Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
SWIFT
SWIFTsim
Commits
470cfbcf
Commit
470cfbcf
authored
Apr 26, 2017
by
James Willis
Browse files
Created vectorised interaction functions for the force.
parent
e156b185
Changes
1
Hide whitespace changes
Inline
Side-by-side
src/hydro/Gadget2/hydro_iact.h
View file @
470cfbcf
...
...
@@ -1202,4 +1202,267 @@ __attribute__((always_inline)) INLINE static void runner_iact_nonsym_vec_force(
#endif
}
#ifdef WITH_VECTORIZATION
__attribute__
((
always_inline
))
INLINE
static
void
runner_iact_nonsym_1_vec_force
(
vector
*
r2
,
vector
*
dx
,
vector
*
dy
,
vector
*
dz
,
vector
hi_inv
,
vector
hj_inv
,
struct
part
**
pi
,
struct
part
**
pj
,
vector
*
a_hydro_xSum
,
vector
*
a_hydro_ySum
,
vector
*
a_hydro_zSum
,
vector
*
h_dtSum
,
vector
*
v_sigSum
,
vector
*
entropy_dtSum
,
vector
mask
)
{
#ifdef WITH_VECTORIZATION
vector
r
,
ri
;
vector
xi
,
xj
;
vector
hid_inv
,
hjd_inv
;
vector
wi
,
wj
,
wi_dx
,
wj_dx
,
wi_dr
,
wj_dr
,
dvdr
;
vector
piPOrho2
,
pjPOrho2
,
pirho
,
pjrho
;
vector
mj
;
vector
grad_hi
,
grad_hj
;
vector
vi
[
3
],
vj
[
3
];
vector
pia
[
3
];
vector
pih_dt
;
vector
ci
,
cj
,
v_sig
;
vector
omega_ij
,
mu_ij
,
fac_mu
,
balsara
;
vector
rho_ij
,
visc
,
visc_term
,
sph_term
,
acc
,
entropy_dt
;
int
k
;
fac_mu
.
v
=
vec_set1
(
1
.
f
);
/* Will change with cosmological integration */
/* Load stuff. */
mj
.
v
=
vec_set
(
pj
[
0
]
->
mass
,
pj
[
1
]
->
mass
,
pj
[
2
]
->
mass
,
pj
[
3
]
->
mass
,
pj
[
4
]
->
mass
,
pj
[
5
]
->
mass
,
pj
[
6
]
->
mass
,
pj
[
7
]
->
mass
);
piPOrho2
.
v
=
vec_set
(
pi
[
0
]
->
force
.
P_over_rho2
,
pi
[
1
]
->
force
.
P_over_rho2
,
pi
[
2
]
->
force
.
P_over_rho2
,
pi
[
3
]
->
force
.
P_over_rho2
,
pi
[
4
]
->
force
.
P_over_rho2
,
pi
[
5
]
->
force
.
P_over_rho2
,
pi
[
6
]
->
force
.
P_over_rho2
,
pi
[
7
]
->
force
.
P_over_rho2
);
pjPOrho2
.
v
=
vec_set
(
pj
[
0
]
->
force
.
P_over_rho2
,
pj
[
1
]
->
force
.
P_over_rho2
,
pj
[
2
]
->
force
.
P_over_rho2
,
pj
[
3
]
->
force
.
P_over_rho2
,
pj
[
4
]
->
force
.
P_over_rho2
,
pj
[
5
]
->
force
.
P_over_rho2
,
pj
[
6
]
->
force
.
P_over_rho2
,
pj
[
7
]
->
force
.
