        voronoi_set_edgeindex(c, qp, qs, k);
+        /* disconnect up, it will be removed */
+        voronoi_set_edge(c, up, i, -1);
+        ++i;
+        ++k;
+      }
+      i = 0;
+      safewhile(i < j) {
+        qp = voronoi_get_edge(c, up, i);
+        qs = voronoi_get_edgeindex(c, up, i);
+        voronoi_set_ngb(c, vindex, k, voronoi_get_ngb(c, up, i));
+        voronoi_set_edge(c, vindex, k, qp);
+        voronoi_set_edgeindex(c, vindex, k, qs);
+        voronoi_set_edge(c, qp, qs, vindex);
+        voronoi_set_edgeindex(c, qp, qs, k);
+        voronoi_set_edge(c, up, i, -1);
+        ++i;
+        ++k;
+      }
+      /* qs stores the index of the first edge not below the plane */
+      qs = j;
+    }
+
+    /* at this point, we have created a new vertex that contains all edges of up
+       below the plane, and two dangling edges: 0 and k
+       Furthermore, us stores the index of the last edge not below the plane,
+       qs the index of the first edge not below the plane */
+
+    /* now set the neighbours for the dangling edge(s) */
+    if (!double_edge) {
+      /* the last edge has the same neighbour as the first edge not below the
+         plane */
+      voronoi_set_ngb(c, vindex, k, voronoi_get_ngb(c, up, qs));
+      /* the first edge has the new neighbour as neighbour */
+      voronoi_set_ngb(c, vindex, 0, ngb);
+    } else {
+      /* up is copied as is, so we also copy its last remaining neighbour */
+      voronoi_set_ngb(c, vindex, 0, voronoi_get_ngb(c, up, qs));
+    }
+
+    /* add up to the delete stack */
+    dstack[dstack_size] = up;
+    ++dstack_size;
+
+    /* make sure the variables below have the same meaning as they would have
+       if we had the non complicated setup:
+       cs contains the index of the last dangling edge of the new vertex
+       qp and q correspond to the last vertex that has been deleted
+       qs corresponds to the first edge not below the plane
+       up and us correspond to the last edge not below the plane, i.e. the edge
+       that will be the last one to connect to the new vertex
+       note that the value of i is ignored below, it is just used to temporary
+       store the new value of up */
+    cs = k;
+    qp = up;
+    q = u;
+    i = voronoi_get_edge(c, up, us);
+    us = voronoi_get_edgeindex(c, up, us);
+    up = i;
+    /* we store the index of the newly created vertex in the visitflags of the
+       last deleted vertex */
+    visitflags[qp] = vindex;
+  } else { /* if(complicated) */
+
+    if (u == l) {
+      error("Upper and lower vertex are the same!");
+    }
+
+    /* the line joining up and lp has general (vector) equation
+         x = lp + (up-lp)*t,
+       with t a parameter ranging from 0 to 1
+       we can rewrite this as
+         x = lp*(1-t) + up*t
+       the value for t corresponding to the intersection of the line and the
+       midplane can be found as the ratio of the projected distance between one
+       of the vertices and the midplane, and the total projected distance
+       between the two vertices: u-l (remember that u > 0 and l < 0) */
+    r = u / (u - l);
+    l = 1.0f - r;
+
+    if (r > FLT_MAX || r < -FLT_MAX || l > FLT_MAX || l < -FLT_MAX) {
+      error("Value overflow (r: %g, l: %g)", r, l);
+    }
+
+    /* create a new order 3 vertex */
+    vindex = c->nvert;
+    ++c->nvert;
+    if (c->nvert == VORONOI3D_MAXNUMVERT) {
+      error("Too many vertices!");
+    }
+    c->orders[vindex] = 3;
+    c->offsets[vindex] = c->offsets[vindex - 1] + c->orders[vindex - 1];
+    if (c->offsets[vindex] + 3 >= VORONOI3D_MAXNUMEDGE) {
+      error("Too many edges!");
+    }
+
+    visitflags[vindex] = -vindex;
+    c->vertices[3 * vindex + 0] =
+        c->vertices[3 * lp + 0] * r + c->vertices[3 * up + 0] * l;
+    c->vertices[3 * vindex + 1] =
+        c->vertices[3 * lp + 1] * r + c->vertices[3 * up + 1] * l;
+    c->vertices[3 * vindex + 2] =
+        c->vertices[3 * lp + 2] * r + c->vertices[3 * up + 2] * l;
+
+    /* add vertex up to the delete stack */
+    dstack[dstack_size] = up;
+    ++dstack_size;
+
+    /* connect the new vertex to lp (and update lp as well) */
+    voronoi_set_edge(c, vindex, 1, lp);
+    voronoi_set_edgeindex(c, vindex, 1, ls);
+    voronoi_set_edge(c, lp, ls, vindex);
+    voronoi_set_edgeindex(c, lp, ls, 1);
+    /* disconnect vertex up, it will be deleted */
+    voronoi_set_edge(c, up, us, -1);
+    /* note that we do not connect edges 0 and 2: edge 2 will be connected to
+       the next new vertex that we created, while edge 0 will be connected to
+       the last new vertex */
+
+    /* set neighbour relations for the new vertex:
+        - edge 0 will be connected to the next intersection point (below), and
+          hence has pj as ngb
+        - edge 1 is connected to lp and has the original neighbour of the
+          intersected edge corresponding to up as neighbour
+        - edge 2 has the neighbour on the other side of the original intersected
+          edge as neighbour, which is the same as the neighbour of the edge
+          corresponding to lp */
+    voronoi_set_ngb(c, vindex, 0, ngb);
+    voronoi_set_ngb(c, vindex, 1, voronoi_get_ngb(c, up, us));
+    voronoi_set_ngb(c, vindex, 2, voronoi_get_ngb(c, lp, ls));
+
+    qs = us + 1;
+    if (qs == c->orders[up]) {
+      qs = 0;
+    }
+    qp = up;
+    q = u;
+
+    cs = 2;
+
+  } /* if(complicated) */
+
+  /* at this point:
+      qp corresponds to the last vertex that has been deleted
+      up corresponds to the last vertex that should be used to connect a new
+      vertex to the newly created vertex above. In the normal case, qp and up
+      are the same vertex, but qp and up can be different if the newly created
+      vertex lies in the midplane
+      qs contains the index of the edge of qp that is next in line to be tested:
+      the edge that comes after the intersected edge that was deleted above
+      us corresponds to the edge of up that was connected to the vertex that is
+      now connected to the newly created vertex above
+      q contains the projected distance between qp and the midplane, along dx
+      cs contains the index of the last dangling edge of the last vertex that
+      was created above; we still need to connect this edge to a vertex below */
+
+  /* we have found one intersected edge (or at least an edge that lies inside
+     the midplane) and created one new vertex that lies in the midplane, with
+     dangling edges. We now try to find other intersected edges and create other
+     new vertices that will be connected to the first new vertex. */
+
+  int cp = -1;
+  int iqs = -1;
+  int new_double_edge = -1;
+
+  /* cp and rp both contain the index of the last vertex that was created
+     cp will be updated if we add more vertices, rp will be kept, as we need it
+     to link the last new vertex to the first new vertex in the end */
+  cp = vindex;
+  rp = vindex;
+  /* we traverse connections of the first removed vertex, until we arrive at an
+     edge that links to this vertex (or its equivalent in the degenerate
+     case) */
+  safewhile(qp != up || qs != us) {
+    /* test the next edge of qp */
+    lp = voronoi_get_edge(c, qp, qs);
+    lw = voronoi_test_vertex(&c->vertices[3 * lp], dx, r2, &l, teststack,
+                             &teststack_size);
+    if (lw == 0) {
+
+      /* degenerate case: next vertex lies inside the plane */
+
+      k = 2;
+      if (double_edge) {
+        k = 1;
+      }
+      /* store the vertex and edge on the other side of the edge in qp and qs */
+      qs = voronoi_get_edgeindex(c, qp, qs);
+      qp = lp;
+
+      /* move on to the next edge of qp and keep the original edge for
+         reference */
+      iqs = qs;
+      ++qs;
+      if (qs == c->orders[qp]) {
+        qs = 0;
+      }
+
+      /* test the next edges, and try to find one that does NOT lie below the
+         plane */
+      lp = voronoi_get_edge(c, qp, qs);
+      lw = voronoi_test_vertex(&c->vertices[3 * lp], dx, r2, &l, teststack,
+                               &teststack_size);
+      safewhile(lw == -1) {
+        ++k;
+        ++qs;
+        if (qs == c->orders[qp]) {
+          qs = 0;
+        }
+        lp = voronoi_get_edge(c, qp, qs);
+        lw = voronoi_test_vertex(&c->vertices[3 * lp], dx, r2, &l, teststack,
+                                 &teststack_size);
+      }
+
+      /* qs now contains the next edge NOT below the plane
+         k contains the order of the new vertex to create: the number of edges
+         below the plane + 2 (+1 if we have a double edge) */
+
+      /* if qp (the vertex in the plane) was already visited before, visitflags
+         will contain the index of the newly created vertex that replaces it */
+      j = visitflags[qp];
+
+      /* we need to find out what the order of the new vertex will be, and if we
+         are dealing with a new double edge or not */
+      if (qp == up && qs == us) {
+        new_double_edge = 0;
+        if (j > 0) {
+          k += c->orders[j];
+        }
+      } else {
+        if (j > 0) {
+          k += c->orders[j];
+          if (lw == 0) {
+            i = -visitflags[lp];
+            if (i > 0) {
+              if (voronoi_get_edge(c, i, c->orders[i] - 1) == j) {
+                new_double_edge = 1;
+                --k;
+              } else {
+                new_double_edge = 0;
+              }
+            } else {
+              if (j == rp && lp == up && voronoi_get_edge(c, qp, qs) == us) {
+                new_double_edge = 1;
+                --k;
+              } else {
+                new_double_edge = 0;
+              }
+            }
+          } else {
+            new_double_edge = 0;
+          }
+        } else {
+          if (lw == 0) {
+            i = -visitflags[lp];
+            if (i == cp) {
+              new_double_edge = 1;
+              --k;
+            } else {
+              new_double_edge = 0;
+            }
+          } else {
+            new_double_edge = 0;
+          }
+        }
+      }
+
+      //      if (j > 0) {
+      //        error("Case not handled!");
+      //      }
+
+      /* create new order k vertex */
+      vindex = c->nvert;
+      ++c->nvert;
+      if (c->nvert == VORONOI3D_MAXNUMVERT) {
+        error("Too many vertices!");
+      }
+      c->orders[vindex] = k;
+      c->offsets[vindex] = c->offsets[vindex - 1] + c->orders[vindex - 1];
+      if (c->offsets[vindex] + k >= VORONOI3D_MAXNUMEDGE) {
+        error("Too many edges!");
+      }
+
+      visitflags[vindex] = -vindex;
+      c->vertices[3 * vindex + 0] = c->vertices[3 * qp + 0];
+      c->vertices[3 * vindex + 1] = c->vertices[3 * qp + 1];
+      c->vertices[3 * vindex + 2] = c->vertices[3 * qp + 2];
+
+      visitflags[qp] = vindex;
+      dstack[dstack_size] = qp;
+      ++dstack_size;
+      j = vindex;
+      i = 0;
+
+      if (!double_edge) {
+        voronoi_set_ngb(c, j, i, ngb);
+        voronoi_set_edge(c, j, i, cp);
+        voronoi_set_edgeindex(c, j, i, cs);
+        voronoi_set_edge(c, cp, cs, j);
+        voronoi_set_edgeindex(c, cp, cs, i);
+        ++i;
+      }
+
+      qs = iqs;
+      iqs = k - 1;
+      if (new_double_edge) {
+        iqs = k;
+      }
+      safewhile(i < iqs) {
+        ++qs;
+        if (qs == c->orders[qp]) {
+          qs = 0;
+        }
+        lp = voronoi_get_edge(c, qp, qs);
+        ls = voronoi_get_edgeindex(c, qp, qs);
+        voronoi_set_ngb(c, j, i, voronoi_get_ngb(c, qp, qs));
+        voronoi_set_edge(c, j, i, lp);
+        voronoi_set_edgeindex(c, j, i, ls);
+        voronoi_set_edge(c, lp, ls, j);
+        voronoi_set_edgeindex(c, lp, ls, i);
+        voronoi_set_edge(c, qp, qs, -1);
+        ++i;
+      }
+      ++qs;
+      if (qs == c->orders[qp]) {
+        qs = 0;
+      }
+      cs = i;
+      cp = j;
+
+      if (new_double_edge) {
+        voronoi_set_ngb(c, j, 0, voronoi_get_ngb(c, qp, qs));
+      } else {
+        voronoi_set_ngb(c, j, cs, voronoi_get_ngb(c, qp, qs));
+      }
+
+      double_edge = new_double_edge;
+    } else { /* if(lw == 0) */
+
+      /* normal case: next vertex lies below or above the plane */
+
+      if (lw == 1) {
+
+        /* vertex lies above the plane */
+
+        /* we just delete the vertex and continue with the next edge of this
+           vertex */
+
+        qs = voronoi_get_edgeindex(c, qp, qs) + 1;
+        if (qs == c->orders[lp]) {
+          qs = 0;
+        }
+        qp = lp;
+        q = l;
+        dstack[dstack_size] = qp;
+        ++dstack_size;
+      } else {
+
+        /* vertex lies below the plane */
+
+        /* we have found our next intersected edge: create a new vertex and link
+           it to the other vertices */
+
+        if (q == l) {
+          error("Upper and lower vertex are the same!");
+        }
+
+        r = q / (q - l);
+        l = 1.0f - r;
+
+        if (r > FLT_MAX || r < -FLT_MAX || l > FLT_MAX || l < -FLT_MAX) {
+          error("Value out of bounds (r: %g, l: %g)!", r, l);
+        }
+
+        /* create new order 3 vertex */
+        vindex = c->nvert;
+        ++c->nvert;
+        if (c->nvert == VORONOI3D_MAXNUMVERT) {
+          error("Too many vertices!");
+        }
+        visitflags[vindex] = -vindex;
+        c->orders[vindex] = 3;
+        c->offsets[vindex] = c->offsets[vindex - 1] + c->orders[vindex - 1];
+        if (c->offsets[vindex] + 3 >= VORONOI3D_MAXNUMEDGE) {
+          error("Too many edges!");
+        }
+
+        c->vertices[3 * vindex + 0] =
+            c->vertices[3 * lp + 0] * r + c->vertices[3 * qp + 0] * l;
+        c->vertices[3 * vindex + 1] =
+            c->vertices[3 * lp + 1] * r + c->vertices[3 * qp + 1] * l;
+        c->vertices[3 * vindex + 2] =
+            c->vertices[3 * lp + 2] * r + c->vertices[3 * qp + 2] * l;
+
+        /* link the edges:
+           the first edge is connected to the last edge of the previous new
+           vertex. The last edge will be connected to the next new vertex, and
+           is left open for the moment */
+        ls = voronoi_get_edgeindex(c, qp, qs);
+        voronoi_set_edge(c, vindex, 0, cp);
+        voronoi_set_edge(c, vindex, 1, lp);
+        voronoi_set_edgeindex(c, vindex, 0, cs);
+        voronoi_set_edgeindex(c, vindex, 1, ls);
+        voronoi_set_edge(c, lp, ls, vindex);
+        voronoi_set_edgeindex(c, lp, ls, 1);
+        voronoi_set_edge(c, cp, cs, vindex);
+        voronoi_set_edgeindex(c, cp, cs, 0);
+        voronoi_set_edge(c, qp, qs, -1);
+
+        voronoi_set_ngb(c, vindex, 0, ngb);
+        voronoi_set_ngb(c, vindex, 1, voronoi_get_ngb(c, qp, qs));
+        voronoi_set_ngb(c, vindex, 2, voronoi_get_ngb(c, lp, ls));
+
+        /* continue with the next edge of qp (the last vertex above the
+           midplane */
+        ++qs;
+        if (qs == c->orders[qp]) {
+          qs = 0;
+        }
+        /* store the last newly created vertex and its dangling edge for the
+           next iteration */
+        cp = vindex;
+        cs = 2;
+      } /* if(lw == 1) */
+
+    } /* if(lw == 0) */
+
+  } /* while() */
+
+  /* we finished adding new vertices. Now connect the last dangling edge of the
+     last newly created vertex to the first dangling edge of the first newly
+     created vertex */
+  voronoi_set_edge(c, cp, cs, rp);
+  voronoi_set_edge(c, rp, 0, cp);
+  voronoi_set_edgeindex(c, cp, cs, 0);
+  voronoi_set_edgeindex(c, rp, 0, cs);
+
+  /* now remove the vertices in the delete stack */
+
+  /* the algorithm above did not necessarily visit all vertices above the plane.
+     here we scan for vertices that are linked to vertices that are to be
+     removed and add them to the delete stack if necessary
+     this only works because we made sure that all deleted vertices no longer
+     have edges that connect them to vertices that need to stay */
+  for (i = 0; i < dstack_size; ++i) {
+    for (j = 0; j < c->orders[dstack[i]]; ++j) {
+      if (voronoi_get_edge(c, dstack[i], j) >= 0) {
+        dstack[dstack_size] = voronoi_get_edge(c, dstack[i], j);
+        ++dstack_size;
+        voronoi_set_edge(c, dstack[i], j, -1);
+        voronoi_set_edgeindex(c, dstack[i], j, -1);
+      }
+    }
+  }
+
+  /* collapse order 1 and 2 vertices: vertices with only 1 edge or 2 edges that
+     can be created during the plane intersection routine */
+  /* first flag them */
+  int low_order_stack[VORONOI3D_MAXNUMVERT];
+  int low_order_index = 0;
+  for (i = 0; i < c->nvert; ++i) {
+    if (voronoi_get_edge(c, i, 0) >= 0 && c->orders[i] < 3) {
+      low_order_stack[low_order_index] = i;
+      ++low_order_index;
+    }
+  }
+
+  /* now remove them */
+  safewhile(low_order_index) {
+    int v = low_order_stack[low_order_index - 1];
+    /* the vertex might already have been deleted by a previous operation */
+    if (voronoi_get_edge(c, v, 0) < 0) {
+      --low_order_index;
+      continue;
+    }
+    if (c->orders[v] == 2) {
+      int j = voronoi_get_edge(c, v, 0);
+      int k = voronoi_get_edge(c, v, 1);
+      int b = voronoi_get_edgeindex(c, v, 1);
+      int l = 0;
+      safewhile(l < c->orders[j] && voronoi_get_edge(c, j, l) != k) { ++l; }
+      if (l == c->orders[j]) {
+        int a = voronoi_get_edgeindex(c, v, 0);
+        /* j and k are not joined together. Replace their edges pointing to v
+           with a new edge pointing from j to k */
+        voronoi_set_edge(c, j, a, k);
+        voronoi_set_edgeindex(c, j, a, b);
+        voronoi_set_edge(c, k, b, j);
+        voronoi_set_edgeindex(c, k, b, a);
+        /* no new elements added to the stack: decrease the counter */
+        --low_order_index;
+      } else {
+        /* just remove the edges from j to v and from k to v: create two new
+           vertices */
+        /* vertex j */
+        vindex = c->nvert;
+        ++c->nvert;
+        c->vertices[3 * vindex] = c->vertices[3 * j];
+        c->vertices[3 * vindex + 1] = c->vertices[3 * j + 1];
+        c->vertices[3 * vindex + 2] = c->vertices[3 * j + 2];
+        c->orders[vindex] = c->orders[j] - 1;
+        c->offsets[vindex] = c->offsets[vindex - 1] + c->orders[vindex - 1];
+        int m = 0;
+        for (int n = 0; n < c->orders[j]; ++n) {
+          int l = voronoi_get_edge(c, j, n);
+          if (l != v) {
+            /* make a new edge */
+            voronoi_set_edge(c, vindex, m, l);
+            voronoi_set_edgeindex(c, vindex, m, voronoi_get_edgeindex(c, j, n));
+            /* update the other vertex */
+            voronoi_set_edge(c, l, voronoi_get_edgeindex(c, j, n), vindex);
+            voronoi_set_edgeindex(c, l, voronoi_get_edgeindex(c, j, n), m);
+            /* copy ngb information */
+            voronoi_set_ngb(c, vindex, m, voronoi_get_ngb(c, j, n));
+            ++m;
+          }
+          /* remove the old vertex */
+          voronoi_set_edge(c, j, n, -1);
+          voronoi_set_edgeindex(c, j, n, -1);
+        }
+        /* vertex k */
+        vindex = c->nvert;
+        ++c->nvert;
+        c->vertices[3 * vindex] = c->vertices[3 * k];
+        c->vertices[3 * vindex + 1] = c->vertices[3 * k + 1];
+        c->vertices[3 * vindex + 2] = c->vertices[3 * k + 2];
+        c->orders[vindex] = c->orders[k] - 1;
+        c->offsets[vindex] = c->offsets[vindex - 1] + c->orders[vindex - 1];
+        m = 0;
+        for (int n = 0; n < c->orders[k]; ++n) {
+          int l = voronoi_get_edge(c, k, n);
+          if (l != v) {
+            /* make a new edge */
+            voronoi_set_edge(c, vindex, m, l);
+            voronoi_set_edgeindex(c, vindex, m, voronoi_get_edgeindex(c, k, n));
+            /* update the other vertex */
+            voronoi_set_edge(c, l, voronoi_get_edgeindex(c, k, n), vindex);
+            voronoi_set_edgeindex(c, l, voronoi_get_edgeindex(c, k, n), m);
+            /* copy ngb information */
+            /* this one is special: we copy the ngb corresponding to the
+               deleted edge and skip the one after that */
+            if (n == b + 1) {
+              voronoi_set_ngb(c, vindex, m, voronoi_get_ngb(c, k, b));
+            } else {
+              voronoi_set_ngb(c, vindex, m, voronoi_get_ngb(c, k, n));
+            }
+            ++m;
+          }
+          /* remove the old vertex */
+          voronoi_set_edge(c, k, n, -1);
+          voronoi_set_edgeindex(c, k, n, -1);
+        }
+        /* check if j or k has become an order 2 vertex */
+        /* if they have become an order 1 vertex, they were already an order 2
+           vertex, and they should already be in the list... */
+        if (c->orders[vindex] == 2) {
+          if (c->orders[vindex - 1] == 2) {
+            low_order_stack[low_order_index] = vindex - 1;
+            ++low_order_index;
+            low_order_stack[low_order_index] = vindex;
+            /* we do not increase the index here: we want this element to be the
+               next element that is processed */
+          } else {
+            low_order_stack[low_order_index] = vindex;
+          }
+        } else {
+          if (c->orders[vindex - 1] == 2) {
+            low_order_stack[low_order_index] = vindex - 1;
+          } else {
+            /* no new vertices added to the stack: decrease the counter */
+            --low_order_index;
+          }
+        }
+      }
+      /* Remove the vertex */
+      voronoi_set_edge(c, v, 0, -1);
+      voronoi_set_edgeindex(c, v, 0, -1);
+      voronoi_set_edge(c, v, 1, -1);
+      voronoi_set_edgeindex(c, v, 1, -1);
+    } else if (c->orders[v] == 1) {
+      int j = voronoi_get_edge(c, v, 0);
+      /* we have to remove the edge between j and v. We create a new vertex */
+      vindex = c->nvert;
+      ++c->nvert;
+      c->vertices[3 * vindex] = c->vertices[3 * j];
+      c->vertices[3 * vindex + 1] = c->vertices[3 * j + 1];
+      c->vertices[3 * vindex + 2] = c->vertices[3 * j + 2];
+      c->orders[vindex] = c->orders[j] - 1;
+      c->offsets[vindex] = c->offsets[vindex - 1] + c->orders[vindex - 1];
+      int m = 0;
+      for (int k = 0; k < c->orders[j]; ++k) {
+        int l = voronoi_get_edge(c, j, k);
+        if (l != v) {
+          /* make a new edge */
+          voronoi_set_edge(c, vindex, m, l);
+          voronoi_set_edgeindex(c, vindex, m, voronoi_get_edgeindex(c, j, k));
+          /* update the other vertex */
+          voronoi_set_edge(c, l, voronoi_get_edgeindex(c, j, k), vindex);
+          voronoi_set_edgeindex(c, l, voronoi_get_edgeindex(c, j, k), m);
+          /* copy ngb information */
+          voronoi_set_ngb(c, vindex, m, voronoi_get_ngb(c, j, k));
+          ++m;
+        }
+        /* remove the old vertex */
+        voronoi_set_edge(c, j, k, -1);
+        voronoi_set_edgeindex(c, j, k, -1);
+      }
+      /* if the new vertex is a new order 2 vertex, add it to the stack */
+      if (c->orders[vindex] == 2) {
+        low_order_stack[low_order_index - 1] = vindex;
+      } else {
+        --low_order_index;
+      }
+      /* remove the order 1 vertex */
+      voronoi_set_edge(c, v, 0, -1);
+      voronoi_set_edgeindex(c, v, 0, -1);
+    } else {
+      error("Vertex with order %i. This should not happen!", c->orders[v]);
+    }
+  }
+
+  /* remove deleted vertices from all arrays */
+  struct voronoi_cell new_cell;
+  /* make sure the contents of the new cell are the same as for the old cell */
+  memcpy(&new_cell, c, sizeof(struct voronoi_cell));
+  int m, n;
+  for (vindex = 0; vindex < c->nvert; ++vindex) {
+    j = vindex;
+    /* find next edge that is not deleted */
+    safewhile(j < c->nvert && voronoi_get_edge(c, j, 0) < 0) { ++j; }
+
+    if (j == c->nvert) {
+      /* ready */
+      break;
+    }
+
+    /* copy vertices */
+    new_cell.vertices[3 * vindex + 0] = c->vertices[3 * j + 0];
+    new_cell.vertices[3 * vindex + 1] = c->vertices[3 * j + 1];
+    new_cell.vertices[3 * vindex + 2] = c->vertices[3 * j + 2];
+
+    /* copy order */
+    new_cell.orders[vindex] = c->orders[j];
+
+    /* set offset */
+    if (vindex) {
+      new_cell.offsets[vindex] =
+          new_cell.offsets[vindex - 1] + new_cell.orders[vindex - 1];
+    } else {
+      new_cell.offsets[vindex] = 0;
+    }
+
+    /* copy edges, edgeindices and ngbs */
+    for (k = 0; k < c->orders[j]; ++k) {
+      voronoi_set_edge(&new_cell, vindex, k, voronoi_get_edge(c, j, k));
+      voronoi_set_edgeindex(&new_cell, vindex, k,
+                            voronoi_get_edgeindex(c, j, k));
+      voronoi_set_ngb(&new_cell, vindex, k, voronoi_get_ngb(c, j, k));
+    }
+
+    /* update other edges */
+    for (k = 0; k < c->orders[j]; ++k) {
+      m = voronoi_get_edge(c, j, k);
+      n = voronoi_get_edgeindex(c, j, k);
+      if (m < vindex) {
+        voronoi_set_edge(&new_cell, m, n, vindex);
+      } else {
+        voronoi_set_edge(c, m, n, vindex);
+      }
+    }
+
+    /* deactivate edge */
+    voronoi_set_edge(c, j, 0, -1);
+  }
+  new_cell.nvert = vindex;
+
+  new_cell.x[0] = c->x[0];
+  new_cell.x[1] = c->x[1];
+  new_cell.x[2] = c->x[2];
+  new_cell.centroid[0] = c->centroid[0];
+  new_cell.centroid[1] = c->centroid[1];
+  new_cell.centroid[2] = c->centroid[2];
+  new_cell.volume = c->volume;
+  new_cell.nface = c->nface;
+
+  /* Update the cell values. */
+  voronoi3d_cell_copy(&new_cell, c);
+
+#ifdef VORONOI3D_EXPENSIVE_CHECKS
+  voronoi_check_cell_consistency(c);
+#endif
+}
+
+/**
+ * @brief Get the volume of the tetrahedron made up by the four given vertices.
+ *
+ * The vertices are not expected to be oriented in a specific way. If the input
+ * happens to be coplanar or colinear, the returned volume will just be zero.
+ *
+ * @param v1 First vertex.
+ * @param v2 Second vertex.
+ * @param v3 Third vertex.
+ * @param v4 Fourth vertex.
+ * @return Volume of the tetrahedron.
+ */
+__attribute__((always_inline)) INLINE float voronoi_volume_tetrahedron(
+    const float *v1, const float *v2, const float *v3, const float *v4) {
+
+  float V;
+  float r1[3], r2[3], r3[3];
+
+  r1[0] = v2[0] - v1[0];
+  r1[1] = v2[1] - v1[1];
+  r1[2] = v2[2] - v1[2];
+  r2[0] = v3[0] - v1[0];
+  r2[1] = v3[1] - v1[1];
+  r2[2] = v3[2] - v1[2];
+  r3[0] = v4[0] - v1[0];
+  r3[1] = v4[1] - v1[1];
+  r3[2] = v4[2] - v1[2];
+  V = fabs(r1[0] * r2[1] * r3[2] + r1[1] * r2[2] * r3[0] +
+           r1[2] * r2[0] * r3[1] - r1[2] * r2[1] * r3[0] -
+           r2[2] * r3[1] * r1[0] - r3[2] * r1[1] * r2[0]);
+  V /= 6.;
+  return V;
+}
+
+/**
+ * @brief Get the centroid of the tetrahedron made up by the four given
+ * vertices.
+ *
+ * The centroid is just the average of four vertex coordinates.
+ *
+ * @param centroid Array to store the centroid in.
+ * @param v1 First vertex.
+ * @param v2 Second vertex.
+ * @param v3 Third vertex.
+ * @param v4 Fourth vertex.
+ */
+__attribute__((always_inline)) INLINE void voronoi_centroid_tetrahedron(
+    float *centroid, const float *v1, const float *v2, const float *v3,
+    const float *v4) {
+
+  centroid[0] = 0.25f * (v1[0] + v2[0] + v3[0] + v4[0]);
+  centroid[1] = 0.25f * (v1[1] + v2[1] + v3[1] + v4[1]);
+  centroid[2] = 0.25f * (v1[2] + v2[2] + v3[2] + v4[2]);
+}
+
+/**
+ * @brief Calculate the volume and centroid of a 3D Voronoi cell.
+ *
+ * @param cell 3D Voronoi cell.
+ */
+__attribute__((always_inline)) INLINE void voronoi_calculate_cell(
+    struct voronoi_cell *cell) {
+
+  float v1[3], v2[3], v3[3], v4[3];
+  int i, j, k, l, m, n;
+  float tcentroid[3];
+  float tvol;
+
+  /* we need to calculate the volume of the tetrahedra formed by the first
+     vertex and the triangles that make up the other faces
+     since we do not store faces explicitly, this means keeping track of the
+     edges that have been processed somehow
+     we follow the method used in voro++ and "flip" processed edges to
+     negative values
+     this also means that we need to process all triangles corresponding to
+     an edge at once */
+  cell->volume = 0.0f;
+  v1[0] = cell->vertices[0];
+  v1[1] = cell->vertices[1];
+  v1[2] = cell->vertices[2];
+  cell->centroid[0] = 0.0f;
+  cell->centroid[1] = 0.0f;
+  cell->centroid[2] = 0.0f;
+
+  /* loop over all vertices (except the first one) */
+  for (i = 1; i < cell->nvert; ++i) {
+
+    v2[0] = cell->vertices[3 * i + 0];
+    v2[1] = cell->vertices[3 * i + 1];
+    v2[2] = cell->vertices[3 * i + 2];
+
+    /*  loop over the edges of the vertex*/
+    for (j = 0; j < cell->orders[i]; ++j) {
+
+      k = voronoi_get_edge(cell, i, j);
+
+      if (k >= 0) {
+
+        /* mark the edge as processed */
+        voronoi_set_edge(cell, i, j, -k - 1);
+
+        l = voronoi_get_edgeindex(cell, i, j) + 1;
+        if (l == cell->orders[k]) {
+          l = 0;
+        }
+        v3[0] = cell->vertices[3 * k + 0];
+        v3[1] = cell->vertices[3 * k + 1];
+        v3[2] = cell->vertices[3 * k + 2];
+        m = voronoi_get_edge(cell, k, l);
+        voronoi_set_edge(cell, k, l, -1 - m);
+
+        int loopcount = 0;
+        safewhile(m != i) {
+          if (loopcount == 999) {
+            voronoi_print_cell(cell);
+            voronoi_print_gnuplot_c(cell);
+          }
+          ++loopcount;
+          n = voronoi_get_edgeindex(cell, k, l) + 1;
+          if (n == cell->orders[m]) {
+            n = 0;
+          }
+          v4[0] = cell->vertices[3 * m + 0];
+          v4[1] = cell->vertices[3 * m + 1];
+          v4[2] = cell->vertices[3 * m + 2];
+          tvol = voronoi_volume_tetrahedron(v1, v2, v3, v4);
+          cell->volume += tvol;
+          voronoi_centroid_tetrahedron(tcentroid, v1, v2, v3, v4);
+          cell->centroid[0] += tcentroid[0] * tvol;
+          cell->centroid[1] += tcentroid[1] * tvol;
+          cell->centroid[2] += tcentroid[2] * tvol;
+          k = m;
+          l = n;
+          v3[0] = v4[0];
+          v3[1] = v4[1];
+          v3[2] = v4[2];
+          m = voronoi_get_edge(cell, k, l);
+          voronoi_set_edge(cell, k, l, -1 - m);
+        } /* while() */
+
+      } /* if(k >= 0) */
+
+    } /* for(j) */
+
+  } /* for(i) */
+
+  cell->centroid[0] /= cell->volume;
+  cell->centroid[1] /= cell->volume;
+  cell->centroid[2] /= cell->volume;
+
+  /* centroid was calculated relative w.r.t. particle position */
+  cell->centroid[0] += cell->x[0];
+  cell->centroid[1] += cell->x[1];
+  cell->centroid[2] += cell->x[2];
+
+  /* Reset the edges: we still need them for the face calculation */
+  for (i = 0; i < VORONOI3D_MAXNUMEDGE; ++i) {
+    if (cell->edges[i] < 0) {
+      cell->edges[i] = -1 - cell->edges[i];
+    }
+  }
+}
+
+/**
+ * @brief Calculate the faces for a 3D Voronoi cell. This reorganizes the
+ * internal variables of the cell, so no new neighbours can be added after
+ * this method has been called!
+ *
+ * Note that the face midpoints are calculated relative w.r.t. the cell
+ * generator!
+ *
+ * @param cell 3D Voronoi cell.
+ */
+__attribute__((always_inline)) INLINE void voronoi_calculate_faces(
+    struct voronoi_cell *cell) {
+
+  int i, j, k, l, m, n;
+  float area;
+  float midpoint[3];
+  float u[3], v[3], w[3];
+  float loc_area;
+  unsigned long long newngbs[VORONOI3D_MAXNUMEDGE];
+
+  cell->nface = 0;
+  for (i = 0; i < cell->nvert; ++i) {
+
+    for (j = 0; j < cell->orders[i]; ++j) {
+
+      k = voronoi_get_edge(cell, i, j);
+
+      if (k >= 0) {
+
+        newngbs[cell->nface] = voronoi_get_ngb(cell, i, j);
+        area = 0.;
+        midpoint[0] = 0.;
+        midpoint[1] = 0.;
+        midpoint[2] = 0.;
+        voronoi_set_edge(cell, i, j, -1 - k);
+        l = voronoi_get_edgeindex(cell, i, j) + 1;
+        if (l == cell->orders[k]) {
+          l = 0;
+        }
+        m = voronoi_get_edge(cell, k, l);
+        voronoi_set_edge(cell, k, l, -1 - m);
+
+        safewhile(m != i) {
+          n = voronoi_get_edgeindex(cell, k, l) + 1;
+          if (n == cell->orders[m]) {
+            n = 0;
+          }
+          u[0] = cell->vertices[3 * k + 0] - cell->vertices[3 * i + 0];
+          u[1] = cell->vertices[3 * k + 1] - cell->vertices[3 * i + 1];
+          u[2] = cell->vertices[3 * k + 2] - cell->vertices[3 * i + 2];
+          v[0] = cell->vertices[3 * m + 0] - cell->vertices[3 * i + 0];
+          v[1] = cell->vertices[3 * m + 1] - cell->vertices[3 * i + 1];
+          v[2] = cell->vertices[3 * m + 2] - cell->vertices[3 * i + 2];
+          w[0] = u[1] * v[2] - u[2] * v[1];
+          w[1] = u[2] * v[0] - u[0] * v[2];
+          w[2] = u[0] * v[1] - u[1] * v[0];
+          loc_area = sqrtf(w[0] * w[0] + w[1] * w[1] + w[2] * w[2]);
+          area += loc_area;
+          midpoint[0] += loc_area * (cell->vertices[3 * k + 0] +
+                                     cell->vertices[3 * i + 0] +
+                                     cell->vertices[3 * m + 0]);
+          midpoint[1] += loc_area * (cell->vertices[3 * k + 1] +
+                                     cell->vertices[3 * i + 1] +
+                                     cell->vertices[3 * m + 1]);
+          midpoint[2] += loc_area * (cell->vertices[3 * k + 2] +
+                                     cell->vertices[3 * i + 2] +
+                                     cell->vertices[3 * m + 2]);
+          k = m;
+          l = n;
+          m = voronoi_get_edge(cell, k, l);
+          voronoi_set_edge(cell, k, l, -1 - m);
+        }
+
+        cell->face_areas[cell->nface] = 0.5f * area;
+        cell->face_midpoints[cell->nface][0] = midpoint[0] / area / 3.0f;
+        cell->face_midpoints[cell->nface][1] = midpoint[1] / area / 3.0f;
+        cell->face_midpoints[cell->nface][2] = midpoint[2] / area / 3.0f;
+        ++cell->nface;
+
+        if (cell->nface == VORONOI3D_MAXFACE) {
+          error("Too many faces!");
+        }
+
+      } /* if(k >= 0) */
+
+    } /* for(j) */
+
+  } /* for(i) */
+
+  /* Overwrite the old neighbour array. */
+  for (i = 0; i < cell->nface; ++i) {
+    cell->ngbs[i] = newngbs[i];
+  }
+}
+
+/*******************************************************************************
+ * voronoi_algorithm interface implementations
+ *
+ * If you change any function parameters below, you also have to change them in
+ * the 1D and 2D algorithm!
+ ******************************************************************************/
+
+/**
+ * @brief Initialize a 3D Voronoi cell.
+ *
+ * @param cell 3D Voronoi cell to initialize.
+ * @param x Position of the generator of the cell.
+ * @param anchor Anchor of the simulation box.
+ * @param side Side lengths of the simulation box.
+ */
+__attribute__((always_inline)) INLINE void voronoi_cell_init(
+    struct voronoi_cell *cell, const double *x, const double *anchor,
+    const double *side) {
+
+  cell->x[0] = x[0];
+  cell->x[1] = x[1];
+  cell->x[2] = x[2];
+
+  voronoi_initialize(cell, anchor, side);
+
+  cell->volume = 0.0f;
+  cell->centroid[0] = 0.0f;
+  cell->centroid[1] = 0.0f;
+  cell->centroid[2] = 0.0f;
+  cell->nface = 0;
+}
+
+/**
+ * @brief Interact a 3D Voronoi cell with a particle with given relative
+ * position and ID.
+ *
+ * @param cell 3D Voronoi cell.
+ * @param dx Relative position of the interacting generator w.r.t. the cell
+ * generator (in fact: dx = generator - neighbour).
+ * @param id ID of the interacting neighbour.
+ */
+__attribute__((always_inline)) INLINE void voronoi_cell_interact(
+    struct voronoi_cell *cell, const float *dx, unsigned long long id) {
+
+  voronoi_intersect(cell, dx, id);
+}
+
+/**
+ * @brief Finalize a 3D Voronoi cell.
+ *
+ * @param cell 3D Voronoi cell.
+ * @return Maximal radius that could still change the structure of the cell.
+ */
+__attribute__((always_inline)) INLINE float voronoi_cell_finalize(
+    struct voronoi_cell *cell) {
+
+  int i;
+  float max_radius, v[3], v2;
+
+  /* Calculate the volume and centroid of the cell. */
+  voronoi_calculate_cell(cell);
+  /* Calculate the faces. */
+  voronoi_calculate_faces(cell);
+
+  /* Loop over the vertices and calculate the maximum radius. */
+  max_radius = 0.0f;
+  for (i = 0; i < cell->nvert; ++i) {
+    v[0] = cell->vertices[3 * i];
+    v[1] = cell->vertices[3 * i + 1];
+    v[2] = cell->vertices[3 * i + 2];
+    v2 = v[0] * v[0] + v[1] * v[1] + v[2] * v[2];
+    max_radius = fmaxf(max_radius, v2);
+  }
+  max_radius = sqrtf(max_radius);
+
+  return 2.0f * max_radius;
+}
+
+/**
+ * @brief Get the surface area and midpoint of the face between a 3D Voronoi
+ * cell and the given neighbour.
+ *
+ * @param cell 3D Voronoi cell.
+ * @param ngb ID of a particle that is possibly a neighbour of this cell.
+ * @param midpoint Array to store the relative position of the face in.
+ * @return 0 if the given neighbour is not a neighbour, the surface area of
+ * the face otherwise.
+ */
+__attribute__((always_inline)) INLINE float voronoi_get_face(
+    const struct voronoi_cell *cell, unsigned long long ngb, float *midpoint) {
+
+  int i = 0;
+  while (i < cell->nface && cell->ngbs[i] != ngb) {
+    ++i;
+  }
+  if (i == cell->nface) {
+    /* Ngb not found */
+    return 0.0f;
+  }
+
+  midpoint[0] = cell->face_midpoints[i][0];
+  midpoint[1] = cell->face_midpoints[i][1];
+  midpoint[2] = cell->face_midpoints[i][2];
+
+  return cell->face_areas[i];
+}
+
+/**
+ * @brief Get the centroid of a 3D Voronoi cell.
+ *
+ * @param cell 3D Voronoi cell.
+ * @param centroid Array to store the centroid in.
+ */
+__attribute__((always_inline)) INLINE void voronoi_get_centroid(
+    const struct voronoi_cell *cell, float *centroid) {
+
+  centroid[0] = cell->centroid[0];
+  centroid[1] = cell->centroid[1];
+  centroid[2] = cell->centroid[2];
+}
+
+#endif  // SWIFT_VORONOIXD_ALGORITHM_H
diff --git a/src/hydro/Shadowswift/voronoi3d_cell.h b/src/hydro/Shadowswift/voronoi3d_cell.h
new file mode 100644
index 0000000000000000000000000000000000000000..ef43eff1745f48219af14aec2455aaa5e5b0d47a
--- /dev/null
+++ b/src/hydro/Shadowswift/voronoi3d_cell.h
@@ -0,0 +1,143 @@
+/*******************************************************************************
+ * This file is part of SWIFT.
+ * Copyright (c) 2016 Bert Vandenbroucke (bert.vandenbroucke@gmail.com).
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as published
+ * by the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public License
+ * along with this program.  If not, see <http://www.gnu.org/licenses/>.
+ *
+ ******************************************************************************/
+
+#ifndef SWIFT_VORONOIXD_CELL_H
+#define SWIFT_VORONOIXD_CELL_H
+
+/* Maximal number of neighbours that can be stored in a voronoi_cell struct */
+#define VORONOI3D_MAXNUMNGB 100
+/* Maximal number of vertices that can be stored in a voronoi_cell struct */
+#define VORONOI3D_MAXNUMVERT 500
+/* Maximal number of edges that can be stored in a voronoi_cell struct */
+#define VORONOI3D_MAXNUMEDGE 1500
+/* Maximal number of faces that can be stored in a voronoi_cell struct */
+#define VORONOI3D_MAXFACE 100
+
+/* 3D Voronoi cell */
+struct voronoi_cell {
+
+  /* The position of the generator of the cell. */
+  double x[3];
+
+  /* The volume of the 3D cell. */
+  float volume;
+
+  /* The centroid of the cell. */
+  float centroid[3];
+
+  /* Number of cell vertices. */
+  int nvert;
+
+  /* Vertex coordinates. */
+  float vertices[3 * VORONOI3D_MAXNUMVERT];
+
+  /* Number of edges for every vertex. */
+  char orders[VORONOI3D_MAXNUMVERT];
+
+  /* Offsets of the edges, edgeindices and neighbours corresponding to a
+     particular vertex in the internal arrays */
+  int offsets[VORONOI3D_MAXNUMVERT];
+
+  /* Edge information. Edges are ordered counterclockwise w.r.t. a vector
+     pointing from the cell generator to the vertex. */
+  int edges[VORONOI3D_MAXNUMEDGE];
+
+  /* Additional edge information. */
+  char edgeindices[VORONOI3D_MAXNUMEDGE];
+
+  /* Neighbour information. This field is used differently depending on where we
+     are in the algorithm. During cell construction, it contains, for every edge
+     of every vertex, the index of the neighbour that generates the face
+     counterclockwise of the edge w.r.t. a vector pointing from the vertex along
+     the edge. After cell finalization, it contains a neighbour for every face,
+     in the same order as the face_areas and face_midpoints arrays. */
+  unsigned long long ngbs[VORONOI3D_MAXNUMEDGE];
+
+  /* Number of faces of the cell. */
+  unsigned char nface;
+
+  /* Surface areas of the cell faces. */
+  float face_areas[VORONOI3D_MAXFACE];
+
+  /* Midpoints of the cell faces. */
+  float face_midpoints[VORONOI3D_MAXFACE][3];
+};
+
+/**
+ * @brief Copy the contents of the 3D Voronoi cell pointed to by source into the
+ * 3D Voronoi cell pointed to by destination
+ *
+ * @param source Pointer to a 3D Voronoi cell to read from.
+ * @param destination Pointer to a 3D Voronoi cell to write to.
+ */
+__attribute__((always_inline)) INLINE void voronoi3d_cell_copy(
+    struct voronoi_cell *source, struct voronoi_cell *destination) {
+
+  /* Copy the position of the generator of the cell. */
+  destination->x[0] = source->x[0];
+  destination->x[1] = source->x[1];
+  destination->x[2] = source->x[2];
+
+  /* Copy the volume of the 3D cell. */
+  destination->volume = source->volume;
+
+  /* Copy the centroid of the cell. */
+  destination->centroid[0] = source->centroid[0];
+  destination->centroid[1] = source->centroid[1];
+  destination->centroid[2] = source->centroid[2];
+
+  /* Copy the number of cell vertices. */
+  destination->nvert = source->nvert;
+
+  /* Copy the vertex coordinates. We only copy the 3*nvert first coordinates. */
+  for (int i = 0; i < 3 * source->nvert; ++i) {
+    destination->vertices[i] = source->vertices[i];
+  }
+
+  /* Copy the number of edges for every vertex. Again, we only copy the nvert
+     first values. */
+  for (int i = 0; i < source->nvert; ++i) {
+    destination->orders[i] = source->orders[i];
+  }
+
+  /* Copy the nvert first values of the offsets. */
+  for (int i = 0; i < source->nvert; ++i) {
+    destination->offsets[i] = source->offsets[i];
+  }
+
+  /* Copy the edge information. No idea how many edges we have, so we copy
+     everything. */
+  for (int i = 0; i < VORONOI3D_MAXNUMEDGE; ++i) {
+    destination->edges[i] = source->edges[i];
+  }
+
+  /* Copy all additional edge information. */
+  for (int i = 0; i < VORONOI3D_MAXNUMEDGE; ++i) {
+    destination->edgeindices[i] = source->edgeindices[i];
+  }
+
+  /* Copy neighbour information. Since neighbours are stored per edge, the total
+     number of neighbours in this list is larger than numngb and we copy
+     everything. */
+  for (int i = 0; i < VORONOI3D_MAXNUMEDGE; ++i) {
+    destination->ngbs[i] = source->ngbs[i];
+  }
+}
+
+#endif  // SWIFT_VORONOIXD_CELL_H
diff --git a/src/hydro/Shadowswift/voronoi_algorithm.h b/src/hydro/Shadowswift/voronoi_algorithm.h
new file mode 100644
index 0000000000000000000000000000000000000000..19ecc723741e6c91b19e85f6457311a80c6faf34
--- /dev/null
+++ b/src/hydro/Shadowswift/voronoi_algorithm.h
@@ -0,0 +1,33 @@
+/*******************************************************************************
+ * This file is part of SWIFT.
+ * Copyright (c) 2016 Bert Vandenbroucke (bert.vandenbroucke@gmail.com).
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as published
+ * by the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public License
+ * along with this program.  If not, see <http://www.gnu.org/licenses/>.
+ *
+ ******************************************************************************/
+
+#ifndef SWIFT_VORONOI_ALGORITHM_H
+#define SWIFT_VORONOI_ALGORITHM_H
+
+#if defined(HYDRO_DIMENSION_1D)
+#include "voronoi1d_algorithm.h"
+#elif defined(HYDRO_DIMENSION_2D)
+#include "voronoi2d_algorithm.h"
+#elif defined(HYDRO_DIMENSION_3D)
+#include "voronoi3d_algorithm.h"
+#else
+#error "You have to select a dimension for the hydro!"
+#endif
+
+#endif  // SWIFT_VORONOI_ALGORITHM_H
diff --git a/src/hydro/Shadowswift/voronoi_cell.h b/src/hydro/Shadowswift/voronoi_cell.h
new file mode 100644
index 0000000000000000000000000000000000000000..30d3e17fdfa76448773c0e45834ddf732989a3a4
--- /dev/null
+++ b/src/hydro/Shadowswift/voronoi_cell.h
@@ -0,0 +1,33 @@
+/*******************************************************************************
+ * This file is part of SWIFT.
+ * Copyright (c) 2016 Bert Vandenbroucke (bert.vandenbroucke@gmail.com).
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as published
+ * by the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public License
+ * along with this program.  If not, see <http://www.gnu.org/licenses/>.
+ *
+ ******************************************************************************/
+
+#ifndef SWIFT_VORONOI_CELL_H
+#define SWIFT_VORONOI_CELL_H
+
+#if defined(HYDRO_DIMENSION_1D)
+#include "voronoi1d_cell.h"
+#elif defined(HYDRO_DIMENSION_2D)
+#include "voronoi2d_cell.h"
+#elif defined(HYDRO_DIMENSION_3D)
+#include "voronoi3d_cell.h"
+#else
+#error "You have to select a dimension for the hydro!"
+#endif
+
+#endif  // SWIFT_VORONOI_CELL_H
diff --git a/src/hydro_io.h b/src/hydro_io.h
index 05ae94ade7b103ff1b584dc2447cbab40479d1fc..202d724f821b570b427210bb48b7070563513458 100644
--- a/src/hydro_io.h
+++ b/src/hydro_io.h
@@ -32,6 +32,8 @@
 #include "./hydro/Default/hydro_io.h"
 #elif defined(GIZMO_SPH)
 #include "./hydro/Gizmo/hydro_io.h"
+#elif defined(SHADOWFAX_SPH)
+#include "./hydro/Shadowswift/hydro_io.h"
 #else
 #error "Invalid choice of SPH variant"
 #endif
diff --git a/src/hydro_properties.c b/src/hydro_properties.c
index 46785b4b2d5b958f6db3bd9813d139575217d6fe..818c1b6349192ed73b28cd4c3ae771f89a3754cd 100644
--- a/src/hydro_properties.c
+++ b/src/hydro_properties.c
@@ -44,6 +44,12 @@ void hydro_props_init(struct hydro_props *p,
   p->target_neighbours = pow_dimension(p->eta_neighbours) * kernel_norm;
   p->delta_neighbours = parser_get_param_float(params, "SPH:delta_neighbours");
 