P_over_rho2
);
grad_hi
.
v
=
vec_set
(
pi
[
0
]
->
force
.
f
,
pi
[
1
]
->
force
.
f
,
pi
[
2
]
->
force
.
f
,
pi
[
3
]
->
force
.
f
,
pi
[
4
]
->
force
.
f
,
pi
[
5
]
->
force
.
f
,
pi
[
6
]
->
force
.
f
,
pi
[
7
]
->
force
.
f
);
grad_hj
.
v
=
vec_set
(
pj
[
0
]
->
force
.
f
,
pj
[
1
]
->
force
.
f
,
pj
[
2
]
->
force
.
f
,
pj
[
3
]
->
force
.
f
,
pj
[
4
]
->
force
.
f
,
pj
[
5
]
->
force
.
f
,
pj
[
6
]
->
force
.
f
,
pj
[
7
]
->
force
.
f
);
pirho
.
v
=
vec_set
(
pi
[
0
]
->
rho
,
pi
[
1
]
->
rho
,
pi
[
2
]
->
rho
,
pi
[
3
]
->
rho
,
pi
[
4
]
->
rho
,
pi
[
5
]
->
rho
,
pi
[
6
]
->
rho
,
pi
[
7
]
->
rho
);
pjrho
.
v
=
vec_set
(
pj
[
0
]
->
rho
,
pj
[
1
]
->
rho
,
pj
[
2
]
->
rho
,
pj
[
3
]
->
rho
,
pj
[
4
]
->
rho
,
pj
[
5
]
->
rho
,
pj
[
6
]
->
rho
,
pj
[
7
]
->
rho
);
ci
.
v
=
vec_set
(
pi
[
0
]
->
force
.
soundspeed
,
pi
[
1
]
->
force
.
soundspeed
,
pi
[
2
]
->
force
.
soundspeed
,
pi
[
3
]
->
force
.
soundspeed
,
pi
[
4
]
->
force
.
soundspeed
,
pi
[
5
]
->
force
.
soundspeed
,
pi
[
6
]
->
force
.
soundspeed
,
pi
[
7
]
->
force
.
soundspeed
);
cj
.
v
=
vec_set
(
pj
[
0
]
->
force
.
soundspeed
,
pj
[
1
]
->
force
.
soundspeed
,
pj
[
2
]
->
force
.
soundspeed
,
pj
[
3
]
->
force
.
soundspeed
,
pj
[
4
]
->
force
.
soundspeed
,
pj
[
5
]
->
force
.
soundspeed
,
pj
[
6
]
->
force
.
soundspeed
,
pj
[
7
]
->
force
.
soundspeed
);
for
(
k
=
0
;
k
<
3
;
k
++
)
{
vi
[
k
].
v
=
vec_set
(
pi
[
0
]
->
v
[
k
],
pi
[
1
]
->
v
[
k
],
pi
[
2
]
->
v
[
k
],
pi
[
3
]
->
v
[
k
],
pi
[
4
]
->
v
[
k
],
pi
[
5
]
->
v
[
k
],
pi
[
6
]
->
v
[
k
],
pi
[
7
]
->
v
[
k
]);
vj
[
k
].
v
=
vec_set
(
pj
[
0
]
->
v
[
k
],
pj
[
1
]
->
v
[
k
],
pj
[
2
]
->
v
[
k
],
pj
[
3
]
->
v
[
k
],
pj
[
4
]
->
v
[
k
],
pj
[
5
]
->
v
[
k
],
pj
[
6
]
->
v
[
k
],
pj
[
7
]
->
v
[
k
]);
}
balsara
.
v
=
vec_set
(
pi
[
0
]
->
force
.
balsara
,
pi
[
1
]
->
force
.
balsara
,
pi
[
2
]
->
force
.
balsara
,
pi
[
3
]
->
force
.
balsara
,
pi
[
4
]
->
force
.
balsara
,
pi
[
5
]
->
force
.
balsara
,
pi
[
6
]
->
force
.
balsara
,
pi
[
7
]
->
force
.
balsara
)
+
vec_set
(
pj
[
0
]
->
force
.
balsara
,
pj
[
1
]
->
force
.
balsara
,
pj
[
2
]
->
force
.
balsara
,
pj
[
3
]
->
force
.
balsara
,
pj
[
4
]
->
force
.
balsara
,
pj
[
5
]
->
force
.
balsara
,
pj
[
6
]
->
force
.
balsara
,
pj
[
7
]
->
force
.
balsara
);
/* Get the radius and inverse radius. */
ri
=
vec_reciprocal_sqrt
(
*
r2
);
r
.
v
=
r2
->
v
*
ri
.
v
;
/* Get the kernel for hi. */
hid_inv
=
pow_dimension_plus_one_vec
(
hi_inv
);
xi
.
v
=
r
.
v
*
hi_inv
.
v
;
kernel_deval_vec
(
&
xi
,
&
wi
,
&
wi_dx
);
wi_dr
.
v
=
hid_inv
.
v
*
wi_dx
.
v
;
/* Get the kernel for hj. */
hjd_inv
=
pow_dimension_plus_one_vec
(
hj_inv
);
xj
.
v
=
r
.
v
*
hj_inv
.
v
;
kernel_deval_vec
(
&
xj
,
&
wj
,
&
wj_dx
);
wj_dr
.
v
=
hjd_inv
.
v
*
wj_dx
.
v
;
/* Compute dv dot r. */
//dvdr.v = ((vi[0].v - vj[0].v) * dx[0].v) + ((vi[1].v - vj[1].v) * dx[1].v) +
// ((vi[2].v - vj[2].v) * dx[2].v);
dvdr
.
v
=
((
vi
[
0
].
v
-
vj
[
0
].
v
)
*
dx
->
v
)
+
((
vi
[
1
].
v
-
vj
[
1
].
v
)
*
dy
->
v
)
+
((
vi
[
2
].
v
-
vj
[
2
].
v
)
*
dz
->
v
);
// dvdr.v = dvdr.v * ri.v;
/* Compute the relative velocity. (This is 0 if the particles move away from
* each other and negative otherwise) */
omega_ij
.
v
=
vec_fmin
(
dvdr
.
v
,
vec_set1
(
0
.
0
f
));
mu_ij
.
v
=
fac_mu
.
v
*
ri
.
v
*
omega_ij
.
v
;
/* This is 0 or negative */
/* Compute signal velocity */
v_sig
.
v
=
ci
.
v
+
cj
.
v
-
vec_set1
(
3
.
0
f
)
*
mu_ij
.
v
;
/* Now construct the full viscosity term */
rho_ij
.
v
=
vec_set1
(
0
.
5
f
)
*
(
pirho
.
v
+
pjrho
.
v
);
visc
.
v
=
vec_set1
(
-
0
.
25
f
)
*
vec_set1
(
const_viscosity_alpha
)
*
v_sig
.
v
*
mu_ij
.
v
*
balsara
.
v
/
rho_ij
.
v
;
/* Now, convolve with the kernel */
visc_term
.
v
=
vec_set1
(
0
.
5
f
)
*
visc
.
v
*
(
wi_dr
.
v
+
wj_dr
.
v
)
*
ri
.
v
;
sph_term
.
v
=
(
grad_hi
.
v
*
piPOrho2
.
v
*
wi_dr
.
v
+
grad_hj
.
v
*
pjPOrho2
.
v
*
wj_dr
.
v
)
*
ri
.
v
;
/* Eventually get the acceleration */
acc
.
v
=
visc_term
.
v
+
sph_term
.
v
;
/* Use the force, Luke! */
//for (k = 0; k < 3; k++) {
// f.v = dx[k].v * acc.v;
// pia[k].v = mj.v * f.v;
//}
pia
[
0
].
v
=
mj
.
v
*
dx
->
v
*
acc
.
v
;
pia
[
1
].
v
=
mj
.
v
*
dy
->
v
*
acc
.
v
;
pia
[
2
].
v
=
mj
.
v
*
dz
->
v
*
acc
.
v
;
/* Get the time derivative for h. */
pih_dt
.
v
=
mj
.
v
*
dvdr
.
v
*
ri
.
v
/
pjrho
.
v
*
wi_dr
.
v
;
/* Change in entropy */
entropy_dt
.
v
=
mj
.
v
*
visc_term
.
v
*
dvdr
.
v
;
/* Store the forces back on the particles. */
//for (k = 0; k < VEC_SIZE; k++) {
// for (j = 0; j < 3; j++) pi[k]->a_hydro[j] -= pia[j].f[k];
// pi[k]->force.h_dt -= pih_dt.f[k];
// pi[k]->force.v_sig = max(pi[k]->force.v_sig, v_sig.f[k]);
// pi[k]->entropy_dt += entropy_dt.f[k];
//}
a_hydro_xSum
->
v
-=
vec_and
(
pia
[
0
].