+#ifdef SHADOWFAX_SPH
+  /* change the meaning of target_neighbours and delta_neighbours */
+  p->target_neighbours = 1.0f;
+  p->delta_neighbours = 0.0f;
+#endif
+
   /* Maximal smoothing length */
   p->h_max = parser_get_opt_param_float(params, "SPH:h_max",
                                         hydro_props_default_h_max);
diff --git a/src/hydro_space.c b/src/hydro_space.c
new file mode 100644
index 0000000000000000000000000000000000000000..c4a6f9c1495a44050c5477ebfdf0bb76a64bfc51
--- /dev/null
+++ b/src/hydro_space.c
@@ -0,0 +1,52 @@
+/*******************************************************************************
+ * This file is part of SWIFT.
+ * Copyright (c) 2017 Bert Vandenbroucke (bert.vandenbroucke@gmail.com)
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as published
+ * by the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public License
+ * along with this program.  If not, see <http://www.gnu.org/licenses/>.
+ *
+ ******************************************************************************/
+
+#include "hydro_space.h"
+#include "space.h"
+
+/**
+ * @brief Initialize the extra space information needed for some hydro schemes.
+ *
+ * @param hs #hydro_space to initialize.
+ * @param s #space containing the hydro space.
+ */
+#ifdef SHADOWFAX_SPH
+__attribute__((always_inline)) INLINE void hydro_space_init(
+    struct hydro_space *hs, const struct space *s) {
+
+  if (s->periodic) {
+    hs->anchor[0] = -0.5f * s->dim[0];
+    hs->anchor[1] = -0.5f * s->dim[1];
+    hs->anchor[2] = -0.5f * s->dim[2];
+    hs->side[0] = 2.0f * s->dim[0];
+    hs->side[1] = 2.0f * s->dim[1];
+    hs->side[2] = 2.0f * s->dim[2];
+  } else {
+    hs->anchor[0] = 0.0f;
+    hs->anchor[1] = 0.0f;
+    hs->anchor[2] = 0.0f;
+    hs->side[0] = s->dim[0];
+    hs->side[1] = s->dim[1];
+    hs->side[2] = s->dim[2];
+  }
+}
+#else
+__attribute__((always_inline)) INLINE void hydro_space_init(
+    struct hydro_space *hs, const struct space *s) {}
+#endif
diff --git a/src/hydro_space.h b/src/hydro_space.h
new file mode 100644
index 0000000000000000000000000000000000000000..e64b532d16a5b78526dfed22d99558a768d07400
--- /dev/null
+++ b/src/hydro_space.h
@@ -0,0 +1,43 @@
+/*******************************************************************************
+ * This file is part of SWIFT.
+ * Copyright (c) 2017 Bert Vandenbroucke (bert.vandenbroucke@gmail.com)
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as published
+ * by the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public License
+ * along with this program.  If not, see <http://www.gnu.org/licenses/>.
+ *
+ ******************************************************************************/
+#ifndef SWIFT_HYDRO_SPACE_H
+#define SWIFT_HYDRO_SPACE_H
+
+#include "../config.h"
+
+struct space;
+
+/**
+ * @brief Extra space information that is needed for some hydro schemes.
+ */
+#ifdef SHADOWFAX_SPH
+struct hydro_space {
+  /*! Anchor of the simulation space. */
+  double anchor[3];
+
+  /*! Side lengths of the simulation space. */
+  double side[3];
+};
+#else
+struct hydro_space {};
+#endif
+
+void hydro_space_init(struct hydro_space *hs, const struct space *s);
+
+#endif /* SWIFT_HYDRO_SPACE_H */
diff --git a/src/parallel_io.c b/src/parallel_io.c
index dbd029569e0947cd5d5884ad392bedc81ab04468..b857fd76a53738b19e5b26b8717881e71c424b6e 100644
--- a/src/parallel_io.c
+++ b/src/parallel_io.c
@@ -441,6 +441,7 @@ void read_ic_parallel(char* fileName, const struct unit_system* internal_units,
     N_total[ptype] =
         (numParticles[ptype]) + (numParticles_highWord[ptype] << 32);
 
+  /* Get the box size if not cubic */
   dim[0] = boxSize[0];
   dim[1] = (boxSize[1] < 0) ? boxSize[0] : boxSize[1];
   dim[2] = (boxSize[2] < 0) ? boxSize[0] : boxSize[2];
diff --git a/src/part.h b/src/part.h
index e9a151f5b6dc6c2670ced942d195e108555c5a4b..1b40aee0db3deb4790e07e3da9807060900d0c55 100644
--- a/src/part.h
+++ b/src/part.h
@@ -58,6 +58,10 @@
 #include "./hydro/Gizmo/hydro_part.h"
 #define hydro_need_extra_init_loop 0
 #define EXTRA_HYDRO_LOOP
+#elif defined(SHADOWFAX_SPH)
+#include "./hydro/Shadowswift/hydro_part.h"
+#define hydro_need_extra_init_loop 0
+#define EXTRA_HYDRO_LOOP
 #else
 #error "Invalid choice of SPH variant"
 #endif
diff --git a/src/partition.c b/src/partition.c
index a265f015f44d0ab39106e4fa2b302ec11c23a556..49dbf883e0dea3f00c93ca33ec8cb0248bbfbfaa 100644
--- a/src/partition.c
+++ b/src/partition.c
@@ -995,7 +995,7 @@ void partition_init(struct partition *partition,
 
 /* Defaults make use of METIS if available */
 #ifdef HAVE_METIS
-  const char *default_repart = "both";
+  const char *default_repart = "task_weights";
   const char *default_part = "simple_metis";
 #else
   const char *default_repart = "none";
diff --git a/src/runner.c b/src/runner.c
index 4d8c839549e3057c3a4128626a635f33ee77650e..91893c8c10d62cb1fd86f1fe70894fcdbfe0c8e3 100644
--- a/src/runner.c
+++ b/src/runner.c
@@ -489,6 +489,7 @@ void runner_do_init(struct runner *r, struct cell *c, int timer) {
   const int count = c->count;
   const int gcount = c->gcount;
   const struct engine *e = r->e;
+  const struct space *s = e->s;
 
   TIMER_TIC;
 
@@ -514,7 +515,7 @@ void runner_do_init(struct runner *r, struct cell *c, int timer) {
       if (part_is_active(p, e)) {
 
         /* Get ready for a density calculation */
-        hydro_init_part(p);
+        hydro_init_part(p, &s->hs);
       }
     }
 
@@ -596,6 +597,7 @@ void runner_do_ghost(struct runner *r, struct cell *c, int timer) {
   struct part *restrict parts = c->parts;
   struct xpart *restrict xparts = c->xparts;
   const struct engine *e = r->e;
+  const struct space *s = e->s;
   const float hydro_h_max = e->hydro_properties->h_max;
   const float target_wcount = e->hydro_properties->target_neighbours;
   const float max_wcount =
@@ -676,7 +678,7 @@ void runner_do_ghost(struct runner *r, struct cell *c, int timer) {
             redo += 1;
 
             /* Re-initialise everything */
-            hydro_init_part(p);
+            hydro_init_part(p, &s->hs);
 
             /* Off we go ! */
             continue;
diff --git a/src/space.c b/src/space.c
index fec47f28b26e0bf22265cb765525b913acd7a638..64a9ab15c960e7664afdf6be4293bbad3176fc76 100644
--- a/src/space.c
+++ b/src/space.c
@@ -2692,6 +2692,8 @@ void space_init(struct space *s, const struct swift_params *params,
     bzero(s->xparts, Npart * sizeof(struct xpart));
   }
 
+  hydro_space_init(&s->hs, s);
+
   /* Set the particles in a state where they are ready for a run */
   space_init_parts(s);
   space_init_xparts(s);
diff --git a/src/space.h b/src/space.h
index 435e3200d0aa9d03dfaa21cacd4ff3e65aad712c..73bd50da928c55890a91415f6e07c5100a7b71e7 100644
--- a/src/space.h
+++ b/src/space.h
@@ -31,6 +31,7 @@
 
 /* Includes. */
 #include "cell.h"
+#include "hydro_space.h"
 #include "lock.h"
 #include "parser.h"
 #include "part.h"
@@ -69,6 +70,9 @@ struct space {
   /*! Is the space periodic? */
   int periodic;
 
+  /*! Extra space information needed for some hydro schemes. */
+  struct hydro_space hs;
+
   /*! Are we doing gravity? */
   int gravity;
 
diff --git a/src/tools.c b/src/tools.c
index 89ac286fb435c01b361bdea66e62dd2d7f41ee24..73684c82662870d368f7dd360c84635654f06434 100644
--- a/src/tools.c
+++ b/src/tools.c
@@ -144,7 +144,7 @@ void pairs_single_density(double *dim, long long int pid,
   p = parts[k];
   printf("pairs_single: part[%i].id == %lli.\n", k, pid);
 
-  hydro_init_part(&p);
+  hydro_init_part(&p, NULL);
 
   /* Loop over all particle pairs. */
   for (k = 0; k < N; k++) {
@@ -459,7 +459,7 @@ void engine_single_density(double *dim, long long int pid,
   p = parts[k];
 
   /* Clear accumulators. */
-  hydro_init_part(&p);
+  hydro_init_part(&p, NULL);
 
   /* Loop over all particle pairs (force). */
   for (k = 0; k < N; k++) {
diff --git a/tests/Makefile.am b/tests/Makefile.am
index 0db5c2544433012dcd7f451f535391aa81b1f802..4fb1e3492f95eea4b6019524f939bdc3be2634e7 100644
--- a/tests/Makefile.am
+++ b/tests/Makefile.am
@@ -25,7 +25,9 @@ TESTS = testGreetings testMaths testReading.sh testSingle testKernel testSymmetr
         testPair.sh testPairPerturbed.sh test27cells.sh test27cellsPerturbed.sh  \
         testParser.sh testSPHStep test125cells.sh testKernelGrav testFFT \
         testAdiabaticIndex testRiemannExact testRiemannTRRS testRiemannHLLC \
-        testMatrixInversion testThreadpool testDump testLogger
+        testMatrixInversion testThreadpool testDump testLogger 
+
+#testVoronoi1D testVoronoi2D testVoronoi3D
 
 # List of test programs to compile
 check_PROGRAMS = testGreetings testReading testSingle testTimeIntegration \
@@ -33,7 +35,9 @@ check_PROGRAMS = testGreetings testReading testSingle testTimeIntegration \
                  testKernel testKernelGrav testFFT testInteractions testMaths \
                  testSymmetry testThreadpool benchmarkInteractions \
                  testAdiabaticIndex testRiemannExact testRiemannTRRS \
-                 testRiemannHLLC testMatrixInversion testDump testLogger
+                 testRiemannHLLC testMatrixInversion testDump testLogger 
+
+#testVoronoi1D testVoronoi2D testVoronoi3D
 
 # Sources for the individual programs
 testGreetings_SOURCES = testGreetings.c
@@ -78,6 +82,12 @@ testRiemannHLLC_SOURCES = testRiemannHLLC.c
 
 testMatrixInversion_SOURCES = testMatrixInversion.c
 
+#testVoronoi1D_SOURCES = testVoronoi1D.c
+
+#testVoronoi2D_SOURCES = testVoronoi2D.c
+
+#testVoronoi3D_SOURCES = testVoronoi3D.c
+
 testThreadpool_SOURCES = testThreadpool.c
 
 testDump_SOURCES = testDump.c
diff --git a/tests/benchmarkInteractions.c b/tests/benchmarkInteractions.c
index e3f558f88dffbab252bf7c06f9e943ff568b6fff..0f5b3d2eb294c13e3035885b511c702e6f0cd540 100644
--- a/tests/benchmarkInteractions.c
+++ b/tests/benchmarkInteractions.c
@@ -92,7 +92,7 @@ struct part *make_particles(size_t count, double *offset, double spacing,
   p->h = h;
   p->id = ++(*partId);
 
-#if !defined(GIZMO_SPH)
+#if !defined(GIZMO_SPH) && !defined(SHADOWFAX_SPH)
   p->mass = 1.0f;
 #endif
 
@@ -113,7 +113,7 @@ struct part *make_particles(size_t count, double *offset, double spacing,
 
     p->h = h;
     p->id = ++(*partId);
-#if !defined(GIZMO_SPH)
+#if !defined(GIZMO_SPH) && !defined(SHADOWFAX_SPH)
     p->mass = 1.0f;
 #endif
   }
@@ -125,7 +125,7 @@ struct part *make_particles(size_t count, double *offset, double spacing,
  */
 void prepare_force(struct part *parts, size_t count) {
 
-#if !defined(GIZMO_SPH)
+#if !defined(GIZMO_SPH) && !defined(SHADOWFAX_SPH)
   struct part *p;
   for (size_t i = 0; i < count; ++i) {
     p = &parts[i];
@@ -152,18 +152,18 @@ void dump_indv_particle_fields(char *fileName, struct part *p) {
           "%13e %13e %13e\n",
           p->id, p->x[0], p->x[1], p->x[2], p->v[0], p->v[1], p->v[2],
           p->a_hydro[0], p->a_hydro[1], p->a_hydro[2],
-#if defined(GIZMO_SPH)
+#if defined(GIZMO_SPH) || defined(SHADOWFAX_SPH)
           0., 0.,
 #else
           p->rho, p->density.rho_dh,
 #endif
           p->density.wcount, p->density.wcount_dh, p->force.h_dt,
-#if defined(GIZMO_SPH)
+#if defined(GIZMO_SPH) || defined(SHADOWFAX_SPH)
           0.,
 #else
           p->force.v_sig,
 #endif
-#if defined(MINIMAL_SPH) || defined(GIZMO_SPH)
+#if defined(MINIMAL_SPH) || defined(GIZMO_SPH) || defined(SHADOWFAX_SPH)
           0., 0., 0., 0.
 #else
           p->density.div_v, p->density.rot_v[0], p->density.rot_v[1],
diff --git a/tests/test125cells.c b/tests/test125cells.c
index b3895ffa9fc0e4c147bfbf58dc1b5a6301b02763..21fc3f5407f90d9b75485d08bf1077e0a20e88b2 100644
--- a/tests/test125cells.c
+++ b/tests/test125cells.c
@@ -101,7 +101,7 @@ void set_energy_state(struct part *part, enum pressure_field press, float size,
   part->u = pressure / (hydro_gamma_minus_one * density);
 #elif defined(MINIMAL_SPH)
   part->u = pressure / (hydro_gamma_minus_one * density);
-#elif defined(GIZMO_SPH)
+#elif defined(GIZMO_SPH) || defined(SHADOWFAX_SPH)
   part->primitives.P = pressure;
 #else
   error("Need to define pressure here !");
@@ -198,8 +198,13 @@ void reset_particles(struct cell *c, enum velocity_field vel,
     set_velocity(p, vel, size);
     set_energy_state(p, press, size, density);
 
+#if defined(GIZMO_SPH) || defined(SHADOWFAX_SPH)
+    float volume = p->conserved.mass / density;
 #if defined(GIZMO_SPH)
-    p->geometry.volume = p->conserved.mass / density;
+    p->geometry.volume = volume;
+#else
+    p->cell.volume = volume;
+#endif
     p->primitives.rho = density;
     p->primitives.v[0] = p->v[0];
     p->primitives.v[1] = p->v[1];
@@ -208,7 +213,7 @@ void reset_particles(struct cell *c, enum velocity_field vel,
     p->conserved.momentum[1] = p->conserved.mass * p->v[1];
     p->conserved.momentum[2] = p->conserved.mass * p->v[2];
     p->conserved.energy =
-        p->primitives.P / hydro_gamma_minus_one * p->geometry.volume +
+        p->primitives.P / hydro_gamma_minus_one * volume +
         0.5f * (p->conserved.momentum[0] * p->conserved.momentum[0] +
                 p->conserved.momentum[1] * p->conserved.momentum[1] +
                 p->conserved.momentum[2] * p->conserved.momentum[2]) /
@@ -260,7 +265,7 @@ struct cell *make_cell(size_t n, const double offset[3], double size, double h,
         part->x[2] = offset[2] + size * (z + 0.5) / (float)n;
         part->h = size * h / (float)n;
 
-#ifdef GIZMO_SPH
+#if defined(GIZMO_SPH) || defined(SHADOWFAX_SPH)
         part->conserved.mass = density * volume / count;
 #else
         part->mass = density * volume / count;
@@ -284,7 +289,7 @@ struct cell *make_cell(size_t n, const double offset[3], double size, double h,
         part->conserved.momentum[1] = part->conserved.mass * part->v[1];
         part->conserved.momentum[2] = part->conserved.mass * part->v[2];
         part->conserved.energy =
-            part->primitives.P / hydro_gamma_minus_one * part->geometry.volume +
+            part->primitives.P / hydro_gamma_minus_one * volume +
             0.5f * (part->conserved.momentum[0] * part->conserved.momentum[0] +
                     part->conserved.momentum[1] * part->conserved.momentum[1] +
                     part->conserved.momentum[2] * part->conserved.momentum[2]) /
@@ -363,7 +368,7 @@ void dump_particle_fields(char *fileName, struct cell *main_cell,
             main_cell->parts[pid].v[0], main_cell->parts[pid].v[1],
             main_cell->parts[pid].v[2], main_cell->parts[pid].h,
             hydro_get_density(&main_cell->parts[pid]),
-#ifdef MINIMAL_SPH
+#if defined(MINIMAL_SPH) || defined(SHADOWFAX_SPH)
             0.f,
 #else
             main_cell->parts[pid].density.div_v,
diff --git a/tests/test27cells.c b/tests/test27cells.c
index 599c8713a4b2077444b10f85ed37ee76f5219c5a..2390ae8aeac465c49831984c0d24817b50d757b3 100644
--- a/tests/test27cells.c
+++ b/tests/test27cells.c
@@ -117,8 +117,15 @@ struct cell *make_cell(size_t n, double *offset, double size, double h,
         part->h = size * h / (float)n;
         part->id = ++(*partId);
 
-#ifdef GIZMO_SPH
+#if defined(GIZMO_SPH) || defined(SHADOWFAX_SPH)
         part->conserved.mass = density * volume / count;
+
+#ifdef SHADOWFAX_SPH
+        double anchor[3] = {0., 0., 0.};
+        double side[3] = {1., 1., 1.};
+        voronoi_cell_init(&part->cell, part->x, anchor, side);
+#endif
+
 #else
         part->mass = density * volume / count;
 #endif
@@ -176,7 +183,7 @@ void clean_up(struct cell *ci) {
  */
 void zero_particle_fields(struct cell *c) {
   for (int pid = 0; pid < c->count; pid++) {
-    hydro_init_part(&c->parts[pid]);
+    hydro_init_part(&c->parts[pid], NULL);
   }
 }
 
@@ -215,7 +222,7 @@ void dump_particle_fields(char *fileName, struct cell *main_cell,
             main_cell->parts[pid].v[0], main_cell->parts[pid].v[1],
             main_cell->parts[pid].v[2],
             hydro_get_density(&main_cell->parts[pid]),
-#if defined(GIZMO_SPH)
+#if defined(GIZMO_SPH) || defined(SHADOWFAX_SPH)
             0.f,
 #else
             main_cell->parts[pid].density.rho_dh,
@@ -252,7 +259,7 @@ void dump_particle_fields(char *fileName, struct cell *main_cell,
               cj->parts[pjd].id, cj->parts[pjd].x[0], cj->parts[pjd].x[1],
               cj->parts[pjd].x[2], cj->parts[pjd].v[0], cj->parts[pjd].v[1],
               cj->parts[pjd].v[2], hydro_get_density(&cj->parts[pjd]),
-#if defined(GIZMO_SPH)
+#if defined(GIZMO_SPH) || defined(SHADOWFAX_SPH)
               0.f,
 #else
               main_cell->parts[pjd].density.rho_dh,
diff --git a/tests/testPair.c b/tests/testPair.c
index c734424bca58b7a8ce05bba2c3392ca5c600fa9e..c2533b63b902e3bdc7e7cae6fcbcf50c87dee4af 100644
--- a/tests/testPair.c
+++ b/tests/testPair.c
@@ -63,7 +63,7 @@ struct cell *make_cell(size_t n, double *offset, double size, double h,
         part->v[2] = random_uniform(-0.05, 0.05);
         part->h = size * h / (float)n;
         part->id = ++(*partId);
-#ifdef GIZMO_SPH
+#if defined(GIZMO_SPH) || defined(SHADOWFAX_SPH)
         part->conserved.mass = density * volume / count;
 #else
         part->mass = density * volume / count;
@@ -116,7 +116,7 @@ void clean_up(struct cell *ci) {
  */
 void zero_particle_fields(struct cell *c) {
   for (int pid = 0; pid < c->count; pid++) {
-    hydro_init_part(&c->parts[pid]);
+    hydro_init_part(&c->parts[pid], NULL);
   }
 }
 
@@ -142,7 +142,7 @@ void dump_particle_fields(char *fileName, struct cell *ci, struct cell *cj) {
             ci->parts[pid].id, ci->parts[pid].x[0], ci->parts[pid].x[1],
             ci->parts[pid].x[2], ci->parts[pid].v[0], ci->parts[pid].v[1],
             ci->parts[pid].v[2], hydro_get_density(&ci->parts[pid]),
-#if defined(GIZMO_SPH)
+#if defined(GIZMO_SPH) || defined(SHADOWFAX_SPH)
             0.f,
 #else
             ci->parts[pid].density.rho_dh,
@@ -166,7 +166,7 @@ void dump_particle_fields(char *fileName, struct cell *ci, struct cell *cj) {
             cj->parts[pjd].id, cj->parts[pjd].x[0], cj->parts[pjd].x[1],
             cj->parts[pjd].x[2], cj->parts[pjd].v[0], cj->parts[pjd].v[1],
             cj->parts[pjd].v[2], hydro_get_density(&cj->parts[pjd]),
-#if defined(GIZMO_SPH)
+#if defined(GIZMO_SPH) || defined(SHADOWFAX_SPH)
             0.f,
 #else
             cj->parts[pjd].density.rho_dh,
diff --git a/tests/testSymmetry.c b/tests/testSymmetry.c
index 6469d314fb8b1438cc2c9737669c1a13a97bd803..73c5708a6add174b88f26cc716a716fa2ad81709 100644
--- a/tests/testSymmetry.c
+++ b/tests/testSymmetry.c
@@ -31,6 +31,13 @@ int main(int argc, char *argv[]) {
   /* Choke if need be */
   feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
 
+#if defined(SHADOWFAX_SPH)
+  /* Initialize the Voronoi simulation box */
+  double box_anchor[3] = {-2.0f, -2.0f, -2.0f};
+  double box_side[3] = {6.0f, 6.0f, 6.0f};
+/*  voronoi_set_box(box_anchor, box_side);*/
+#endif
+
   /* Create two random particles (don't do this at home !) */
   struct part pi, pj;
   for (size_t i = 0; i < sizeof(struct part) / sizeof(float); ++i) {
@@ -46,7 +53,7 @@ int main(int argc, char *argv[]) {
   pi.id = 1;
   pj.id = 2;
 
-#if defined(GIZMO_SPH)
+#if defined(GIZMO_SPH) || defined(SHADOWFAX_SPH)
   /* Give the primitive variables sensible values, since the Riemann solver does
      not like negative densities and pressures */
   pi.primitives.rho = random_uniform(0.1f, 1.0f);
@@ -93,6 +100,12 @@ int main(int argc, char *argv[]) {
   /* set time step to reasonable value */
   pi.force.dt = 0.001;
   pj.force.dt = 0.001;
+
+#ifdef SHADOWFAX_SPH
+  voronoi_cell_init(&pi.cell, pi.x, box_anchor, box_side);
+  voronoi_cell_init(&pj.cell, pj.x, box_anchor, box_side);
+#endif
+
 #endif
 
   /* Make an xpart companion */
diff --git a/tests/testVoronoi1D.c b/tests/testVoronoi1D.c
new file mode 100644
index 0000000000000000000000000000000000000000..d16a36d9449d7bfdb2c74408efad61b219b1d7e3
--- /dev/null
+++ b/tests/testVoronoi1D.c
@@ -0,0 +1,79 @@
+/*******************************************************************************
+ * This file is part of SWIFT.
+ * Copyright (C) 2016 Bert Vandenbroucke (bert.vandenbroucke@gmail.com).
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as published
+ * by the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public License
+ * along with this program.  If not, see <http://www.gnu.org/licenses/>.
+ *
+ ******************************************************************************/
+
+#include "hydro/Shadowswift/voronoi1d_algorithm.h"
+
+int main() {
+
+  double box_anchor[1] = {-0.5};
+  double box_side[1] = {2.};
+
+  /* Create a Voronoi cell */
+  double x[1] = {0.5f};
+  struct voronoi_cell cell;
+  voronoi_cell_init(&cell, x, box_anchor, box_side);
+
+  /* Interact with a left and right neighbour */
+  float xL[1] = {0.5f};
+  float xR[1] = {-0.5f};
+  voronoi_cell_interact(&cell, xL, 1);
+  voronoi_cell_interact(&cell, xR, 2);
+
+  /* Interact with some more neighbours to check if they are properly ignored */
+  float x0[1] = {0.6f};
+  float x1[1] = {-0.7f};
+  voronoi_cell_interact(&cell, x0, 3);
+  voronoi_cell_interact(&cell, x1, 4);
+
+  /* Finalize cell and check results */
+  voronoi_cell_finalize(&cell);
+
+  if (cell.volume != 0.5f) {
+    error("Wrong volume: %g!", cell.volume);
+  }
+  if (cell.centroid != 0.5f) {
+    error("Wrong centroid: %g!", cell.centroid);
+  }
+  if (cell.idL != 1) {
+    error("Wrong left neighbour: %llu!", cell.idL);
+  }
+  if (cell.idR != 2) {
+    error("Wrong right neighbour: %llu!", cell.idR);
+  }
+
+  /* Check face method */
+  float A;
+  float midpoint[3];
+  A = voronoi_get_face(&cell, 1, midpoint);
+  if (A != 1.0f) {
+    error("Wrong surface area returned for left neighbour!");
+  }
+  if (midpoint[0] != -0.25f) {
+    error("Wrong midpoint returned for left neighbour!");
+  }
+  A = voronoi_get_face(&cell, 2, midpoint);
+  if (A != 1.0f) {
+    error("Wrong surface area returned for right neighbour!");
+  }
+  if (midpoint[0] != 0.25f) {
+    error("Wrong midpoint returned for right neighbour!");
+  }
+
+  return 0;
+}
diff --git a/tests/testVoronoi2D.c b/tests/testVoronoi2D.c
new file mode 100644
index 0000000000000000000000000000000000000000..8e2c875ee1b41828a0b39aa896f02dff0ccbac88
--- /dev/null
+++ b/tests/testVoronoi2D.c
@@ -0,0 +1,211 @@
+/*******************************************************************************
+ * This file is part of SWIFT.
+ * Copyright (C) 2017 Bert Vandenbroucke (bert.vandenbroucke@gmail.com).
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as published
+ * by the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public License
+ * along with this program.  If not, see <http://www.gnu.org/licenses/>.
+ *
+ ******************************************************************************/
+
+#include "hydro/Shadowswift/voronoi2d_algorithm.h"
+#include "tools.h"
+
+/* Number of cells used to test the 2D interaction algorithm */
+#define TESTVORONOI2D_NUMCELL 100
+
+int main() {
+
+  /* initialize simulation box */
+  double anchor[3] = {-0.5f, -0.5f, -0.5f};
+  double side[3] = {2.0f, 2.0f, 2.0f};
+
+  /* test initialization and finalization algorithms */
+  {
+    message("Testing initialization and finalization algorithm...");
+
+    struct voronoi_cell cell;
+    double x[3] = {0.5, 0.5, 0.5};
+
+    voronoi_cell_init(&cell, x, anchor, side);
+
+    float maxradius = voronoi_cell_finalize(&cell);
+
+    assert(maxradius == 2.0f * sqrtf(2.0f));
+
+    assert(cell.volume == 4.0f);
+
+    assert(cell.centroid[0] == 0.5f);
+    assert(cell.centroid[1] == 0.5f);
+
+    message("Done.");
+  }
+
+  /* test interaction algorithm: normal case */
+  {
+    message("Testing %i cell grid with random positions...",
+            TESTVORONOI2D_NUMCELL);
+
+    /* create 100 cells with random positions in [0,1]x[0,1] */
+    struct voronoi_cell cells[TESTVORONOI2D_NUMCELL];
+    double x[2];
+    float dx[2];
+    int i, j;
+    float Atot;
+    struct voronoi_cell *cell_i, *cell_j;
+
+    for (i = 0; i < TESTVORONOI2D_NUMCELL; ++i) {
+      x[0] = random_uniform(0., 1.);
+      x[1] = random_uniform(0., 1.);
+      voronoi_cell_init(&cells[i], x, anchor, side);
+#ifdef VORONOI_VERBOSE
+      message("cell[%i]: %g %g", i, x[0], x[1]);
+#endif
+    }
+
+    /* interact the cells (with periodic boundaries) */
+    for (i = 0; i < TESTVORONOI2D_NUMCELL; ++i) {
+      cell_i = &cells[i];
+      for (j = 0; j < TESTVORONOI2D_NUMCELL; ++j) {
+        if (i != j) {
+          cell_j = &cells[j];
+          dx[0] = cell_i->x[0] - cell_j->x[0];
+          dx[1] = cell_i->x[1] - cell_j->x[1];
+          /* periodic boundaries */
+          if (dx[0] >= 0.5f) {
+            dx[0] -= 1.0f;
+          }
+          if (dx[0] < -0.5f) {
+            dx[0] += 1.0f;
+          }
+          if (dx[1] >= 0.5f) {
+            dx[1] -= 1.0f;
+          }
+          if (dx[1] < -0.5f) {
+            dx[1] += 1.0f;
+          }
+#ifdef VORONOI_VERBOSE
+          message("Cell %i before:", i);
+          voronoi_print_cell(&cells[i]);
+          message("Interacting cell %i with cell %i (%g %g, %g %g", i, j,
+                  cells[i].x[0], cells[i].x[1], cells[j].x[0], cells[j].x[1]);
+#endif
+          voronoi_cell_interact(cell_i, dx, j);
+        }
+      }
+    }
+
+    Atot = 0.0f;
+    /* print the cells to the stdout */
+    for (i = 0; i < TESTVORONOI2D_NUMCELL; ++i) {
+      printf("Cell %i:\n", i);
+      voronoi_print_cell(&cells[i]);
+      voronoi_cell_finalize(&cells[i]);
+      Atot += cells[i].volume;
+    }
+
+    /* Check the total surface area */
+    assert(fabs(Atot - 1.0f) < 1.e-6);
+
+    /* Check the neighbour relations for an arbitrary cell: cell 44
+       We plotted the grid and manually found the correct neighbours and their
+       order. */
+    assert(cells[44].nvert == 7);
+    assert(cells[44].ngbs[0] == 26);
+    assert(cells[44].ngbs[1] == 38);
+    assert(cells[44].ngbs[2] == 3);
+    assert(cells[44].ngbs[3] == 33);
+    assert(cells[44].ngbs[4] == 5);
+    assert(cells[44].ngbs[5] == 90);
+    assert(cells[44].ngbs[6] == 4);
+
+    message("Done.");
+  }
+
+  /* test interaction algorithm */
+  {
+    message("Testing 100 cell grid with Cartesian mesh positions...");
+
+    struct voronoi_cell cells[100];
+    double x[2];
+    float dx[2];
+    int i, j;
+    float Atot;
+    struct voronoi_cell *cell_i, *cell_j;
+
+    for (i = 0; i < 10; ++i) {
+      for (j = 0; j < 10; ++j) {
+        x[0] = (i + 0.5f) * 0.1;
+        x[1] = (j + 0.5f) * 0.1;
+        voronoi_cell_init(&cells[10 * i + j], x, anchor, side);
+      }
+    }
+
+    /* interact the cells (with periodic boundaries) */
+    for (i = 0; i < 100; ++i) {
+      cell_i = &cells[i];
+      for (j = 0; j < 100; ++j) {
+        if (i != j) {
+          cell_j = &cells[j];
+          dx[0] = cell_i->x[0] - cell_j->x[0];
+          dx[1] = cell_i->x[1] - cell_j->x[1];
+          /* periodic boundaries */
+          if (dx[0] >= 0.5f) {
+            dx[0] -= 1.0f;
+          }
+          if (dx[0] < -0.5f) {
+            dx[0] += 1.0f;
+          }
+          if (dx[1] >= 0.5f) {
+            dx[1] -= 1.0f;
+          }
+          if (dx[1] < -0.5f) {
+            dx[1] += 1.0f;
+          }
+#ifdef VORONOI_VERBOSE
+          message("Cell %i before:", i);
+          voronoi_print_cell(&cells[i]);
+          message("Interacting cell %i with cell %i (%g %g, %g %g", i, j,
+                  cells[i].x[0], cells[i].x[1], cells[j].x[0], cells[j].x[1]);
+#endif
+          voronoi_cell_interact(cell_i, dx, j);
+        }
+      }
+    }
+
+    Atot = 0.0f;
+    /* print the cells to the stdout */
+    for (i = 0; i < 100; ++i) {
+      printf("Cell %i:\n", i);
+      voronoi_print_cell(&cells[i]);
+      voronoi_cell_finalize(&cells[i]);
+      Atot += cells[i].volume;
+    }
+
+    /* Check the total surface area */
+    assert(fabs(Atot - 1.0f) < 1.e-6);
+
+    /* Check the neighbour relations for an arbitrary cell: cell 44
+       We plotted the grid and manually found the correct neighbours and their
+       order. */
+    assert(cells[44].nvert == 5);
+    assert(cells[44].ngbs[0] == 34);
+    assert(cells[44].ngbs[1] == 35);
+    assert(cells[44].ngbs[2] == 45);
+    assert(cells[44].ngbs[3] == 54);
+    assert(cells[44].ngbs[4] == 43);
+
+    message("Done.");
+  }
+
+  return 0;
+}
diff --git a/tests/testVoronoi3D.c b/tests/testVoronoi3D.c
new file mode 100644
index 0000000000000000000000000000000000000000..b4f219a41368bb3ce4e8111ae44c43e7fa1f7441
--- /dev/null
+++ b/tests/testVoronoi3D.c
@@ -0,0 +1,1518 @@
+/*******************************************************************************
+ * This file is part of SWIFT.
+ * Copyright (C) 2016 Bert Vandenbroucke (bert.vandenbroucke@gmail.com).
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as published
+ * by the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public License
+ * along with this program.  If not, see <http://www.gnu.org/licenses/>.
+ *
+ ******************************************************************************/
+
+#include <stdlib.h>
+#include "error.h"
+#include "hydro/Shadowswift/voronoi3d_algorithm.h"
+#include "part.h"
+#include "tools.h"
+
+/* Number of random generators to use in the first grid build test */
+#define TESTVORONOI3D_NUMCELL_RANDOM 100
+
+/* Number of cartesian generators to use (in one coordinate direction) for the
+   second grid build test. The total number of generators is the third power of
+   this number (so be careful with large numbers) */
+#define TESTVORONOI3D_NUMCELL_CARTESIAN_1D 5
+
+/* Total number of generators in the second grid build test. Do not change this
+   value, but change the 1D value above instead. */
+#define TESTVORONOI3D_NUMCELL_CARTESIAN_3D                                   \
+  (TESTVORONOI3D_NUMCELL_CARTESIAN_1D * TESTVORONOI3D_NUMCELL_CARTESIAN_1D * \
+   TESTVORONOI3D_NUMCELL_CARTESIAN_1D)
+
+/* Bottom front left corner and side lengths of the large box that contains all
+   particles and is used as initial cell at the start of the construction */
+#define VORONOI3D_BOX_ANCHOR_X 0.0f
+#define VORONOI3D_BOX_ANCHOR_Y 0.0f
+#define VORONOI3D_BOX_ANCHOR_Z 0.0f
+#define VORONOI3D_BOX_SIDE_X 1.0f
+#define VORONOI3D_BOX_SIDE_Y 1.0f
+#define VORONOI3D_BOX_SIDE_Z 1.0f
+
+/**
+ * @brief Get the volume of the simulation box stored in the global variables.
+ *
+ * This method is only used for debugging purposes.
+ *
+ * @return Volume of the simulation box as it is stored in the global variables.
+ */
+float voronoi_get_box_volume() {
+  return VORONOI3D_BOX_SIDE_X * VORONOI3D_BOX_SIDE_Y * VORONOI3D_BOX_SIDE_Z;
+}
+
+/**
+ * @brief Get the centroid of the simulation box stored in the global variables.
+ *
+ * This method is only used for debugging purposes.
+ *
+ * @param box_centroid Array to store the resulting coordinates in.
+ */
+void voronoi_get_box_centroid(float *box_centroid) {
+  box_centroid[0] = 0.5f * VORONOI3D_BOX_SIDE_X + VORONOI3D_BOX_ANCHOR_X;
+  box_centroid[1] = 0.5f * VORONOI3D_BOX_SIDE_Y + VORONOI3D_BOX_ANCHOR_Y;
+  box_centroid[2] = 0.5f * VORONOI3D_BOX_SIDE_Z + VORONOI3D_BOX_ANCHOR_Z;
+}
+
+/**
+ * @brief Get the surface area and coordinates of the face midpoint for the
+ * face of the simulation box with the given unique ID.
+ *
+ * This method is only used for debugging purposes.
+ *
+ * @param id Unique ID of one of the 6 faces of the simulation box.
+ * @param face_midpoint Array to store the coordinates of the requested
+ * midpoint in.
+ * @return Surface area of the face, or 0 if the given ID does not correspond to
+ * a known face of the simulation box.
+ */
+float voronoi_get_box_face(unsigned long long id, float *face_midpoint) {
+
+  if (id == VORONOI3D_BOX_FRONT) {
+    face_midpoint[0] = 0.5f * VORONOI3D_BOX_SIDE_X + VORONOI3D_BOX_ANCHOR_X;
+    face_midpoint[1] = VORONOI3D_BOX_ANCHOR_Y;
+    face_midpoint[2] = 0.5f * VORONOI3D_BOX_SIDE_Z + VORONOI3D_BOX_ANCHOR_Z;
+    return VORONOI3D_BOX_SIDE_X * VORONOI3D_BOX_SIDE_Z;
+  }
+  if (id == VORONOI3D_BOX_BACK) {
+    face_midpoint[0] = 0.5f * VORONOI3D_BOX_SIDE_X + VORONOI3D_BOX_ANCHOR_X;
+    face_midpoint[1] = VORONOI3D_BOX_ANCHOR_Y + VORONOI3D_BOX_SIDE_Y;
+    face_midpoint[2] = 0.5f * VORONOI3D_BOX_SIDE_Z + VORONOI3D_BOX_ANCHOR_Z;
+    return VORONOI3D_BOX_SIDE_X * VORONOI3D_BOX_SIDE_Z;
+  }
+
+  if (id == VORONOI3D_BOX_BOTTOM) {
+    face_midpoint[0] = 0.5f * VORONOI3D_BOX_SIDE_X + VORONOI3D_BOX_ANCHOR_X;
+    face_midpoint[1] = 0.5f * VORONOI3D_BOX_SIDE_Y + VORONOI3D_BOX_ANCHOR_Y;
+    face_midpoint[2] = VORONOI3D_BOX_ANCHOR_Z;
+    return VORONOI3D_BOX_SIDE_X * VORONOI3D_BOX_SIDE_Y;
+  }
+  if (id == VORONOI3D_BOX_TOP) {
+    face_midpoint[0] = 0.5f * VORONOI3D_BOX_SIDE_X + VORONOI3D_BOX_ANCHOR_X;
+    face_midpoint[1] = 0.5f * VORONOI3D_BOX_SIDE_Y + VORONOI3D_BOX_ANCHOR_Y;
+    face_midpoint[2] = VORONOI3D_BOX_ANCHOR_Z + VORONOI3D_BOX_SIDE_Z;
+    return VORONOI3D_BOX_SIDE_X * VORONOI3D_BOX_SIDE_Y;
+  }
+
+  if (id == VORONOI3D_BOX_LEFT) {
+    face_midpoint[0] = VORONOI3D_BOX_ANCHOR_X;
+    face_midpoint[1] = 0.5f * VORONOI3D_BOX_SIDE_Y + VORONOI3D_BOX_ANCHOR_Y;
+    face_midpoint[2] = 0.5f * VORONOI3D_BOX_SIDE_Z + VORONOI3D_BOX_ANCHOR_Z;
+    return VORONOI3D_BOX_SIDE_X * VORONOI3D_BOX_SIDE_Y;
+  }
+  if (id == VORONOI3D_BOX_RIGHT) {
+    face_midpoint[0] = VORONOI3D_BOX_ANCHOR_X + VORONOI3D_BOX_SIDE_X;
+    face_midpoint[1] = 0.5f * VORONOI3D_BOX_SIDE_Y + VORONOI3D_BOX_ANCHOR_Y;
+    face_midpoint[2] = 0.5f * VORONOI3D_BOX_SIDE_Z + VORONOI3D_BOX_ANCHOR_Z;
+    return VORONOI3D_BOX_SIDE_X * VORONOI3D_BOX_SIDE_Y;
+  }
+
+  return 0.0f;
+}
+
+/**
+ * @brief Check if voronoi_volume_tetrahedron() works
+ */
+void test_voronoi_volume_tetrahedron() {
+  float v1[3] = {0., 0., 0.};
+  float v2[3] = {0., 0., 1.};
+  float v3[3] = {0., 1., 0.};
+  float v4[3] = {1., 0., 0.};
+
+  float V = voronoi_volume_tetrahedron(v1, v2, v3, v4);
+  assert(V == 1.0f / 6.0f);
+}
+
+/**
+ * @brief Check if voronoi_centroid_tetrahedron() works
+ */
+void test_voronoi_centroid_tetrahedron() {
+  float v1[3] = {0., 0., 0.};
+  float v2[3] = {0., 0., 1.};
+  float v3[3] = {0., 1., 0.};
+  float v4[3] = {1., 0., 0.};
+
+  float centroid[3];
+  voronoi_centroid_tetrahedron(centroid, v1, v2, v3, v4);
+  assert(centroid[0] == 0.25f);
+  assert(centroid[1] == 0.25f);
+  assert(centroid[2] == 0.25f);
+}
+
+/**
+ * @brief Check if voronoi_calculate_cell() works
+ */
+void test_calculate_cell() {
+
+  double box_anchor[3] = {VORONOI3D_BOX_ANCHOR_X, VORONOI3D_BOX_ANCHOR_Y,
+                          VORONOI3D_BOX_ANCHOR_Z};
+  double box_side[3] = {VORONOI3D_BOX_SIDE_X, VORONOI3D_BOX_SIDE_Y,
+                        VORONOI3D_BOX_SIDE_Z};
+
+  struct voronoi_cell cell;
+
+  cell.x[0] = 0.5f;
+  cell.x[1] = 0.5f;
+  cell.x[2] = 0.5f;
+
+  /* Initialize the cell to a large cube. */
+  voronoi_initialize(&cell, box_anchor, box_side);
+  /* Calculate the volume and centroid of the large cube. */
+  voronoi_calculate_cell(&cell);
+  /* Calculate the faces. */
+  voronoi_calculate_faces(&cell);
+
+  /* Update these values if you ever change to another large cube! */
+  assert(cell.volume == voronoi_get_box_volume());
+  float box_centroid[3];
+  voronoi_get_box_centroid(box_centroid);
+  assert(cell.centroid[0] = box_centroid[0]);
+  assert(cell.centroid[1] = box_centroid[1]);
+  assert(cell.centroid[2] = box_centroid[2]);
+
+  /* Check cell neighbours. */
+  assert(cell.nface == 6);
+  assert(cell.ngbs[0] == VORONOI3D_BOX_FRONT);
+  assert(cell.ngbs[1] == VORONOI3D_BOX_LEFT);
+  assert(cell.ngbs[2] == VORONOI3D_BOX_BOTTOM);
+  assert(cell.ngbs[3] == VORONOI3D_BOX_TOP);
+  assert(cell.ngbs[4] == VORONOI3D_BOX_BACK);
+  assert(cell.ngbs[5] == VORONOI3D_BOX_RIGHT);
+
+  /* Check cell faces */
+  float face_midpoint[3], face_area;
+  face_area = voronoi_get_box_face(VORONOI3D_BOX_FRONT, face_midpoint);
+  assert(cell.face_areas[0] == face_area);
+  assert(cell.face_midpoints[0][0] == face_midpoint[0] - cell.x[0]);
+  assert(cell.face_midpoints[0][1] == face_midpoint[1] - cell.x[1]);
+  assert(cell.face_midpoints[0][2] == face_midpoint[2] - cell.x[2]);
+
+  face_area = voronoi_get_box_face(VORONOI3D_BOX_LEFT, face_midpoint);
+  assert(cell.face_areas[1] == face_area);
+  assert(cell.face_midpoints[1][0] == face_midpoint[0] - cell.x[0]);
+  assert(cell.face_midpoints[1][1] == face_midpoint[1] - cell.x[1]);
+  assert(cell.face_midpoints[1][2] == face_midpoint[2] - cell.x[2]);
+
+  face_area = voronoi_get_box_face(VORONOI3D_BOX_BOTTOM, face_midpoint);
+  assert(cell.face_areas[2] == face_area);
+  assert(cell.face_midpoints[2][0] == face_midpoint[0] - cell.x[0]);
+  assert(cell.face_midpoints[2][1] == face_midpoint[1] - cell.x[1]);
+  assert(cell.face_midpoints[2][2] == face_midpoint[2] - cell.x[2]);
+
+  face_area = voronoi_get_box_face(VORONOI3D_BOX_TOP, face_midpoint);
+  assert(cell.face_areas[3] == face_area);
+  assert(cell.face_midpoints[3][0] == face_midpoint[0] - cell.x[0]);
+  assert(cell.face_midpoints[3][1] == face_midpoint[1] - cell.x[1]);
+  assert(cell.face_midpoints[3][2] == face_midpoint[2] - cell.x[2]);
+
+  face_area = voronoi_get_box_face(VORONOI3D_BOX_BACK, face_midpoint);
+  assert(cell.face_areas[4] == face_area);
+  assert(cell.face_midpoints[4][0] == face_midpoint[0] - cell.x[0]);
+  assert(cell.face_midpoints[4][1] == face_midpoint[1] - cell.x[1]);
+  assert(cell.face_midpoints[4][2] == face_midpoint[2] - cell.x[2]);
+
+  face_area = voronoi_get_box_face(VORONOI3D_BOX_RIGHT, face_midpoint);
+  assert(cell.face_areas[5] == face_area);
+  assert(cell.face_midpoints[5][0] == face_midpoint[0] - cell.x[0]);
+  assert(cell.face_midpoints[5][1] == face_midpoint[1] - cell.x[1]);
+  assert(cell.face_midpoints[5][2] == face_midpoint[2] - cell.x[2]);
+}
+
+void test_paths() {
+  float u, l, q;
+  int up, us, uw, lp, ls, lw, qp, qs, qw;
+  float r2, dx[3];
+  struct voronoi_cell cell;
+
+  /* PATH 1.0 */
+  // the first vertex is above the cutting plane and its first edge is below the
+  // plane
+  {
+    cell.vertices[0] = 1.0f;
+    cell.vertices[1] = 0.0f;
+    cell.vertices[2] = 0.0f;
+    cell.vertices[3] = -1.0f;
+    cell.vertices[4] = 0.0f;
+    cell.vertices[5] = 0.0f;
+    cell.nvert = 2;
+    cell.orders[0] = 3;
+    cell.orders[1] = 3;
+    cell.offsets[0] = 0;
+    cell.offsets[1] = 3;
+    cell.edges[0] = 1;
+    cell.edgeindices[0] = 0;
+    cell.edges[3] = 0;
+    cell.edgeindices[3] = 0;
+    dx[0] = 0.5f;
+    dx[1] = 0.0f;
+    dx[2] = 0.0f;
+    r2 = 0.25f;
+    int result = voronoi_intersect_find_closest_vertex(
+        &cell, dx, r2, &u, &up, &us, &uw, &l, &lp, &ls, &lw, &q, &qp, &qs, &qw);
+    assert(result == 1);
+    assert(up == 0);
+    assert(us == 0);
+    assert(uw == 1);
+    assert(u == 0.25f);
+    assert(lp == 1);
+    assert(ls == 0);
+    assert(lw == -1);
+    assert(l == -0.75f);
+  }
+
+  /* PATH 1.1 */
+  // the first vertex is above the cutting plane and its second edge is below
+  // the plane
+  {
+    cell.vertices[0] = 1.0f;
+    cell.vertices[1] = 0.0f;
+    cell.vertices[2] = 0.0f;
+    cell.vertices[3] = 2.0f;
+    cell.vertices[4] = 0.0f;
+    cell.vertices[5] = 0.0f;
+    cell.vertices[6] = -1.0f;
+    cell.vertices[7] = 0.0f;
+    cell.vertices[8] = 0.0f;
+    cell.nvert = 3;
+    cell.orders[0] = 3;
+    cell.orders[1] = 3;
+    cell.orders[2] = 3;
+    cell.offsets[0] = 0;
+    cell.offsets[1] = 3;
+    cell.offsets[2] = 6;
+    cell.edges[0] = 1;
+    cell.edges[1] = 2;
+    cell.edges[6] = 0;
+    cell.edgeindices[1] = 0;
+    cell.edgeindices[6] = 1;
+    dx[0] = 0.5f;
+    dx[1] = 0.0f;
+    dx[2] = 0.0f;
+    r2 = 0.25f;
+    int result = voronoi_intersect_find_closest_vertex(
+        &cell, dx, r2, &u, &up, &us, &uw, &l, &lp, &ls, &lw, &q, &qp, &qs, &qw);
+    assert(result == 1);
+    assert(up == 0);
+    assert(us == 1);
+    assert(uw == 1);
+    assert(u == 0.25f);
+    assert(lp == 2);
+    assert(ls == 0);
+    assert(lw == -1);
+    assert(l == -0.75f);
+  }
+
+  /* PATH 1.2 */
+  // the first vertex is above the cutting plane and its second and last edge
+  // is below the plane
+  {
+    cell.vertices[0] = 1.0f;
+    cell.vertices[1] = 0.0f;
+    cell.vertices[2] = 0.0f;
+    cell.vertices[3] = 2.0f;
+    cell.vertices[4] = 0.0f;
+    cell.vertices[5] = 0.0f;
+    cell.vertices[6] = -1.0f;
+    cell.vertices[7] = 0.0f;
+    cell.vertices[8] = 0.0f;
+    cell.nvert = 3;
+    cell.orders[0] = 2;
+    cell.orders[1] = 3;
+    cell.orders[2] = 3;
+    cell.offsets[0] = 0;
+    cell.offsets[1] = 2;
+    cell.offsets[2] = 5;
+    cell.edges[0] = 1;
+    cell.edges[1] = 2;
+    cell.edges[6] = 0;
+    cell.edgeindices[1] = 0;
+    cell.edgeindices[5] = 1;
+    dx[0] = 0.5f;
+    dx[1] = 0.0f;
+    dx[2] = 0.0f;
+    r2 = 0.25f;
+    int result = voronoi_intersect_find_closest_vertex(
+        &cell, dx, r2, &u, &up, &us, &uw, &l, &lp, &ls, &lw, &q, &qp, &qs, &qw);
+    assert(result == 1);
+    assert(up == 0);
+    assert(us == 1);
+    assert(uw == 1);
+    assert(u == 0.25f);
+    assert(lp == 2);
+    assert(ls == 0);
+    assert(lw == -1);
+    assert(l == -0.75f);
+  }
+
+  /* PATH 1.3 */
+  // the first vertex is above the cutting plane and is the closest vertex to
+  // the plane. The code should crash.
+  {
+    cell.vertices[0] = 1.0f;
+    cell.vertices[1] = 0.0f;
+    cell.vertices[2] = 0.0f;
+    cell.vertices[3] = 2.0f;
+    cell.vertices[4] = 0.0f;
+    cell.vertices[5] = 0.0f;
+    cell.vertices[6] = 2.0f;
+    cell.vertices[7] = 0.0f;
+    cell.vertices[8] = 0.0f;
+    cell.vertices[9] = 2.0f;
+    cell.vertices[10] = 0.0f;
+    cell.vertices[11] = 0.0f;
+    cell.nvert = 4;
+    cell.orders[0] = 3;
+    cell.offsets[0] = 0;
+    cell.edges[0] = 1;
+    cell.edges[1] = 2;
+    cell.edges[2] = 3;
+    dx[0] = 0.5f;
+    dx[1] = 0.0f;
+    dx[2] = 0.0f;
+    r2 = 0.25f;
+    int result = voronoi_intersect_find_closest_vertex(
+        &cell, dx, r2, &u, &up, &us, &uw, &l, &lp, &ls, &lw, &q, &qp, &qs, &qw);
+    assert(result == -1);
+  }
+
+  /* PATH 1.4.0 */
+  // first vertex is above the plane, second vertex is closer and third vertex
+  // lies below
+  {
+    cell.vertices[0] = 1.0f;
+    cell.vertices[1] = 0.0f;
+    cell.vertices[2] = 0.0f;
+    cell.vertices[3] = 0.75f;
+    cell.vertices[4] = 0.0f;
+    cell.vertices[5] = 0.0f;
+    cell.vertices[6] = -1.0f;
+    cell.vertices[7] = 0.0f;
+    cell.vertices[8] = 0.0f;
+    cell.nvert = 3;
+    cell.orders[0] = 3;
+    cell.orders[1] = 3;
+    cell.orders[2] = 3;
+    cell.offsets[0] = 0;
+    cell.offsets[1] = 3;
+    cell.offsets[2] = 6;
+    cell.edges[0] = 1;
+    cell.edges[3] = 2;
+    cell.edges[6] = 1;
+    cell.edgeindices[0] = 2;
+    cell.edgeindices[3] = 0;
+    cell.edgeindices[6] = 0;
+    dx[0] = 0.5f;
+    dx[1] = 0.0f;
+    dx[2] = 0.0f;
+    r2 = 0.25f;
+    int result = voronoi_intersect_find_closest_vertex(
+        &cell, dx, r2, &u, &up, &us, &uw, &l, &lp, &ls, &lw, &q, &qp, &qs, &qw);
+    assert(result == 1);
+    assert(up == 1);
+    assert(us == 0);
+    assert(u == 0.125f);
+    assert(lp == 2);
+    assert(ls == 0);
+    assert(l == -0.75f);
+  }
+
+  /* PATH 1.4.1 */
+  // first vertex is above the plane, second vertex is closer and fourth vertex
+  // is below
+  {
+    cell.vertices[0] = 1.0f;
+    cell.vertices[1] = 0.0f;
+    cell.vertices[2] = 0.0f;
+    cell.vertices[3] = 0.75f;
+    cell.vertices[4] = 0.0f;
+    cell.vertices[5] = 0.0f;
+    cell.vertices[6] = 2.0f;
+    cell.vertices[7] = 0.0f;
+    cell.vertices[8] = 0.0f;
+    cell.vertices[9] = -1.0f;
+    cell.vertices[10] = 0.0f;
+    cell.vertices[11] = 0.0f;
+    cell.nvert = 4;
+    cell.orders[0] = 3;
+    cell.orders[1] = 3;
+    cell.orders[2] = 3;
+    cell.orders[3] = 3;
+    cell.offsets[0] = 0;
+    cell.offsets[1] = 3;
+    cell.offsets[2] = 6;
+    cell.offsets[3] = 9;
+    cell.edges[0] = 1;
+    cell.edges[3] = 2;
+    cell.edges[4] = 3;
+    cell.edges[5] = 0;
+    cell.edges[6] = 1;
+    cell.edges[9] = 1;
+    // this is the only difference between PATH 1.4.1 and PATH 1.4.2
+    cell.edgeindices[0] = 3;
+    cell.edgeindices[3] = 0;
+    cell.edgeindices[4] = 0;
+    cell.edgeindices[9] = 0;
+    dx[0] = 0.5f;
+    dx[1] = 0.0f;
+    dx[2] = 0.0f;
+    r2 = 0.25f;
+    int result = voronoi_intersect_find_closest_vertex(
+        &cell, dx, r2, &u, &up, &us, &uw, &l, &lp, &ls, &lw, &q, &qp, &qs, &qw);
+    assert(result == 1);
+    assert(up == 1);
+    assert(us == 1);
+    assert(u == 0.125f);
+    assert(lp == 3);
+    assert(ls == 0);
+    assert(l == -0.75f);
+  }
+
+  /* PATH 1.4.2 */
+  // first vertex is above the plane, second is closer, fourth is below
+  {
+    cell.vertices[0] = 1.0f;
+    cell.vertices[1] = 0.0f;
+    cell.vertices[2] = 0.0f;
+    cell.vertices[3] = 0.75f;
+    cell.vertices[4] = 0.0f;
+    cell.vertices[5] = 0.0f;
+    cell.vertices[6] = 2.0f;
+    cell.vertices[7] = 0.0f;
+    cell.vertices[8] = 0.0f;
+    cell.vertices[9] = -1.0f;
+    cell.vertices[10] = 0.0f;
+    cell.vertices[11] = 0.0f;
+    cell.nvert = 4;
+    cell.orders[0] = 3;
+    cell.orders[1] = 3;
+    cell.orders[2] = 3;
+    cell.orders[3] = 3;
+    cell.offsets[0] = 0;
+    cell.offsets[1] = 3;
+    cell.offsets[2] = 6;
+    cell.offsets[3] = 9;
+    cell.edges[0] = 1;
+    cell.edges[3] = 2;
+    cell.edges[4] = 3;
+    cell.edges[5] = 0;
+    cell.edges[6] = 1;
+    cell.edges[9] = 1;
+    // this is the only difference between PATH 1.4.1 and PATH 1.4.2
+    cell.edgeindices[0] = 2;
+    cell.edgeindices[3] = 1;
+    cell.edgeindices[4] = 0;
+    cell.edgeindices[9] = 0;
+    dx[0] = 0.5f;
+    dx[1] = 0.0f;
+    dx[2] = 0.0f;
+    r2 = 0.25f;
+    int result = voronoi_intersect_find_closest_vertex(
+        &cell, dx, r2, &u, &up, &us, &uw, &l, &lp, &ls, &lw, &q, &qp, &qs, &qw);
+    assert(result == 1);
+    assert(up == 1);
+    assert(us == 1);
+    assert(u == 0.125f);
+    assert(lp == 3);
+    assert(ls == 0);
+    assert(l == -0.75f);
+  }
+
+  /* PATH 1.4.3 */
+  // first vertex is above the plane, second is closer, third is below
+  {
+    cell.vertices[0] = 1.0f;
+    cell.vertices[1] = 0.0f;
+    cell.vertices[2] = 0.0f;
+    cell.vertices[3] = 0.75f;
+    cell.vertices[4] = 0.0f;
+    cell.vertices[5] = 0.0f;
+    cell.vertices[6] = -1.0f;
+    cell.vertices[7] = 0.0f;
+    cell.vertices[8] = 0.0f;
+    cell.nvert = 3;
+    cell.orders[0] = 3;
+    cell.orders[1] = 3;
+    cell.orders[2] = 3;
+    cell.offsets[0] = 0;
+    cell.offsets[1] = 3;
+    cell.offsets[2] = 6;
+    cell.edges[0] = 1;
+    // this is the difference between PATH 1.4.0 and this path
+    cell.edges[3] = 0;
+    cell.edges[4] = 2;
+    cell.edges[6] = 1;
+    cell.edgeindices[0] = 0;
+    cell.edgeindices[3] = 0;
+    cell.edgeindices[6] = 1;
+    dx[0] = 0.5f;
+    dx[1] = 0.0f;
+    dx[2] = 0.0f;
+    r2 = 0.25f;
+    int result = voronoi_intersect_find_closest_vertex(
+        &cell, dx, r2, &u, &up, &us, &uw, &l, &lp, &ls, &lw, &q, &qp, &qs, &qw);
+    assert(result == 1);
+    assert(up == 1);
+    assert(us == 1);
+    assert(u == 0.125f);
+    assert(lp == 2);
+    assert(ls == 0);
+    assert(l == -0.75f);
+  }
+
+  /* PATH 1.4.4 */
+  // first vertex is above the plane, second is closer, fourth is below
+  {
+    cell.vertices[0] = 1.0f;
+    cell.vertices[1] = 0.0f;
+    cell.vertices[2] = 0.0f;
+    cell.vertices[3] = 0.75f;
+    cell.vertices[4] = 0.0f;
+    cell.vertices[5] = 0.0f;
+    cell.vertices[6] = 2.0f;
+    cell.vertices[7] = 0.0f;
+    cell.vertices[8] = 0.0f;
+    cell.vertices[9] = -1.0f;
+    cell.vertices[10] = 0.0f;
+    cell.vertices[11] = 0.0f;
+    cell.nvert = 4;
+    cell.orders[0] = 3;
+    cell.orders[1] = 4;
+    cell.orders[2] = 3;
+    cell.orders[3] = 3;
+    cell.offsets[0] = 0;
+    cell.offsets[1] = 3;
+    cell.offsets[2] = 7;
+    cell.offsets[3] = 10;
+    cell.edges[0] = 1;
+    cell.edges[3] = 0;
+    cell.edges[4] = 2;
+    cell.edges[5] = 3;
+    cell.edges[7] = 1;
+    cell.edges[10] = 1;
+    cell.edgeindices[0] = 0;
+    cell.edgeindices[3] = 0;
+    cell.edgeindices[5] = 0;
+    cell.edgeindices[10] = 0;
+    dx[0] = 0.5f;
+    dx[1] = 0.0f;
+    dx[2] = 0.0f;
+    r2 = 0.25f;
+    int result = voronoi_intersect_find_closest_vertex(
+        &cell, dx, r2, &u, &up, &us, &uw, &l, &lp, &ls, &lw, &q, &qp, &qs, &qw);
+    assert(result == 1);
+    assert(up == 1);
+    assert(us == 2);
+    assert(u == 0.125f);
+    assert(lp == 3);
+    assert(ls == 0);
+    assert(l == -0.75f);
+  }
+
+  /* PATH 1.4.5 */
+  // same as 1.4.4, but with an order 3 second vertex
+  {
+    cell.vertices[0] = 1.0f;
+    cell.vertices[1] = 0.0f;
+    cell.vertices[2] = 0.0f;
+    cell.vertices[3] = 0.75f;
+    cell.vertices[4] = 0.0f;
+    cell.vertices[5] = 0.0f;
+    cell.vertices[6] = 2.0f;
+    cell.vertices[7] = 0.0f;
+    cell.vertices[8] = 0.0f;
+    cell.vertices[9] = -1.0f;
+    cell.vertices[10] = 0.0f;
+    cell.vertices[11] = 0.0f;
+    cell.nvert = 4;
+    cell.orders[0] = 3;
+    cell.orders[1] = 3;
+    cell.orders[2] = 3;
+    cell.orders[3] = 3;
+    cell.offsets[0] = 0;
+    cell.offsets[1] = 3;
+    cell.offsets[2] = 6;
+    cell.offsets[3] = 9;
+    cell.edges[0] = 1;
+    cell.edges[3] = 0;
+    cell.edges[4] = 2;
+    cell.edges[5] = 3;
+    cell.edges[6] = 1;
+    cell.edges[9] = 1;
+    cell.edgeindices[0] = 0;
+    cell.edgeindices[3] = 0;
+    cell.edgeindices[5] = 0;
+    cell.edgeindices[9] = 0;
+    dx[0] = 0.5f;
+    dx[1] = 0.0f;
+    dx[2] = 0.0f;
+    r2 = 0.25f;
+    int result = voronoi_intersect_find_closest_vertex(
+        &cell, dx, r2, &u, &up, &us, &uw, &l, &lp, &ls, &lw, &q, &qp, &qs, &qw);
+    assert(result == 1);
+    assert(up == 1);
+    assert(us == 2);
+    assert(u == 0.125f);
+    assert(lp == 3);
+    assert(ls == 0);
+    assert(l == -0.75f);
+  }
+
+  /* PATH 1.4.6 */
+  // first vertex is above the plane, second is closer and is the closest
+  {
+    cell.vertices[0] = 1.0f;
+    cell.vertices[1] = 0.0f;
+    cell.vertices[2] = 0.0f;
+    cell.vertices[3] = 0.75f;
+    cell.vertices[4] = 0.0f;
+    cell.vertices[5] = 0.0f;
+    cell.vertices[6] = 2.0f;
+    cell.vertices[7] = 0.0f;
+    cell.vertices[8] = 0.0f;
+    cell.nvert = 3;
+    cell.orders[0] = 3;
+    cell.orders[1] = 2;
+    cell.orders[2] = 3;
+    cell.offsets[0] = 0;
+    cell.offsets[1] = 3;
+    cell.offsets[2] = 5;
+    cell.edges[0] = 1;
+    cell.edges[3] = 0;
+    cell.edges[4] = 2;
+    cell.edgeindices[0] = 0;
+    cell.edgeindices[3] = 0;
+    dx[0] = 0.5f;
+    dx[1] = 0.0f;
+    dx[2] = 0.0f;
+    r2 = 0.25f;
+    int result = voronoi_intersect_find_closest_vertex(
+        &cell, dx, r2, &u, &up, &us, &uw, &l, &lp, &ls, &lw, &q, &qp, &qs, &qw);
+    assert(result == -1);
+  }
+
+  /* PATH 1.5 */
+  // first vertex is above the plane, second vertex is too close to call
+  {
+    cell.vertices[0] = 1.0f;
+    cell.vertices[1] = 0.0f;
+    cell.vertices[2] = 0.0f;
+    cell.vertices[3] = 0.5f;
+    cell.vertices[4] = 0.0f;
+    cell.vertices[5] = 0.0f;
+    cell.nvert = 2;
+    cell.orders[0] = 3;
+    cell.orders[1] = 3;
+    cell.offsets[0] = 0;
+    cell.offsets[1] = 3;
+    cell.edges[0] = 1;
+    cell.edges[3] = 0;
+    cell.edgeindices[0] = 0;
+    cell.edgeindices[3] = 0;
+    dx[0] = 0.5f;
+    dx[1] = 0.0f;
+    dx[2] = 0.0f;
+    r2 = 0.25f;
+    int result = voronoi_intersect_find_closest_vertex(
+        &cell, dx, r2, &u, &up, &us, &uw, &l, &lp, &ls, &lw, &q, &qp, &qs, &qw);
+    assert(result == 2);
+    assert(up == 1);
+  }
+
+  /* PATH 2.0 */
+  // the first vertex is below the plane and its first edge is above the plane
+  {
+    cell.vertices[0] = -1.0f;
+    cell.vertices[1] = 0.0f;
+    cell.vertices[2] = 0.0f;
+    cell.vertices[3] = 1.0f;
+    cell.vertices[4] = 0.0f;
+    cell.vertices[5] = 0.0f;
+    cell.nvert = 2;
+    cell.orders[0] = 3;
+    cell.orders[1] = 3;
+    cell.offsets[0] = 0;
+    cell.offsets[1] = 3;
+    cell.edges[0] = 1;
+    cell.edgeindices[0] = 0;
+    cell.edges[3] = 0;
+    cell.edgeindices[3] = 0;
+    dx[0] = 0.5f;
+    dx[1] = 0.0f;
+    dx[2] = 0.0f;
+    r2 = 0.25f;
+    int result = voronoi_intersect_find_closest_vertex(
+        &cell, dx, r2, &u, &up, &us, &uw, &l, &lp, &ls, &lw, &q, &qp, &qs, &qw);
+    assert(result == 1);
+    assert(up == 1);
+    assert(us == 0);
+    assert(uw == -1);
+    assert(u == 0.25f);
+    assert(lp == 0);
+    assert(ls == 0);
+    assert(qw == 1);
+    assert(l == -0.75f);
+  }
+
+  /* PATH 2.1 */
+  // the first vertex is below the plane and its second edge is above the plane
+  {
+    cell.vertices[0] = -1.0f;
+    cell.vertices[1] = 0.0f;
+    cell.vertices[2] = 0.0f;
+    cell.vertices[3] = -2.0f;
+    cell.vertices[4] = 0.0f;
+    cell.vertices[5] = 0.0f;
+    cell.vertices[6] = 1.0f;
+    cell.vertices[7] = 0.0f;
+    cell.vertices[8] = 0.0f;
+    cell.nvert = 3;
+    cell.orders[0] = 3;
+    cell.orders[1] = 3;
+    cell.orders[2] = 3;
+    cell.offsets[0] = 0;
+    cell.offsets[1] = 3;
+    cell.offsets[2] = 6;
+    cell.edges[0] = 1;
+    cell.edges[1] = 2;
+    cell.edges[6] = 0;
+    cell.edgeindices[1] = 0;
+    cell.edgeindices[6] = 1;
+    dx[0] = 0.5f;
+    dx[1] = 0.0f;
+    dx[2] = 0.0f;
+    r2 = 0.25f;
+    int result = voronoi_intersect_find_closest_vertex(
+        &cell, dx, r2, &u, &up, &us, &uw, &l, &lp, &ls, &lw, &q, &qp, &qs, &qw);
+    assert(result == 1);
+    assert(up == 2);
+    assert(us == 0);
+    assert(uw == -1);
+    assert(u == 0.25f);
+    assert(lp == 0);
+    assert(ls == 1);
+    assert(qw == 1);
+    assert(l == -0.75f);
+  }
+
+  /* PATH 2.2 */
+  {
+    cell.vertices[0] = -1.0f;
+    cell.vertices[1] = 0.0f;
+    cell.vertices[2] = 0.0f;
+    cell.vertices[3] = -2.0f;
+    cell.vertices[4] = 0.0f;
+    cell.vertices[5] = 0.0f;
+    cell.vertices[6] = 1.0f;
+    cell.vertices[7] = 0.0f;
+    cell.vertices[8] = 0.0f;
+    cell.nvert = 3;
+    cell.orders[0] = 2;
+    cell.orders[1] = 3;
+    cell.orders[2] = 3;
+    cell.offsets[0] = 0;
+    cell.offsets[1] = 2;
+    cell.offsets[2] = 5;
+    cell.edges[0] = 1;
+    cell.edges[1] = 2;
+    cell.edges[5] = 0;
+    cell.edgeindices[1] = 0;
+    cell.edgeindices[5] = 1;
+    dx[0] = 0.5f;
+    dx[1] = 0.0f;
+    dx[2] = 0.0f;
+    r2 = 0.25f;
+    int result = voronoi_intersect_find_closest_vertex(
+        &cell, dx, r2, &u, &up, &us, &uw, &l, &lp, &ls, &lw, &q, &qp, &qs, &qw);
+    assert(result == 1);
+    assert(up == 2);
+    assert(us == 0);
+    assert(uw == -1);
+    assert(u == 0.25f);
+    assert(lp == 0);
+    assert(ls == 1);
+    assert(qw == 1);
+    assert(l == -0.75f);
+  }
+
+  /* PATH 2.3 */
+  // the first vertex is below the plane and is the closest vertex to the plane
+  {
+    cell.vertices[0] = -1.0f;
+    cell.vertices[1] = 0.0f;
+    cell.vertices[2] = 0.0f;
+    cell.vertices[3] = -2.0f;
+    cell.vertices[4] = 0.0f;
+    cell.vertices[5] = 0.0f;
+    cell.vertices[6] = -2.0f;
+    cell.vertices[7] = 0.0f;
+    cell.vertices[8] = 0.0f;
+    cell.vertices[9] = -2.0f;
+    cell.vertices[10] = 0.0f;
+    cell.vertices[11] = 0.0f;
+    cell.nvert = 4;
+    cell.orders[0] = 3;
+    cell.offsets[0] = 0;
+    cell.edges[0] = 1;
+    cell.edges[1] = 2;
+    cell.edges[2] = 3;
+    dx[0] = 0.5f;
+    dx[1] = 0.0f;
+    dx[2] = 0.0f;
+    r2 = 0.25f;
+    int result = voronoi_intersect_find_closest_vertex(
+        &cell, dx, r2, &u, &up, &us, &uw, &l, &lp, &ls, &lw, &q, &qp, &qs, &qw);
+    assert(result == 0);
+  }
+
+  /* PATH 2.4.0 */
+  // first vertex is below the plane, second is closer and third is above
+  {
+    cell.vertices[0] = -1.0f;
+    cell.vertices[1] = 0.0f;
+    cell.vertices[2] = 0.0f;
+    cell.vertices[3] = -0.5f;
+    cell.vertices[4] = 0.0f;
+    cell.vertices[5] = 0.0f;
+    cell.vertices[6] = 1.0f;
+    cell.vertices[7] = 0.0f;
+    cell.vertices[8] = 0.0f;
+    cell.nvert = 3;
+    cell.orders[0] = 3;
+    cell.orders[1] = 3;
+    cell.orders[2] = 3;
+    cell.offsets[0] = 0;
+    cell.offsets[1] = 3;
+    cell.offsets[2] = 6;
+    cell.edges[0] = 1;
+    cell.edges[3] = 2;
+    cell.edges[5] = 0;
+    cell.edges[6] = 1;
+    cell.edgeindices[0] = 2;
+    cell.edgeindices[3] = 0;
+    cell.edgeindices[5] = 0;
+    cell.edgeindices[6] = 0;
+    dx[0] = 0.5f;
+    dx[1] = 0.0f;
+    dx[2] = 0.0f;
+    r2 = 0.25f;
+    int result = voronoi_intersect_find_closest_vertex(
+        &cell, dx, r2, &u, &up, &us, &uw, &l, &lp, &ls, &lw, &q, &qp, &qs, &qw);
+    assert(result == 1);
+    assert(up == 2);
+    assert(u == 0.25f);
+    assert(lp == 1);
+    assert(l == -0.5f);
+  }
+
+  /* PATH 2.4.1 */
+  // first vertex is below, second is closer and fourth is above
+  {
+    cell.vertices[0] = -1.0f;
+    cell.vertices[1] = 0.0f;
+    cell.vertices[2] = 0.0f;
+    cell.vertices[3] = -0.5f;
+    cell.vertices[4] = 0.0f;
+    cell.vertices[5] = 0.0f;
+    cell.vertices[6] = -2.0f;
+    cell.vertices[7] = 0.0f;
+    cell.vertices[8] = 0.0f;
+    cell.vertices[9] = 1.0f;
+    cell.vertices[10] = 0.0f;
+    cell.vertices[11] = 0.0f;
+    cell.nvert = 4;
+    cell.orders[0] = 3;
+    cell.orders[1] = 4;
+    cell.orders[2] = 3;
+    cell.orders[3] = 3;
+    cell.offsets[0] = 0;
+    cell.offsets[1] = 3;
+    cell.offsets[2] = 7;
+    cell.offsets[3] = 10;
+    cell.edges[0] = 1;
+    cell.edges[3] = 2;
+    cell.edges[4] = 3;
+    cell.edges[6] = 0;
+    cell.edges[10] = 1;
+    cell.edgeindices[0] = 3;
+    cell.edgeindices[3] = 0;
+    cell.edgeindices[4] = 0;
+    cell.edgeindices[6] = 0;
+    cell.edgeindices[10] = 1;
+    dx[0] = 0.5f;
+    dx[1] = 0.0f;
+    dx[2] = 0.0f;
+    r2 = 0.25f;
+    int result = voronoi_intersect_find_closest_vertex(
+        &cell, dx, r2, &u, &up, &us, &uw, &l, &lp, &ls, &lw, &q, &qp, &qs, &qw);
+    assert(result == 1);
+    assert(up == 3);
+    assert(us == 0);
+    assert(u == 0.25f);
+    assert(lp == 1);
+    assert(ls == 1);
+    assert(l == -0.5f);
+  }
+
+  /* PATH 2.4.2 */
+  // first vertex is below, second is closer and fourth is above
+  // same as 2.4.1, but with order 3 second vertex
+  {
+    cell.vertices[0] = -1.0f;
+    cell.vertices[1] = 0.0f;
+    cell.vertices[2] = 0.0f;
+    cell.vertices[3] = -0.5f;
+    cell.vertices[4] = 0.0f;
+    cell.vertices[5] = 0.0f;
+    cell.vertices[6] = -2.0f;
+    cell.vertices[7] = 0.0f;
+    cell.vertices[8] = 0.0f;
+    cell.vertices[9] = 1.0f;
+    cell.vertices[10] = 0.0f;
+    cell.vertices[11] = 0.0f;
+    cell.nvert = 4;
+    cell.orders[0] = 3;
+    cell.orders[1] = 3;
+    cell.orders[2] = 3;
+    cell.orders[3] = 3;
+    cell.offsets[0] = 0;
+    cell.offsets[1] = 3;
+    cell.offsets[2] = 6;
+    cell.offsets[3] = 9;
+    cell.edges[0] = 1;
+    cell.edges[3] = 2;
+    cell.edges[4] = 3;
+    cell.edges[5] = 0;
+    cell.edges[9] = 1;
+    cell.edgeindices[0] = 3;
+    cell.edgeindices[3] = 0;
+    cell.edgeindices[4] = 0;
+    cell.edgeindices[5] = 0;
+    cell.edgeindices[9] = 1;
+    dx[0] = 0.5f;
+    dx[1] = 0.0f;
+    dx[2] = 0.0f;
+    r2 = 0.25f;
+    int result = voronoi_intersect_find_closest_vertex(
+        &cell, dx, r2, &u, &up, &us, &uw, &l, &lp, &ls, &lw, &q, &qp, &qs, &qw);
+    assert(result == 1);
+    assert(up == 3);
+    assert(us == 0);
+    assert(u == 0.25f);
+    assert(lp == 1);
+    assert(ls == 1);
+    assert(l == -0.5f);
+  }
+
+  /* PATH 2.4.3 */
+  // first vertex is below, second is closer, third is above
+  // first vertex is first edge of second
+  {
+    cell.vertices[0] = -1.0f;
+    cell.vertices[1] = 0.0f;
+    cell.vertices[2] = 0.0f;
+    cell.vertices[3] = -0.5f;
+    cell.vertices[4] = 0.0f;
+    cell.vertices[5] = 0.0f;
+    cell.vertices[6] = 1.0f;
+    cell.vertices[7] = 0.0f;
+    cell.vertices[8] = 0.0f;
+    cell.nvert = 3;
+    cell.orders[0] = 3;
+    cell.orders[1] = 3;
+    cell.orders[2] = 3;
+    cell.offsets[0] = 0;
+    cell.offsets[1] = 3;
+    cell.offsets[2] = 6;
+    cell.edges[0] = 1;
+    cell.edges[3] = 0;
+    cell.edges[4] = 2;
+    cell.edges[6] = 1;
+    cell.edgeindices[0] = 0;
+    cell.edgeindices[3] = 0;
+    cell.edgeindices[4] = 0;
+    cell.edgeindices[6] = 1;
+    dx[0] = 0.5f;
+    dx[1] = 0.0f;
+    dx[2] = 0.0f;
+    r2 = 0.25f;
+    int result = voronoi_intersect_find_closest_vertex(
+        &cell, dx, r2, &u, &up, &us, &uw, &l, &lp, &ls, &lw, &q, &qp, &qs, &qw);
+    assert(result == 1);
+    assert(up == 2);
+    assert(us == 0);
+    assert(u == 0.25f);
+    assert(lp == 1);
+    assert(ls == 1);
+    assert(l == -0.5f);
+  }
+
+  /* PATH 2.4.4 */
+  // first vertex is below, second is closer, fourth is above
+  // first vertex is first edge of second
+  {
+    cell.vertices[0] = -1.0f;
+    cell.vertices[1] = 0.0f;
+    cell.vertices[2] = 0.0f;
+    cell.vertices[3] = -0.5f;
+    cell.vertices[4] = 0.0f;
+    cell.vertices[5] = 0.0f;
+    cell.vertices[6] = -2.0f;
+    cell.vertices[7] = 0.0f;
+    cell.vertices[8] = 0.0f;
+    cell.vertices[9] = 1.0f;
+    cell.vertices[10] = 0.0f;
+    cell.vertices[11] = 0.0f;
+    cell.nvert = 4;
+    cell.orders[0] = 3;
+    cell.orders[1] = 4;
+    cell.orders[2] = 3;
+    cell.orders[3] = 3;
+    cell.offsets[0] = 0;
+    cell.offsets[1] = 3;
+    cell.offsets[2] = 7;
+    cell.offsets[3] = 10;
+    cell.edges[0] = 1;
+    cell.edges[3] = 0;
+    cell.edges[4] = 2;
+    cell.edges[5] = 3;
+    cell.edges[10] = 1;
+    cell.edgeindices[0] = 0;
+    cell.edgeindices[3] = 0;
+    cell.edgeindices[5] = 0;
+    cell.edgeindices[10] = 2;
+    dx[0] = 0.5f;
+    dx[1] = 0.0f;
+    dx[2] = 0.0f;
+    r2 = 0.25f;
+    int result = voronoi_intersect_find_closest_vertex(
+        &cell, dx, r2, &u, &up, &us, &uw, &l, &lp, &ls, &lw, &q, &qp, &qs, &qw);
+    assert(result == 1);
+    assert(up == 3);
+    assert(us == 0);
+    assert(u == 0.25f);
+    assert(lp == 1);
+    assert(ls == 2);
+    assert(l == -0.5f);
+  }
+
+  /* PATH 2.4.5 */
+  // first vertex is below, second is closer, fourth is above
+  // first vertex is first edge of second
+  // second vertex is order 3 vertex (and not order 4 like 2.4.4)
+  {
+    cell.vertices[0] = -1.0f;
+    cell.vertices[1] = 0.0f;
+    cell.vertices[2] = 0.0f;
+    cell.vertices[3] = -0.5f;
+    cell.vertices[4] = 0.0f;
+    cell.vertices[5] = 0.0f;
+    cell.vertices[6] = -2.0f;
+    cell.vertices[7] = 0.0f;
+    cell.vertices[8] = 0.0f;
+    cell.vertices[9] = 1.0f;
+    cell.vertices[10] = 0.0f;
+    cell.vertices[11] = 0.0f;
+    cell.nvert = 4;
+    cell.orders[0] = 3;
+    cell.orders[1] = 3;
+    cell.orders[2] = 3;
+    cell.orders[3] = 3;
+    cell.offsets[0] = 0;
+    cell.offsets[1] = 3;
+    cell.offsets[2] = 6;
+    cell.offsets[3] = 9;
+    cell.edges[0] = 1;
+    cell.edges[3] = 0;
+    cell.edges[4] = 2;
+    cell.edges[5] = 3;
+    cell.edges[9] = 1;
+    cell.edgeindices[0] = 0;
+    cell.edgeindices[3] = 0;
+    cell.edgeindices[5] = 0;
+    cell.edgeindices[9] = 2;
+    dx[0] = 0.5f;
+    dx[1] = 0.0f;
+    dx[2] = 0.0f;
+    r2 = 0.25f;
+    int result = voronoi_intersect_find_closest_vertex(
+        &cell, dx, r2, &u, &up, &us, &uw, &l, &lp, &ls, &lw, &q, &qp, &qs, &qw);
+    assert(result == 1);
+    assert(up == 3);
+    assert(us == 0);
+    assert(u == 0.25f);
+    assert(lp == 1);
+    assert(ls == 2);
+    assert(l == -0.5f);
+  }
+
+  /* PATH 2.4.6 */
+  // first vertex is below, second is closer and is closest
+  {
+    cell.vertices[0] = -1.0f;
+    cell.vertices[1] = 0.0f;
+    cell.vertices[2] = 0.0f;
+    cell.vertices[3] = -0.5f;
+    cell.vertices[4] = 0.0f;
+    cell.vertices[5] = 0.0f;
+    cell.vertices[6] = -2.0f;
+    cell.vertices[7] = 0.0f;
+    cell.vertices[8] = 0.0f;
+    cell.nvert = 3;
+    cell.orders[0] = 3;
+    cell.orders[1] = 2;
+    cell.orders[2] = 3;
+    cell.offsets[0] = 0;
+    cell.offsets[1] = 3;
+    cell.offsets[2] = 5;
+    cell.edges[0] = 1;
+    cell.edges[3] = 0;
+    cell.edges[4] = 2;
+    cell.edgeindices[0] = 0;
+    cell.edgeindices[3] = 0;
+    cell.edgeindices[4] = 0;
+    dx[0] = 0.5f;
+    dx[1] = 0.0f;
+    dx[2] = 0.0f;
+    r2 = 0.25f;
+    int result = voronoi_intersect_find_closest_vertex(
+        &cell, dx, r2, &u, &up, &us, &uw, &l, &lp, &ls, &lw, &q, &qp, &qs, &qw);
+    assert(result == 0);
+  }
+
+  /* PATH 2.5 */
+  // first vertex is below, second is too close to call
+  {
+    cell.vertices[0] = -1.0f;
+    cell.vertices[1] = 0.0f;
+    cell.vertices[2] = 0.0f;
+    cell.vertices[3] = 0.5f;
+    cell.vertices[4] = 0.0f;
+    cell.vertices[5] = 0.0f;
+    cell.nvert = 2;
+    cell.orders[0] = 3;
+    cell.orders[1] = 3;
+    cell.offsets[0] = 0;
+    cell.offsets[1] = 3;
+    cell.edges[0] = 1;
+    cell.edges[3] = 0;
+    cell.edgeindices[0] = 0;
+    cell.edgeindices[3] = 0;
+    dx[0] = 0.5f;
+    dx[1] = 0.0f;
+    dx[2] = 0.0f;
+    r2 = 0.25f;
+    int result = voronoi_intersect_find_closest_vertex(
+        &cell, dx, r2, &u, &up, &us, &uw, &l, &lp, &ls, &lw, &q, &qp, &qs, &qw);
+    assert(result == 2);
+  }
+}
+
+#ifdef SHADOWFAX_SPH
+void set_coordinates(struct part *p, double x, double y, double z,
+                     unsigned int id) {
+
+  double box_anchor[3] = {VORONOI3D_BOX_ANCHOR_X, VORONOI3D_BOX_ANCHOR_Y,
+                          VORONOI3D_BOX_ANCHOR_Z};
+  double box_side[3] = {VORONOI3D_BOX_SIDE_X, VORONOI3D_BOX_SIDE_Y,
+                        VORONOI3D_BOX_SIDE_Z};
+
+  p->x[0] = x;
+  p->x[1] = y;
+  p->x[2] = z;
+  p->id = id;
+  voronoi_cell_init(&p->cell, p->x, box_anchor, box_side);
+}
+#endif
+
+void test_degeneracies() {
+#ifdef SHADOWFAX_SPH
+  int idx = 0;
+  /* make a small cube */
+  struct part particles[100];
+  set_coordinates(&particles[idx], 0.1, 0.1, 0.1, idx);
+  idx++;
+  set_coordinates(&particles[idx], 0.2, 0.1, 0.1, idx);
+  idx++;
+  set_coordinates(&particles[idx], 0.1, 0.2, 0.1, idx);
+  idx++;
+  set_coordinates(&particles[idx], 0.1, 0.1, 0.2, idx);
+  idx++;
+  /* corner on cutting plane */
+  set_coordinates(&particles[idx], 0.2, 0.2, 0.2, idx);
+  idx++;
+  /* edge on cutting plane */
+  set_coordinates(&particles[idx], 0.2, 0.1, 0.2, idx);
+  idx++;
+  set_coordinates(&particles[idx], 0.2, 0.2, 0.1, idx);
+  idx++;
+  /* cutting plane is diagonal */
+  set_coordinates(&particles[idx], 0.05, 0.1, 0.05, idx);
+  idx++;
+  /* order 4 vertex (found after an impressive display of analytical geometry
+     of which I'm rather proud) */
+  float t = 0.5 / 0.0475;
+  set_coordinates(&particles[idx], 0.0075 * t + 0.1, 0.0075 * t + 0.1,
+                  0.1 - 0.0025 * t, idx);
+  idx++;
+  /* order 4 vertex with float edge */
+  t = 0.35 / 0.06125;
+  set_coordinates(&particles[idx], 0.0075 * t + 0.1, 0.015 * t + 0.1,
+                  0.1 - 0.005 * t, idx);
+  idx++;
+  /* plane that was already encountered */
+  t = 0.5 / 0.0475;
+  set_coordinates(&particles[idx], 0.0075 * t + 0.1, 0.0075 * t + 0.1,
+                  0.1 - 0.0025 * t, idx);
+  idx++;
+  /* no intersection (just to cover all code) */
+  set_coordinates(&particles[idx], 0.3, 0.3, 0.3, idx);
+  idx++;
+  set_coordinates(&particles[idx], 0.3, 0.1, 0.3, idx);
+  idx++;
+  /* order 5 vertex */
+  t = 0.04 / 0.0175;
+  set_coordinates(&particles[idx], 0.1 - 0.0075 * t, 0.1 + 0.00375 * t,
+                  0.1 + 0.00625 * t, idx);
+  idx++;
+  /* plane with order 5 vertex */
+  set_coordinates(&particles[idx], 0.1, 0.2, 0.1, idx);
+  idx++;
+  /* edge with order 5 vertex that looses an edge */
+  t = -0.1 / 0.095;
+  set_coordinates(&particles[idx], 0.1 - 0.015 * t, 0.1 + 0.015 * t,
+                  0.1 - 0.005 * t, idx);
+  idx++;
+  for (int i = 1; i < idx; i++) {
+    float dx[3];
+    dx[0] = particles[0].x[0] - particles[i].x[0];
+    dx[1] = particles[0].x[1] - particles[i].x[1];
+    dx[2] = particles[0].x[2] - particles[i].x[2];
+    voronoi_cell_interact(&particles[0].cell, dx, particles[i].id);
+  }
+#endif
+}
+
+int main() {
+
+  /* Set the all enclosing simulation box dimensions */
+  double box_anchor[3] = {VORONOI3D_BOX_ANCHOR_X, VORONOI3D_BOX_ANCHOR_Y,
+                          VORONOI3D_BOX_ANCHOR_Z};
+  double box_side[3] = {VORONOI3D_BOX_SIDE_X, VORONOI3D_BOX_SIDE_Y,
+                        VORONOI3D_BOX_SIDE_Z};
+
+  /* Check basic Voronoi cell functions */
+  test_voronoi_volume_tetrahedron();
+  test_voronoi_centroid_tetrahedron();
+  test_calculate_cell();
+
+  /* Test the different paths */
+  test_paths();
+
+  /* Test the interaction and geometry algorithms */
+  {
+    /* Create a Voronoi cell */
+    double x[3] = {0.5f, 0.5f, 0.5f};
+    struct voronoi_cell cell;
+    voronoi_cell_init(&cell, x, box_anchor, box_side);
+
+    /* Interact with neighbours */
+    float x0[3] = {0.5f, 0.0f, 0.0f};
+    float x1[3] = {-0.5f, 0.0f, 0.0f};
+    float x2[3] = {0.0f, 0.5f, 0.0f};
+    float x3[3] = {0.0f, -0.5f, 0.0f};
+    float x4[3] = {0.0f, 0.0f, 0.5f};
+    float x5[3] = {0.0f, 0.0f, -0.5f};
+    voronoi_cell_interact(&cell, x0, 1);
+    voronoi_cell_interact(&cell, x1, 2);
+    voronoi_cell_interact(&cell, x2, 3);
+    voronoi_cell_interact(&cell, x3, 4);
+    voronoi_cell_interact(&cell, x4, 5);
+    voronoi_cell_interact(&cell, x5, 6);
+    float expected_midpoints[6][3], expected_areas[6];
+    expected_areas[0] = 0.25f;
+    expected_midpoints[0][0] = 0.25f;
+    expected_midpoints[0][1] = 0.5f;
+    expected_midpoints[0][2] = 0.5f;
+    expected_areas[1] = 0.25f;
+    expected_midpoints[1][0] = 0.75f;
+    expected_midpoints[1][1] = 0.5f;
+    expected_midpoints[1][2] = 0.5f;
+    expected_areas[2] = 0.25f;
+    expected_midpoints[2][0] = 0.5f;
+    expected_midpoints[2][1] = 0.25f;
+    expected_midpoints[2][2] = 0.5f;
+    expected_areas[3] = 0.25f;
+    expected_midpoints[3][0] = 0.5f;
+    expected_midpoints[3][1] = 0.75f;
+    expected_midpoints[3][2] = 0.5f;
+    expected_areas[4] = 0.25f;
+    expected_midpoints[4][0] = 0.5f;
+    expected_midpoints[4][1] = 0.5f;
+    expected_midpoints[4][2] = 0.25f;
+    expected_areas[5] = 0.25f;
+    expected_midpoints[5][0] = 0.5f;
+    expected_midpoints[5][1] = 0.5f;
+    expected_midpoints[5][2] = 0.75f;
+
+    /* Interact with some more neighbours to check if they are properly
+       ignored */
+    float xE0[3] = {0.6f, 0.0f, 0.1f};
+    float xE1[3] = {-0.7f, 0.2f, 0.04f};
+    voronoi_cell_interact(&cell, xE0, 7);
+    voronoi_cell_interact(&cell, xE1, 8);
+
+    /* Finalize cell and check results */
+    voronoi_cell_finalize(&cell);
+
+    if (fabs(cell.volume - 0.125f) > 1.e-5) {
+      error("Wrong volume: %g!", cell.volume);
+    }
+    if (fabs(cell.centroid[0] - 0.5f) > 1.e-5f ||
+        fabs(cell.centroid[1] - 0.5f) > 1.e-5f ||
+        fabs(cell.centroid[2] - 0.5f) > 1.e-5f) {
+      error("Wrong centroid: %g %g %g!", cell.centroid[0], cell.centroid[1],
+            cell.centroid[2]);
+    }
+
+    /* Check faces. */
+    float A, midpoint[3];
+    for (int i = 0; i < 6; ++i) {
+      A = voronoi_get_face(&cell, i + 1, midpoint);
+      if (A) {
+        if (fabs(A - expected_areas[i]) > 1.e-5) {
+          error("Wrong surface area: %g!", A);
+        }
+        if (fabs(midpoint[0] - expected_midpoints[i][0] + cell.x[0]) > 1.e-5 ||
+            fabs(midpoint[1] - expected_midpoints[i][1] + cell.x[1]) > 1.e-5 ||
+            fabs(midpoint[2] - expected_midpoints[i][2] + cell.x[2]) > 1.e-5) {
+          error("Wrong face midpoint: %g %g %g (should be %g %g %g)!",
+                midpoint[0], midpoint[1], midpoint[2], expected_midpoints[i][0],
+                expected_midpoints[i][1], expected_midpoints[i][2]);
+        }
+      } else {
+        error("Neighbour %i not found!", i);
+      }
+    }
+  }
+
+  /* Test degenerate cases */
+  test_degeneracies();
+
+  /* Construct a small random grid */
+  {
+    message("Constructing a small random grid...");
+
+    int i, j;
+    double x[3];
+    float dx[3];
+    float Vtot;
+    struct voronoi_cell cells[TESTVORONOI3D_NUMCELL_RANDOM];
+    struct voronoi_cell *cell_i, *cell_j;
+
+    /* initialize cells with random generator locations */
+    for (i = 0; i < TESTVORONOI3D_NUMCELL_RANDOM; ++i) {
+      x[0] = random_uniform(0., 1.);
+      x[1] = random_uniform(0., 1.);
+      x[2] = random_uniform(0., 1.);
+      voronoi_cell_init(&cells[i], x, box_anchor, box_side);
+    }
+
+    /* interact the cells */
+    for (i = 0; i < TESTVORONOI3D_NUMCELL_RANDOM; ++i) {
+      cell_i = &cells[i];
+      for (j = 0; j < TESTVORONOI3D_NUMCELL_RANDOM; ++j) {
+        if (i != j) {
+          cell_j = &cells[j];
+          dx[0] = cell_i->x[0] - cell_j->x[0];
+          dx[1] = cell_i->x[1] - cell_j->x[1];
+          dx[2] = cell_i->x[2] - cell_j->x[2];
+          voronoi_cell_interact(cell_i, dx, j);
+        }
+      }
+    }
+
+    Vtot = 0.0f;
+    /* print the cells to the stdout */
+    for (i = 0; i < TESTVORONOI3D_NUMCELL_RANDOM; ++i) {
+      /*      voronoi_print_gnuplot_c(&cells[i]);*/
+      voronoi_cell_finalize(&cells[i]);
+      Vtot += cells[i].volume;
+    }
+
+    assert(fabs(Vtot - 1.0f) < 1.e-6);
+
+    message("Done.");
+  }
+
+  /* Construct a small Cartesian grid full of degeneracies */
+  {
+    message("Constructing a Cartesian grid...");
+
+    int i, j, k;
+    double x[3];
+    float dx[3];
+    float Vtot;
+    struct voronoi_cell cells[TESTVORONOI3D_NUMCELL_CARTESIAN_3D];
+    struct voronoi_cell *cell_i, *cell_j;
+
+    /* initialize cells with Cartesian generator locations */
+    for (i = 0; i < TESTVORONOI3D_NUMCELL_CARTESIAN_1D; ++i) {
+      for (j = 0; j < TESTVORONOI3D_NUMCELL_CARTESIAN_1D; ++j) {
+        for (k = 0; k < TESTVORONOI3D_NUMCELL_CARTESIAN_1D; ++k) {
+          x[0] = (i + 0.5f) * 1.0 / TESTVORONOI3D_NUMCELL_CARTESIAN_1D;
+          x[1] = (j + 0.5f) * 1.0 / TESTVORONOI3D_NUMCELL_CARTESIAN_1D;
+          x[2] = (k + 0.5f) * 1.0 / TESTVORONOI3D_NUMCELL_CARTESIAN_1D;
+          voronoi_cell_init(&cells[TESTVORONOI3D_NUMCELL_CARTESIAN_1D *
+                                       TESTVORONOI3D_NUMCELL_CARTESIAN_1D * i +
+                                   TESTVORONOI3D_NUMCELL_CARTESIAN_1D * j + k],
+                            x, box_anchor, box_side);
+        }
+      }
+    }
+
+    /* interact the cells */
+    for (i = 0; i < TESTVORONOI3D_NUMCELL_CARTESIAN_3D; ++i) {
+      cell_i = &cells[i];
+      for (j = 0; j < TESTVORONOI3D_NUMCELL_CARTESIAN_3D; ++j) {
+        if (i != j) {
+          cell_j = &cells[j];
+          dx[0] = cell_i->x[0] - cell_j->x[0];
+          dx[1] = cell_i->x[1] - cell_j->x[1];
+          dx[2] = cell_i->x[2] - cell_j->x[2];
+          voronoi_cell_interact(cell_i, dx, j);
+        }
+      }
+    }
+
+    Vtot = 0.0f;
+    /* print the cells to the stdout */
+    for (i = 0; i < TESTVORONOI3D_NUMCELL_CARTESIAN_3D; ++i) {
+      /*      voronoi_print_gnuplot_c(&cells[i]);*/
+      voronoi_cell_finalize(&cells[i]);
+      Vtot += cells[i].volume;
+    }
+
+    message("Vtot: %g (Vtot-1.0f: %g)", Vtot, (Vtot - 1.0f));
+    assert(fabs(Vtot - 1.0f) < 2.e-6);
+
+    message("Done.");
+  }
+
+  return 0;
+}