v
,
mask
.
v
);
a_hydro_ySum
->
v
-=
vec_and
(
pia
[
1
].
v
,
mask
.
v
);
a_hydro_zSum
->
v
-=
vec_and
(
pia
[
2
].
v
,
mask
.
v
);
h_dtSum
->
v
-=
vec_and
(
pih_dt
.
v
,
mask
.
v
);
v_sigSum
->
v
=
vec_fmax
(
v_sigSum
->
v
,
vec_and
(
v_sig
.
v
,
mask
.
v
));
entropy_dtSum
->
v
+=
vec_and
(
entropy_dt
.
v
,
mask
.
v
);
#else
error
(
"The Gadget2 serial version of runner_iact_nonsym_force was called when "
"the vectorised version should have been used."
);
#endif
}
__attribute__
((
always_inline
))
INLINE
static
void
runner_iact_nonsym_1_vec_force_2
(
vector
*
r2
,
vector
*
dx
,
vector
*
dy
,
vector
*
dz
,
vector
*
vix
,
vector
*
viy
,
vector
*
viz
,
vector
*
pirho
,
vector
*
grad_hi
,
vector
*
piPOrho2
,
vector
*
balsara_i
,
vector
*
ci
,
vector
*
vjx
,
vector
*
vjy
,
vector
*
vjz
,
vector
*
pjrho
,
vector
*
grad_hj
,
vector
*
pjPOrho2
,
vector
*
balsara_j
,
vector
*
cj
,
vector
*
mj
,
vector
hi_inv
,
vector
hj_inv
,
vector
*
a_hydro_xSum
,
vector
*
a_hydro_ySum
,
vector
*
a_hydro_zSum
,
vector
*
h_dtSum
,
vector
*
v_sigSum
,
vector
*
entropy_dtSum
,
vector
mask
)
{
#ifdef WITH_VECTORIZATION
vector
r
,
ri
;
vector
xi
,
xj
;
vector
hid_inv
,
hjd_inv
;
vector
wi
,
wj
,
wi_dx
,
wj_dx
,
wi_dr
,
wj_dr
,
dvdr
;
vector
pia
[
3
];
vector
pih_dt
;
vector
v_sig
;
vector
omega_ij
,
mu_ij
,
fac_mu
,
balsara
;
vector
rho_ij
,
visc
,
visc_term
,
sph_term
,
acc
,
entropy_dt
;
fac_mu
.
v
=
vec_set1
(
1
.
f
);
/* Will change with cosmological integration */
/* Load stuff. */
balsara
.
v
=
balsara_i
->
v
+
balsara_j
->
v
;
/* Get the radius and inverse radius. */
ri
=
vec_reciprocal_sqrt
(
*
r2
);
r
.
v
=
r2
->
v
*
ri
.
v
;
/* Get the kernel for hi. */
hid_inv
=
pow_dimension_plus_one_vec
(
hi_inv
);
xi
.
v
=
r
.
v
*
hi_inv
.
v
;
kernel_deval_1_vec
(
&
xi
,
&
wi
,
&
wi_dx
);
wi_dr
.
v
=
hid_inv
.
v
*
wi_dx
.
v
;
/* Get the kernel for hj. */
hjd_inv
=
pow_dimension_plus_one_vec
(
hj_inv
);
xj
.
v
=
r
.
v
*
hj_inv
.
v
;
kernel_deval_1_vec
(
&
xj
,
&
wj
,
&
wj_dx
);
wj_dr
.
v
=
hjd_inv
.
v
*
wj_dx
.
v
;
/* Compute dv dot r. */
//dvdr.v = ((vi[0].v - vj[0].v) * dx[0].v) + ((vi[1].v - vj[1].v) * dx[1].v) +
// ((vi[2].v - vj[2].v) * dx[2].v);
dvdr
.
v
=
((
vix
->
v
-
vjx
->
v
)
*
dx
->
v
)
+
((
viy
->
v
-
vjy
->
v
)
*
dy
->
v
)
+
((
viz
->
v
-
vjz
->
v
)
*
dz
->
v
);
// dvdr.v = dvdr.v * ri.v;
/* Compute the relative velocity. (This is 0 if the particles move away from
* each other and negative otherwise) */
omega_ij
.
v
=
vec_fmin
(
dvdr
.
v
,
vec_set1
(
0
.
0
f
));
mu_ij
.
v
=
fac_mu
.
v
*
ri
.
v
*
omega_ij
.
v
;
/* This is 0 or negative */
/* Compute signal velocity */
v_sig
.
v
=
ci
->
v
+
cj
->
v
-
vec_set1
(
3
.
0
f
)
*
mu_ij
.
v
;
/* Now construct the full viscosity term */
rho_ij
.
v
=
vec_set1
(
0
.
5
f
)
*
(
pirho
->
v
+
pjrho
->
v
);
visc
.
v
=
vec_set1
(
-
0
.
25
f
)
*
vec_set1
(
const_viscosity_alpha
)
*
v_sig
.
v
*
mu_ij
.
v
*
balsara
.
v
/
rho_ij
.
v
;
/* Now, convolve with the kernel */
visc_term
.
v
=
vec_set1
(
0
.
5
f
)
*
visc
.
v
*
(
wi_dr
.
v
+
wj_dr
.
v
)
*
ri
.
v
;
sph_term
.
v
=
(
grad_hi
->
v
*
piPOrho2
->
v
*
wi_dr
.
v
+
grad_hj
->
v
*
pjPOrho2
->
v
*
wj_dr
.
v
)
*
ri
.
v
;
/* Eventually get the acceleration */
acc
.
v
=
visc_term
.
v
+
sph_term
.
v
;
/* Use the force, Luke! */
//for (k = 0; k < 3; k++) {
// f.v = dx[k].v * acc.v;
// pia[k].v = mj.v * f.v;
//}
pia
[
0
].
v
=
mj
->
v
*
dx
->
v
*
acc
.
v
;
pia
[
1
].
v
=
mj
->
v
*
dy
->
v
*
acc
.
v
;
pia
[
2
].
v
=
mj
->
v
*
dz
->
v
*
acc
.
v
;
/* Get the time derivative for h. */
pih_dt
.
v
=
mj
->
v
*
dvdr
.
v
*
ri
.
v
/
pjrho
->
v
*
wi_dr
.
v
;
/* Change in entropy */
entropy_dt
.
v
=
mj
->
v
*
visc_term
.
v
*
dvdr
.
v
;
/* Store the forces back on the particles. */
//for (k = 0; k < VEC_SIZE; k++) {
// for (j = 0; j < 3; j++) pi[k]->a_hydro[j] -= pia[j].f[k];
// pi[k]->force.h_dt -= pih_dt.f[k];
// pi[k]->force.v_sig = max(pi[k]->force.v_sig, v_sig.f[k]);
// pi[k]->entropy_dt += entropy_dt.f[k];
//}
a_hydro_xSum
->
v
-=
vec_and
(
pia
[
0
].
v
,
mask
.
v
);
a_hydro_ySum
->
v
-=
vec_and
(
pia
[
1
].
v
,
mask
.
v
);
a_hydro_zSum
->
v
-=
vec_and
(
pia
[
2
].
v
,
mask
.
v
);
h_dtSum
->
v
-=
vec_and
(
pih_dt
.
v
,
mask
.
v
);
v_sigSum
->
v
=
vec_fmax
(
v_sigSum
->
v
,
vec_and
(
v_sig
.
v
,
mask
.
v
));
entropy_dtSum
->
v
+=
vec_and
(
entropy_dt
.
v
,
mask
.
v
);
#else
error
(
"The Gadget2 serial version of runner_iact_nonsym_force was called when "
"the vectorised version should have been used."
);
#endif
}
#endif
#endif
/* SWIFT_GADGET2_HYDRO_IACT_H */
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment