diff --git a/examples/SedovBlast_3D/getGlass.sh b/examples/SedovBlast_3D/getGlass.sh new file mode 100755 index 0000000000000000000000000000000000000000..d5c5f590ac37c9c9431d626a2ea61b0c12c1513c --- /dev/null +++ b/examples/SedovBlast_3D/getGlass.sh @@ -0,0 +1,2 @@ +#!/bin/bash +wget http://virgodb.cosma.dur.ac.uk/swift-webstorage/ICs/glassCube_64.hdf5 diff --git a/examples/SedovBlast_3D/plotSolution.py b/examples/SedovBlast_3D/plotSolution.py new file mode 100644 index 0000000000000000000000000000000000000000..f86ce17206ae1d15ff846fb14c61bbb6926e03bf --- /dev/null +++ b/examples/SedovBlast_3D/plotSolution.py @@ -0,0 +1,281 @@ +############################################################################### + # This file is part of SWIFT. + # Copyright (c) 2015 Bert Vandenbroucke (bert.vandenbroucke@ugent.be) + # Matthieu Schaller (matthieu.schaller@durham.ac.uk) + # + # This program is free software: you can redistribute it and/or modify + # it under the terms of the GNU Lesser General Public License as published + # by the Free Software Foundation, either version 3 of the License, or + # (at your option) any later version. + # + # This program is distributed in the hope that it will be useful, + # but WITHOUT ANY WARRANTY; without even the implied warranty of + # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + # GNU General Public License for more details. + # + # You should have received a copy of the GNU Lesser General Public License + # along with this program. If not, see <http://www.gnu.org/licenses/>. + # + ############################################################################## + +# Computes the analytical solution of the 2D Sedov blast wave. +# The script works for a given initial box and dumped energy and computes the solution at a later time t. + +# Parameters +rho_0 = 1. # Background Density +P_0 = 1.e-6 # Background Pressure +E_0 = 1. # Energy of the explosion +gas_gamma = 5./3. # Gas polytropic index + + +# --------------------------------------------------------------- +# Don't touch anything after this. +# --------------------------------------------------------------- + +import matplotlib +matplotlib.use("Agg") +from pylab import * +import h5py + +# Plot parameters +params = {'axes.labelsize': 10, +'axes.titlesize': 10, +'font.size': 12, +'legend.fontsize': 12, +'xtick.labelsize': 10, +'ytick.labelsize': 10, +'text.usetex': True, + 'figure.figsize' : (9.90,6.45), +'figure.subplot.left' : 0.045, +'figure.subplot.right' : 0.99, +'figure.subplot.bottom' : 0.05, +'figure.subplot.top' : 0.99, +'figure.subplot.wspace' : 0.15, +'figure.subplot.hspace' : 0.12, +'lines.markersize' : 6, +'lines.linewidth' : 3., +'text.latex.unicode': True +} +rcParams.update(params) +rc('font',**{'family':'sans-serif','sans-serif':['Times']}) + + +snap = int(sys.argv[1]) + + +# Read the simulation data +sim = h5py.File("sedov_%03d.hdf5"%snap, "r") +boxSize = sim["/Header"].attrs["BoxSize"][0] +time = sim["/Header"].attrs["Time"][0] +scheme = sim["/HydroScheme"].attrs["Scheme"] +kernel = sim["/HydroScheme"].attrs["Kernel function"] +neighbours = sim["/HydroScheme"].attrs["Kernel target N_ngb"] +eta = sim["/HydroScheme"].attrs["Kernel eta"] +git = sim["Code"].attrs["Git Revision"] + +pos = sim["/PartType0/Coordinates"][:,:] +x = pos[:,0] - boxSize / 2 +y = pos[:,1] - boxSize / 2 +z = pos[:,2] - boxSize / 2 +vel = sim["/PartType0/Velocities"][:,:] +r = sqrt(x**2 + y**2 + z**2) +v_r = (x * vel[:,0] + y * vel[:,1] + z * vel[:,2]) / r +u = sim["/PartType0/InternalEnergy"][:] +S = sim["/PartType0/Entropy"][:] +P = sim["/PartType0/Pressure"][:] +rho = sim["/PartType0/Density"][:] + + +# Now, work our the solution.... + +from scipy.special import gamma as Gamma +from numpy import * + +def calc_a(g,nu=3): + """ + exponents of the polynomials of the sedov solution + g - the polytropic gamma + nu - the dimension + """ + a = [0]*8 + + a[0] = 2.0 / (nu + 2) + a[2] = (1-g) / (2*(g-1) + nu) + a[3] = nu / (2*(g-1) + nu) + a[5] = 2 / (g-2) + a[6] = g / (2*(g-1) + nu) + + a[1] = (((nu+2)*g)/(2.0+nu*(g-1.0)) ) * ( (2.0*nu*(2.0-g))/(g*(nu+2.0)**2) - a[2]) + a[4] = a[1]*(nu+2) / (2-g) + a[7] = (2 + nu*(g-1))*a[1]/(nu*(2-g)) + return a + +def calc_beta(v, g, nu=3): + """ + beta values for the sedov solution (coefficients of the polynomials of the similarity variables) + v - the similarity variable + g - the polytropic gamma + nu- the dimension + """ + + beta = (nu+2) * (g+1) * array((0.25, (g/(g-1))*0.5, + -(2 + nu*(g-1))/2.0 / ((nu+2)*(g+1) -2*(2 + nu*(g-1))), + -0.5/(g-1)), dtype=float64) + + beta = outer(beta, v) + + beta += (g+1) * array((0.0, -1.0/(g-1), + (nu+2) / ((nu+2)*(g+1) -2.0*(2 + nu*(g-1))), + 1.0/(g-1)), dtype=float64).reshape((4,1)) + + return beta + + +def sedov(t, E0, rho0, g, n=1000, nu=3): + """ + solve the sedov problem + t - the time + E0 - the initial energy + rho0 - the initial density + n - number of points (10000) + nu - the dimension + g - the polytropic gas gamma + """ + # the similarity variable + v_min = 2.0 / ((nu + 2) * g) + v_max = 4.0 / ((nu + 2) * (g + 1)) + + v = v_min + arange(n) * (v_max - v_min) / (n - 1.0) + + a = calc_a(g, nu) + beta = calc_beta(v, g=g, nu=nu) + lbeta = log(beta) + + r = exp(-a[0] * lbeta[0] - a[2] * lbeta[1] - a[1] * lbeta[2]) + rho = ((g + 1.0) / (g - 1.0)) * exp(a[3] * lbeta[1] + a[5] * lbeta[3] + a[4] * lbeta[2]) + p = exp(nu * a[0] * lbeta[0] + (a[5] + 1) * lbeta[3] + (a[4] - 2 * a[1]) * lbeta[2]) + u = beta[0] * r * 4.0 / ((g + 1) * (nu + 2)) + p *= 8.0 / ((g + 1) * (nu + 2) * (nu + 2)) + + # we have to take extra care at v=v_min, since this can be a special point. + # It is not a singularity, however, the gradients of our variables (wrt v) are. + # r -> 0, u -> 0, rho -> 0, p-> constant + + u[0] = 0.0; rho[0] = 0.0; r[0] = 0.0; p[0] = p[1] + + # volume of an n-sphere + vol = (pi ** (nu / 2.0) / Gamma(nu / 2.0 + 1)) * power(r, nu) + + # note we choose to evaluate the integral in this way because the + # volumes of the first few elements (i.e near v=vmin) are shrinking + # very slowly, so we dramatically improve the error convergence by + # finding the volumes exactly. This is most important for the + # pressure integral, as this is on the order of the volume. + + # (dimensionless) energy of the model solution + de = rho * u * u * 0.5 + p / (g - 1) + # integrate (trapezium rule) + q = inner(de[1:] + de[:-1], diff(vol)) * 0.5 + + # the factor to convert to this particular problem + fac = (q * (t ** nu) * rho0 / E0) ** (-1.0 / (nu + 2)) + + # shock speed + shock_speed = fac * (2.0 / (nu + 2)) + rho_s = ((g + 1) / (g - 1)) * rho0 + r_s = shock_speed * t * (nu + 2) / 2.0 + p_s = (2.0 * rho0 * shock_speed * shock_speed) / (g + 1) + u_s = (2.0 * shock_speed) / (g + 1) + + r *= fac * t + u *= fac + p *= fac * fac * rho0 + rho *= rho0 + return r, p, rho, u, r_s, p_s, rho_s, u_s, shock_speed + + +# The main properties of the solution +r_s, P_s, rho_s, v_s, r_shock, _, _, _, _ = sedov(time, E_0, rho_0, gas_gamma, 1000, 3) + +# Append points for after the shock +r_s = np.insert(r_s, np.size(r_s), [r_shock, r_shock*1.5]) +rho_s = np.insert(rho_s, np.size(rho_s), [rho_0, rho_0]) +P_s = np.insert(P_s, np.size(P_s), [P_0, P_0]) +v_s = np.insert(v_s, np.size(v_s), [0, 0]) + +# Additional arrays +u_s = P_s / (rho_s * (gas_gamma - 1.)) #internal energy +s_s = P_s / rho_s**gas_gamma # entropic function + + + +# Plot the interesting quantities +figure() + +# Velocity profile -------------------------------- +subplot(231) +plot(r, v_r, '.', color='r', ms=1.) +plot(r_s, v_s, '--', color='k', alpha=0.8, lw=1.2) +xlabel("${\\rm{Radius}}~r$", labelpad=0) +ylabel("${\\rm{Radial~velocity}}~v_r$", labelpad=0) +xlim(0, 1.3 * r_shock) +ylim(-0.2, 3.8) + +# Density profile -------------------------------- +subplot(232) +plot(r, rho, '.', color='r', ms=1.) +plot(r_s, rho_s, '--', color='k', alpha=0.8, lw=1.2) +xlabel("${\\rm{Radius}}~r$", labelpad=0) +ylabel("${\\rm{Density}}~\\rho$", labelpad=2) +xlim(0, 1.3 * r_shock) +ylim(-0.2, 5.2) + +# Pressure profile -------------------------------- +subplot(233) +plot(r, P, '.', color='r', ms=1.) +plot(r_s, P_s, '--', color='k', alpha=0.8, lw=1.2) +xlabel("${\\rm{Radius}}~r$", labelpad=0) +ylabel("${\\rm{Pressure}}~P$", labelpad=0) +xlim(0, 1.3 * r_shock) +ylim(-1, 12.5) + +# Internal energy profile ------------------------- +subplot(234) +plot(r, u, '.', color='r', ms=1.) +plot(r_s, u_s, '--', color='k', alpha=0.8, lw=1.2) +xlabel("${\\rm{Radius}}~r$", labelpad=0) +ylabel("${\\rm{Internal~Energy}}~u$", labelpad=0) +xlim(0, 1.3 * r_shock) +ylim(-2, 22) + +# Entropy profile --------------------------------- +subplot(235) +plot(r, S, '.', color='r', ms=1.) +plot(r_s, s_s, '--', color='k', alpha=0.8, lw=1.2) +xlabel("${\\rm{Radius}}~r$", labelpad=0) +ylabel("${\\rm{Entropy}}~S$", labelpad=0) +xlim(0, 1.3 * r_shock) +ylim(-5, 50) + +# Information ------------------------------------- +subplot(236, frameon=False) + +text(-0.49, 0.9, "Sedov blast with $\\gamma=%.3f$ in 2D at $t=%.2f$"%(gas_gamma,time), fontsize=10) +text(-0.49, 0.8, "Background $\\rho_0=%.2f$"%(rho_0), fontsize=10) +text(-0.49, 0.7, "Energy injected $E_0=%.2f$"%(E_0), fontsize=10) +plot([-0.49, 0.1], [0.62, 0.62], 'k-', lw=1) +text(-0.49, 0.5, "$\\textsc{Swift}$ %s"%git, fontsize=10) +text(-0.49, 0.4, scheme, fontsize=10) +text(-0.49, 0.3, kernel, fontsize=10) +text(-0.49, 0.2, "$%.2f$ neighbours ($\\eta=%.3f$)"%(neighbours, eta), fontsize=10) +xlim(-0.5, 0.5) +ylim(0, 1) +xticks([]) +yticks([]) + + +savefig("Sedov.png", dpi=200) + + + + diff --git a/examples/SodShock_1D/plotSolution.py b/examples/SodShock_1D/plotSolution.py index 57f66fe29b9be86a3c4de0d90eafe615d0cb2dbb..0a7720f4a6cf26e5a8acda1101bd438850d8d553 100644 --- a/examples/SodShock_1D/plotSolution.py +++ b/examples/SodShock_1D/plotSolution.py @@ -22,8 +22,6 @@ # Generates the analytical solution for the Sod shock test case # The script works for a given left (x<0) and right (x>0) state and computes the solution at a later time t. -# The code writes five files rho.dat, P.dat, v.dat, u.dat and s.dat with the density, pressure, internal energy and -# entropic function on N points between x_min and x_max. # This follows the solution given in (Toro, 2009) diff --git a/examples/SodShock_2D/plotSolution.py b/examples/SodShock_2D/plotSolution.py index e74651c567bb711b3190662cf78d421a66134775..99ba7e9a6e9ae4b6d50688a1428f07e9a08b3b85 100644 --- a/examples/SodShock_2D/plotSolution.py +++ b/examples/SodShock_2D/plotSolution.py @@ -22,8 +22,6 @@ # Generates the analytical solution for the Sod shock test case # The script works for a given left (x<0) and right (x>0) state and computes the solution at a later time t. -# The code writes five files rho.dat, P.dat, v.dat, u.dat and s.dat with the density, pressure, internal energy and -# entropic function on N points between x_min and x_max. # This follows the solution given in (Toro, 2009) diff --git a/examples/SodShock_3D/getGlass.sh b/examples/SodShock_3D/getGlass.sh new file mode 100755 index 0000000000000000000000000000000000000000..f61b61d4e6c51b44576fd7cdd6242cb9f0133039 --- /dev/null +++ b/examples/SodShock_3D/getGlass.sh @@ -0,0 +1,3 @@ +#!/bin/bash +wget http://virgodb.cosma.dur.ac.uk/swift-webstorage/ICs/glassCube_64.hdf5 +wget http://virgodb.cosma.dur.ac.uk/swift-webstorage/ICs/glassCube_32.hdf5 diff --git a/examples/SodShock_3D/glass_001.hdf5 b/examples/SodShock_3D/glass_001.hdf5 deleted file mode 100644 index a371826c2ef4c1d53ad5f50a6bc7eb590017220e..0000000000000000000000000000000000000000 Binary files a/examples/SodShock_3D/glass_001.hdf5 and /dev/null differ diff --git a/examples/SodShock_3D/glass_002.hdf5 b/examples/SodShock_3D/glass_002.hdf5 deleted file mode 100644 index dffb8d343157a9ae8318e9572fc752eecd8955fb..0000000000000000000000000000000000000000 Binary files a/examples/SodShock_3D/glass_002.hdf5 and /dev/null differ diff --git a/examples/SodShock_3D/makeIC.py b/examples/SodShock_3D/makeIC.py index 28c2cfd82640c9d3a040d8d58ba31154c0719075..84283732afc497825417546be8bc25e183ecb1cb 100644 --- a/examples/SodShock_3D/makeIC.py +++ b/examples/SodShock_3D/makeIC.py @@ -1,7 +1,6 @@ ############################################################################### # This file is part of SWIFT. - # Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk), - # Matthieu Schaller (matthieu.schaller@durham.ac.uk) + # Copyright (c) 2016 Matthieu Schaller (matthieu.schaller@durham.ac.uk) # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published @@ -21,84 +20,75 @@ import h5py from numpy import * -# Generates a swift IC file for the Sod Shock in a periodic box +# Generates a swift IC file for the 3D Sod Shock in a periodic box # Parameters -periodic= 1 # 1 For periodic box -factor = 8 -boxSize = [ 1.0 , 1.0/factor , 1.0/factor ] -L = 100 # Number of particles along one axis -P1 = 1. # Pressure left state -P2 = 0.1795 # Pressure right state -gamma = 5./3. # Gas adiabatic index +gamma = 5./3. # Gas adiabatic index +x_min = -1. +x_max = 1. +rho_L = 1. # Density left state +rho_R = 0.125 # Density right state +v_L = 0. # Velocity left state +v_R = 0. # Velocity right state +P_L = 1. # Pressure left state +P_R = 0.1 # Pressure right state fileName = "sodShock.hdf5" -vol = boxSize[0] * boxSize[1] * boxSize[2] #--------------------------------------------------- - -#Read in high density glass -# glass1 = h5py.File("../Glass/glass_200000.hdf5") -glass1 = h5py.File("glass_001.hdf5") -pos1 = glass1["/PartType0/Coordinates"][:,:] -pos1 = pos1 / factor # Particles are in [0:0.25, 0:0.25, 0:0.25] -glass_h1 = glass1["/PartType0/SmoothingLength"][:] / factor - -#Read in high density glass -# glass2 = h5py.File("../Glass/glass_50000.hdf5") -glass2 = h5py.File("glass_002.hdf5") -pos2 = glass2["/PartType0/Coordinates"][:,:] -pos2 = pos2 / factor # Particles are in [0:0.25, 0:0.25, 0:0.25] -glass_h2 = glass2["/PartType0/SmoothingLength"][:] / factor - -#Generate high density region -rho1 = 1. -coord1 = append(pos1, pos1 + [0.125, 0, 0], 0) -coord1 = append(coord1, coord1 + [0.25, 0, 0], 0) -# coord1 = append(pos1, pos1 + [0, 0.5, 0], 0) -# coord1 = append(coord1, pos1 + [0, 0, 0.5], 0) -# coord1 = append(coord1, pos1 + [0, 0.5, 0.5], 0) -N1 = size(coord1)/3 -v1 = zeros((N1, 3)) -u1 = ones(N1) * P1 / ((gamma - 1.) * rho1) -m1 = ones(N1) * vol * 0.5 * rho1 / N1 -h1 = append(glass_h1, glass_h1, 0) -h1 = append(h1, h1, 0) - -#Generate low density region -rho2 = 0.25 -coord2 = append(pos2, pos2 + [0.125, 0, 0], 0) -coord2 = append(coord2, coord2 + [0.25, 0, 0], 0) -# coord2 = append(pos2, pos2 + [0, 0.5, 0], 0) -# coord2 = append(coord2, pos2 + [0, 0, 0.5], 0) -# coord2 = append(coord2, pos2 + [0, 0.5, 0.5], 0) -N2 = size(coord2)/3 -v2 = zeros((N2, 3)) -u2 = ones(N2) * P2 / ((gamma - 1.) * rho2) -m2 = ones(N2) * vol * 0.5 * rho2 / N2 -h2 = append(glass_h2, glass_h2, 0) -h2 = append(h2, h2, 0) - -#Merge arrays -numPart = N1 + N2 -coords = append(coord1, coord2+[0.5, 0., 0.], 0) -v = append(v1, v2,0) -h = append(h1, h2,0) -u = append(u1, u2,0) -m = append(m1, m2,0) -ids = zeros(numPart, dtype='L') -for i in range(1, numPart+1): - ids[i-1] = i - -#Final operation since we come from Gadget-2 cubic spline ICs -h /= 1.825752 +boxSize = (x_max - x_min) + +glass_L = h5py.File("glassCube_64.hdf5", "r") +glass_R = h5py.File("glassCube_32.hdf5", "r") + +pos_L = glass_L["/PartType0/Coordinates"][:,:] * 0.5 +pos_R = glass_R["/PartType0/Coordinates"][:,:] * 0.5 +h_L = glass_L["/PartType0/SmoothingLength"][:] * 0.5 +h_R = glass_R["/PartType0/SmoothingLength"][:] * 0.5 + +# Merge things +aa = pos_L - array([0.5, 0., 0.]) +pos_LL = append(pos_L, pos_L + array([0.5, 0., 0.]), axis=0) +pos_RR = append(pos_R, pos_R + array([0.5, 0., 0.]), axis=0) +pos = append(pos_LL - array([1.0, 0., 0.]), pos_RR, axis=0) +h_LL = append(h_L, h_L) +h_RR = append(h_R, h_R) +h = append(h_LL, h_RR) + +numPart_L = size(h_LL) +numPart_R = size(h_RR) +numPart = size(h) + +vol_L = 0.25 +vol_R = 0.25 + +# Generate extra arrays +v = zeros((numPart, 3)) +ids = linspace(1, numPart, numPart) +m = zeros(numPart) +u = zeros(numPart) + +for i in range(numPart): + x = pos[i,0] + + if x < 0: #left + u[i] = P_L / (rho_L * (gamma - 1.)) + m[i] = rho_L * vol_L / numPart_L + v[i,0] = v_L + else: #right + u[i] = P_R / (rho_R * (gamma - 1.)) + m[i] = rho_R * vol_R / numPart_R + v[i,0] = v_R + +# Shift particles +pos[:,0] -= x_min #File file = h5py.File(fileName, 'w') # Header grp = file.create_group("/Header") -grp.attrs["BoxSize"] = boxSize +grp.attrs["BoxSize"] = [boxSize, 0.5, 0.5] grp.attrs["NumPart_Total"] = [numPart, 0, 0, 0, 0, 0] grp.attrs["NumPart_Total_HighWord"] = [0, 0, 0, 0, 0, 0] grp.attrs["NumPart_ThisFile"] = [numPart, 0, 0, 0, 0, 0] @@ -109,7 +99,7 @@ grp.attrs["Flag_Entropy_ICs"] = 0 #Runtime parameters grp = file.create_group("/RuntimePars") -grp.attrs["PeriodicBoundariesOn"] = periodic +grp.attrs["PeriodicBoundariesOn"] = 1 #Units grp = file.create_group("/Units") @@ -121,7 +111,7 @@ grp.attrs["Unit temperature in cgs (U_T)"] = 1. #Particle group grp = file.create_group("/PartType0") -grp.create_dataset('Coordinates', data=coords, dtype='d') +grp.create_dataset('Coordinates', data=pos, dtype='d') grp.create_dataset('Velocities', data=v, dtype='f') grp.create_dataset('Masses', data=m, dtype='f') grp.create_dataset('SmoothingLength', data=h, dtype='f') @@ -130,5 +120,3 @@ grp.create_dataset('ParticleIDs', data=ids, dtype='L') file.close() - - diff --git a/examples/SodShock_3D/plotSolution.py b/examples/SodShock_3D/plotSolution.py new file mode 100644 index 0000000000000000000000000000000000000000..23a16e6aed73a7281cf78a215940ccdcff722a79 --- /dev/null +++ b/examples/SodShock_3D/plotSolution.py @@ -0,0 +1,288 @@ +############################################################################### + # This file is part of SWIFT. + # Copyright (c) 2016 Matthieu Schaller (matthieu.schaller@durham.ac.uk) + # + # This program is free software: you can redistribute it and/or modify + # it under the terms of the GNU Lesser General Public License as published + # by the Free Software Foundation, either version 3 of the License, or + # (at your option) any later version. + # + # This program is distributed in the hope that it will be useful, + # but WITHOUT ANY WARRANTY; without even the implied warranty of + # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + # GNU General Public License for more details. + # + # You should have received a copy of the GNU Lesser General Public License + # along with this program. If not, see <http://www.gnu.org/licenses/>. + # + ############################################################################## + +# Computes the analytical solution of the Sod shock and plots the SPH answer + + +# Generates the analytical solution for the Sod shock test case +# The script works for a given left (x<0) and right (x>0) state and computes the solution at a later time t. +# This follows the solution given in (Toro, 2009) + + +# Parameters +gas_gamma = 5./3. # Polytropic index +rho_L = 1. # Density left state +rho_R = 0.125 # Density right state +v_L = 0. # Velocity left state +v_R = 0. # Velocity right state +P_L = 1. # Pressure left state +P_R = 0.1 # Pressure right state + + +import matplotlib +matplotlib.use("Agg") +from pylab import * +import h5py + +# Plot parameters +params = {'axes.labelsize': 10, +'axes.titlesize': 10, +'font.size': 12, +'legend.fontsize': 12, +'xtick.labelsize': 10, +'ytick.labelsize': 10, +'text.usetex': True, + 'figure.figsize' : (9.90,6.45), +'figure.subplot.left' : 0.045, +'figure.subplot.right' : 0.99, +'figure.subplot.bottom' : 0.05, +'figure.subplot.top' : 0.99, +'figure.subplot.wspace' : 0.15, +'figure.subplot.hspace' : 0.12, +'lines.markersize' : 6, +'lines.linewidth' : 3., +'text.latex.unicode': True +} +rcParams.update(params) +rc('font',**{'family':'sans-serif','sans-serif':['Times']}) + + +snap = int(sys.argv[1]) + + +# Read the simulation data +sim = h5py.File("sodShock_%03d.hdf5"%snap, "r") +boxSize = sim["/Header"].attrs["BoxSize"][0] +time = sim["/Header"].attrs["Time"][0] +scheme = sim["/HydroScheme"].attrs["Scheme"] +kernel = sim["/HydroScheme"].attrs["Kernel function"] +neighbours = sim["/HydroScheme"].attrs["Kernel target N_ngb"] +eta = sim["/HydroScheme"].attrs["Kernel eta"] +git = sim["Code"].attrs["Git Revision"] + +x = sim["/PartType0/Coordinates"][:,0] +v = sim["/PartType0/Velocities"][:,0] +u = sim["/PartType0/InternalEnergy"][:] +S = sim["/PartType0/Entropy"][:] +P = sim["/PartType0/Pressure"][:] +rho = sim["/PartType0/Density"][:] + +N = 1000 # Number of points +x_min = -1. +x_max = 1. + +x += x_min + +# --------------------------------------------------------------- +# Don't touch anything after this. +# --------------------------------------------------------------- + +c_L = sqrt(gas_gamma * P_L / rho_L) # Speed of the rarefaction wave +c_R = sqrt(gas_gamma * P_R / rho_R) # Speed of the shock front + +# Helpful variable +Gama = (gas_gamma - 1.) / (gas_gamma + 1.) +beta = (gas_gamma - 1.) / (2. * gas_gamma) + +# Characteristic function and its derivative, following Toro (2009) +def compute_f(P_3, P, c): + u = P_3 / P + if u > 1: + term1 = gas_gamma*((gas_gamma+1.)*u + gas_gamma-1.) + term2 = sqrt(2./term1) + fp = (u - 1.)*c*term2 + dfdp = c*term2/P + (u - 1.)*c/term2*(-1./term1**2)*gas_gamma*(gas_gamma+1.)/P + else: + fp = (u**beta - 1.)*(2.*c/(gas_gamma-1.)) + dfdp = 2.*c/(gas_gamma-1.)*beta*u**(beta-1.)/P + return (fp, dfdp) + +# Solution of the Riemann problem following Toro (2009) +def RiemannProblem(rho_L, P_L, v_L, rho_R, P_R, v_R): + P_new = ((c_L + c_R + (v_L - v_R)*0.5*(gas_gamma-1.))/(c_L / P_L**beta + c_R / P_R**beta))**(1./beta) + P_3 = 0.5*(P_R + P_L) + f_L = 1. + while fabs(P_3 - P_new) > 1e-6: + P_3 = P_new + (f_L, dfdp_L) = compute_f(P_3, P_L, c_L) + (f_R, dfdp_R) = compute_f(P_3, P_R, c_R) + f = f_L + f_R + (v_R - v_L) + df = dfdp_L + dfdp_R + dp = -f/df + prnew = P_3 + dp + v_3 = v_L - f_L + return (P_new, v_3) + + +# Solve Riemann problem for post-shock region +(P_3, v_3) = RiemannProblem(rho_L, P_L, v_L, rho_R, P_R, v_R) + +# Check direction of shocks and wave +shock_R = (P_3 > P_R) +shock_L = (P_3 > P_L) + +# Velocity of shock front and and rarefaction wave +if shock_R: + v_right = v_R + c_R**2*(P_3/P_R - 1.)/(gas_gamma*(v_3-v_R)) +else: + v_right = c_R + 0.5*(gas_gamma+1.)*v_3 - 0.5*(gas_gamma-1.)*v_R + +if shock_L: + v_left = v_L + c_L**2*(P_3/p_L - 1.)/(gas_gamma*(v_3-v_L)) +else: + v_left = c_L - 0.5*(gas_gamma+1.)*v_3 + 0.5*(gas_gamma-1.)*v_L + +# Compute position of the transitions +x_23 = -fabs(v_left) * time +if shock_L : + x_12 = -fabs(v_left) * time +else: + x_12 = -(c_L - v_L) * time + +x_34 = v_3 * time + +x_45 = fabs(v_right) * time +if shock_R: + x_56 = fabs(v_right) * time +else: + x_56 = (c_R + v_R) * time + + +# Prepare arrays +delta_x = (x_max - x_min) / N +x_s = arange(x_min, x_max, delta_x) +rho_s = zeros(N) +P_s = zeros(N) +v_s = zeros(N) + +# Compute solution in the different regions +for i in range(N): + if x_s[i] <= x_12: + rho_s[i] = rho_L + P_s[i] = P_L + v_s[i] = v_L + if x_s[i] >= x_12 and x_s[i] < x_23: + if shock_L: + rho_s[i] = rho_L*(Gama + P_3/P_L)/(1. + Gama * P_3/P_L) + P_s[i] = P_3 + v_s[i] = v_3 + else: + rho_s[i] = rho_L*(Gama * (0. - x_s[i])/(c_L * time) + Gama * v_L/c_L + (1.-Gama))**(2./(gas_gamma-1.)) + P_s[i] = P_L*(rho_s[i] / rho_L)**gas_gamma + v_s[i] = (1.-Gama)*(c_L -(0. - x_s[i]) / time) + Gama*v_L + if x_s[i] >= x_23 and x_s[i] < x_34: + if shock_L: + rho_s[i] = rho_L*(Gama + P_3/P_L)/(1+Gama * P_3/p_L) + else: + rho_s[i] = rho_L*(P_3 / P_L)**(1./gas_gamma) + P_s[i] = P_3 + v_s[i] = v_3 + if x_s[i] >= x_34 and x_s[i] < x_45: + if shock_R: + rho_s[i] = rho_R*(Gama + P_3/P_R)/(1. + Gama * P_3/P_R) + else: + rho_s[i] = rho_R*(P_3 / P_R)**(1./gas_gamma) + P_s[i] = P_3 + v_s[i] = v_3 + if x_s[i] >= x_45 and x_s[i] < x_56: + if shock_R: + rho_s[i] = rho_R + P_s[i] = P_R + v_s[i] = v_R + else: + rho_s[i] = rho_R*(Gama*(x_s[i])/(c_R*time) - Gama*v_R/c_R + (1.-Gama))**(2./(gas_gamma-1.)) + P_s[i] = p_R*(rho_s[i]/rho_R)**gas_gamma + v_s[i] = (1.-Gama)*(-c_R - (-x_s[i])/time) + Gama*v_R + if x_s[i] >= x_56: + rho_s[i] = rho_R + P_s[i] = P_R + v_s[i] = v_R + + +# Additional arrays +u_s = P_s / (rho_s * (gas_gamma - 1.)) #internal energy +s_s = P_s / rho_s**gas_gamma # entropic function + + +# Plot the interesting quantities +figure() + +# Velocity profile -------------------------------- +subplot(231) +plot(x, v, '.', color='r', ms=0.5) +plot(x_s, v_s, '--', color='k', alpha=0.8, lw=1.2) +xlabel("${\\rm{Position}}~x$", labelpad=0) +ylabel("${\\rm{Velocity}}~v_x$", labelpad=0) +xlim(-0.5, 0.5) +ylim(-0.1, 0.95) + +# Density profile -------------------------------- +subplot(232) +plot(x, rho, '.', color='r', ms=0.5) +plot(x_s, rho_s, '--', color='k', alpha=0.8, lw=1.2) +xlabel("${\\rm{Position}}~x$", labelpad=0) +ylabel("${\\rm{Density}}~\\rho$", labelpad=0) +xlim(-0.5, 0.5) +ylim(0.05, 1.1) + +# Pressure profile -------------------------------- +subplot(233) +plot(x, P, '.', color='r', ms=0.5) +plot(x_s, P_s, '--', color='k', alpha=0.8, lw=1.2) +xlabel("${\\rm{Position}}~x$", labelpad=0) +ylabel("${\\rm{Pressure}}~P$", labelpad=0) +xlim(-0.5, 0.5) +ylim(0.01, 1.1) + +# Internal energy profile ------------------------- +subplot(234) +plot(x, u, '.', color='r', ms=0.5) +plot(x_s, u_s, '--', color='k', alpha=0.8, lw=1.2) +xlabel("${\\rm{Position}}~x$", labelpad=0) +ylabel("${\\rm{Internal~Energy}}~u$", labelpad=0) +xlim(-0.5, 0.5) +ylim(0.8, 2.2) + +# Entropy profile --------------------------------- +subplot(235) +plot(x, S, '.', color='r', ms=0.5) +plot(x_s, s_s, '--', color='k', alpha=0.8, lw=1.2) +xlabel("${\\rm{Position}}~x$", labelpad=0) +ylabel("${\\rm{Entropy}}~S$", labelpad=0) +xlim(-0.5, 0.5) +ylim(0.8, 3.8) + +# Information ------------------------------------- +subplot(236, frameon=False) + +text(-0.49, 0.9, "Sod shock with $\\gamma=%.3f$ in 3D at $t=%.2f$"%(gas_gamma,time), fontsize=10) +text(-0.49, 0.8, "Left:~~ $(P_L, \\rho_L, v_L) = (%.3f, %.3f, %.3f)$"%(P_L, rho_L, v_L), fontsize=10) +text(-0.49, 0.7, "Right: $(P_R, \\rho_R, v_R) = (%.3f, %.3f, %.3f)$"%(P_R, rho_R, v_R), fontsize=10) +plot([-0.49, 0.1], [0.62, 0.62], 'k-', lw=1) +text(-0.49, 0.5, "$\\textsc{Swift}$ %s"%git, fontsize=10) +text(-0.49, 0.4, scheme, fontsize=10) +text(-0.49, 0.3, kernel, fontsize=10) +text(-0.49, 0.2, "$%.2f$ neighbours ($\\eta=%.3f$)"%(neighbours, eta), fontsize=10) +xlim(-0.5, 0.5) +ylim(0, 1) +xticks([]) +yticks([]) + + +savefig("SodShock.png", dpi=200) diff --git a/examples/SodShock_3D/rhox.py b/examples/SodShock_3D/rhox.py deleted file mode 100644 index 70493be3728cdeb27409a79f616fa3ec5bb9cdfd..0000000000000000000000000000000000000000 --- a/examples/SodShock_3D/rhox.py +++ /dev/null @@ -1,115 +0,0 @@ -############################################################################### - # This file is part of SWIFT. - # Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk), - # Matthieu Schaller (matthieu.schaller@durham.ac.uk) - # - # This program is free software: you can redistribute it and/or modify - # it under the terms of the GNU Lesser General Public License as published - # by the Free Software Foundation, either version 3 of the License, or - # (at your option) any later version. - # - # This program is distributed in the hope that it will be useful, - # but WITHOUT ANY WARRANTY; without even the implied warranty of - # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - # GNU General Public License for more details. - # - # You should have received a copy of the GNU Lesser General Public License - # along with this program. If not, see <http://www.gnu.org/licenses/>. - # - ############################################################################## - -import h5py -import random -import sys -import math -from numpy import * - -# Reads the HDF5 output of SWIFT and generates a radial density profile -# of the different physical values. - -# Input values? -if len(sys.argv) < 3 : - print "Usage: " , sys.argv[0] , " <filename> <nr. bins>" - exit() - -# Get the input arguments -fileName = sys.argv[1]; -nr_bins = int( sys.argv[2] ); - - -# Open the file -fileName = sys.argv[1]; -file = h5py.File( fileName , 'r' ) - -# Get the space dimensions. -grp = file[ "/Header" ] -boxsize = grp.attrs[ 'BoxSize' ] -boxsize = boxsize[0] - -# Get the particle data -grp = file.get( '/PartType0' ) -ds = grp.get( 'Coordinates' ) -coords = ds[...] -ds = grp.get( 'Velocities' ) -v = ds[...] -# ds = grp.get( 'Mass' ) -# m = ds[...] -ds = grp.get( 'SmoothingLength' ) -h = ds[...] -ds = grp.get( 'InternalEnergy' ) -u = ds[...] -ds = grp.get( 'ParticleIDs' ) -ids = ds[...] -ds = grp.get( 'Density' ) -rho = ds[...] - -# Get the maximum radius -r_max = boxsize - -# Init the bins -nr_parts = coords.shape[0] -bins_v = zeros( nr_bins ) -bins_m = zeros( nr_bins ) -bins_h = zeros( nr_bins ) -bins_u = zeros( nr_bins ) -bins_rho = zeros( nr_bins ) -bins_count = zeros( nr_bins ) -bins_P = zeros( nr_bins ) - -# Loop over the particles and fill the bins. -for i in range( nr_parts ): - - # Get the box index. - r = coords[i,0] - ind = floor( r / r_max * nr_bins ) - - # Update the bins - bins_count[ind] += 1 - bins_v[ind] += v[i,0] # sqrt( v[i,0]*v[i,0] + v[i,1]*v[i,1] + v[i,2]*v[i,2] ) - # bins_m[ind] += m[i] - bins_h[ind] += h[i] - bins_u[ind] += u[i] - bins_rho[ind] += rho[i] - bins_P[ind] += (2.0/3)*u[i]*rho[i] - -# Loop over the bins and dump them -print "# bucket left right count v m h u rho" -for i in range( nr_bins ): - - # Normalize by the bin volume. - r_left = r_max * i / nr_bins - r_right = r_max * (i+1) / nr_bins - vol = 4/3*math.pi*(r_right*r_right*r_right - r_left*r_left*r_left) - ivol = 1.0 / vol - - print "%i %.3e %.3e %.3e %.3e %.3e %.3e %.3e %.3e %.3e" % \ - ( i , r_left , r_right , \ - bins_count[i] * ivol , \ - bins_v[i] / bins_count[i] , \ - bins_m[i] * ivol , \ - bins_h[i] / bins_count[i] , \ - bins_u[i] / bins_count[i] , \ - bins_rho[i] / bins_count[i] , - bins_P[i] / bins_count[i] ) - - diff --git a/examples/SodShock_3D/run.sh b/examples/SodShock_3D/run.sh index b8141e51543f348d6ec6be505d136aed7d803b2e..0f9e63be334475d98196189c49b95fc46982704a 100755 --- a/examples/SodShock_3D/run.sh +++ b/examples/SodShock_3D/run.sh @@ -1,10 +1,18 @@ #!/bin/bash # Generate the initial conditions if they are not present. +if [ ! -e glassCube_64.hdf5 ] +then + echo "Fetching initial glass file for the Sod shock example..." + ./getGlass.sh +fi if [ ! -e sodShock.hdf5 ] then - echo "Generating initial conditions for the SodShock example..." + echo "Generating initial conditions for the Sod shock example..." python makeIC.py fi -../swift -s -t 16 sodShock.yml +# Run SWIFT +../swift -s -t 4 sodShock.yml + +python plotSolution.py 1 diff --git a/examples/SodShock_3D/sodShock.yml b/examples/SodShock_3D/sodShock.yml index a46d521511e9885ba2e5425ce1aa730403be533a..1ab6eb626db09678f66322e8f0e8674c0931ddb6 100644 --- a/examples/SodShock_3D/sodShock.yml +++ b/examples/SodShock_3D/sodShock.yml @@ -9,15 +9,15 @@ InternalUnitSystem: # Parameters governing the time integration TimeIntegration: time_begin: 0. # The starting time of the simulation (in internal units). - time_end: 1. # The end time of the simulation (in internal units). + time_end: 0.2 # The end time of the simulation (in internal units). dt_min: 1e-7 # The minimal time-step size of the simulation (in internal units). dt_max: 1e-2 # The maximal time-step size of the simulation (in internal units). # Parameters governing the snapshots Snapshots: - basename: sod # Common part of the name of output files - time_first: 0. # Time of the first output (in internal units) - delta_time: 0.05 # Time difference between consecutive outputs (in internal units) + basename: sodShock # Common part of the name of output files + time_first: 0. # Time of the first output (in internal units) + delta_time: 0.2 # Time difference between consecutive outputs (in internal units) # Parameters governing the conserved quantities statistics Statistics: @@ -27,7 +27,7 @@ Statistics: SPH: resolution_eta: 1.2348 # Target smoothing length in units of the mean inter-particle separation (1.2348 == 48Ngbs with the cubic spline kernel). delta_neighbours: 0.1 # The tolerance for the targetted number of neighbours. - max_smoothing_length: 0.01 # Maximal smoothing length allowed (in internal units). + max_smoothing_length: 0.05 # Maximal smoothing length allowed (in internal units). CFL_condition: 0.1 # Courant-Friedrich-Levy condition for time integration. # Parameters related to the initial conditions diff --git a/examples/SodShock_3D/solution.py b/examples/SodShock_3D/solution.py deleted file mode 100644 index 39f25c625232eee9bae0300339955f775f3b46ed..0000000000000000000000000000000000000000 --- a/examples/SodShock_3D/solution.py +++ /dev/null @@ -1,186 +0,0 @@ -############################################################################### - # This file is part of SWIFT. - # Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk), - # Matthieu Schaller (matthieu.schaller@durham.ac.uk) - # - # This program is free software: you can redistribute it and/or modify - # it under the terms of the GNU Lesser General Public License as published - # by the Free Software Foundation, either version 3 of the License, or - # (at your option) any later version. - # - # This program is distributed in the hope that it will be useful, - # but WITHOUT ANY WARRANTY; without even the implied warranty of - # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - # GNU General Public License for more details. - # - # You should have received a copy of the GNU Lesser General Public License - # along with this program. If not, see <http://www.gnu.org/licenses/>. - # - ############################################################################## - -import random -from numpy import * - -# Generates the analytical solution for the Sod shock test case -# The script works for a given left (x<0) and right (x>0) state and computes the solution at a later time t. -# The code writes five files rho.dat, P.dat, v.dat, u.dat and s.dat with the density, pressure, internal energy and -# entropic function on N points between x_min and x_max. -# This follows the solution given in (Toro, 2009) - - -# Parameters -rho_L = 1 -P_L = 1 -v_L = 0. - -rho_R = 0.25 -P_R = 0.1795 -v_R = 0. - -gamma = 5./3. # Polytropic index - -t = 0.12 # Time of the evolution - -N = 1000 # Number of points -x_min = -0.25 -x_max = 0.25 - - -# --------------------------------------------------------------- -# Don't touch anything after this. -# --------------------------------------------------------------- - -c_L = sqrt(gamma * P_L / rho_L) # Speed of the rarefaction wave -c_R = sqrt(gamma * P_R / rho_R) # Speed of the shock front - -# Helpful variable -Gama = (gamma - 1.) / (gamma + 1.) -beta = (gamma - 1.) / (2. * gamma) - -# Characteristic function and its derivative, following Toro (2009) -def compute_f(P_3, P, c): - u = P_3 / P - if u > 1: - term1 = gamma*((gamma+1.)*u + gamma-1.) - term2 = sqrt(2./term1) - fp = (u - 1.)*c*term2 - dfdp = c*term2/P + (u - 1.)*c/term2*(-1./term1**2)*gamma*(gamma+1.)/P - else: - fp = (u**beta - 1.)*(2.*c/(gamma-1.)) - dfdp = 2.*c/(gamma-1.)*beta*u**(beta-1.)/P - return (fp, dfdp) - -# Solution of the Riemann problem following Toro (2009) -def RiemannProblem(rho_L, P_L, v_L, rho_R, P_R, v_R): - P_new = ((c_L + c_R + (v_L - v_R)*0.5*(gamma-1.))/(c_L / P_L**beta + c_R / P_R**beta))**(1./beta) - P_3 = 0.5*(P_R + P_L) - f_L = 1. - while fabs(P_3 - P_new) > 1e-6: - P_3 = P_new - (f_L, dfdp_L) = compute_f(P_3, P_L, c_L) - (f_R, dfdp_R) = compute_f(P_3, P_R, c_R) - f = f_L + f_R + (v_R - v_L) - df = dfdp_L + dfdp_R - dp = -f/df - prnew = P_3 + dp - v_3 = v_L - f_L - return (P_new, v_3) - - -# Solve Riemann problem for post-shock region -(P_3, v_3) = RiemannProblem(rho_L, P_L, v_L, rho_R, P_R, v_R) - -# Check direction of shocks and wave -shock_R = (P_3 > P_R) -shock_L = (P_3 > P_L) - -# Velocity of shock front and and rarefaction wave -if shock_R: - v_right = v_R + c_R**2*(P_3/P_R - 1.)/(gamma*(v_3-v_R)) -else: - v_right = c_R + 0.5*(gamma+1.)*v_3 - 0.5*(gamma-1.)*v_R - -if shock_L: - v_left = v_L + c_L**2*(P_3/p_L - 1.)/(gamma*(v_3-v_L)) -else: - v_left = c_L - 0.5*(gamma+1.)*v_3 + 0.5*(gamma-1.)*v_L - -# Compute position of the transitions -x_23 = -fabs(v_left) * t -if shock_L : - x_12 = -fabs(v_left) * t -else: - x_12 = -(c_L - v_L) * t - -x_34 = v_3 * t - -x_45 = fabs(v_right) * t -if shock_R: - x_56 = fabs(v_right) * t -else: - x_56 = (c_R + v_R) * t - - -# Prepare arrays -delta_x = (x_max - x_min) / N -x_s = arange(x_min, x_max, delta_x) -rho_s = zeros(N) -P_s = zeros(N) -v_s = zeros(N) - -# Compute solution in the different regions -for i in range(N): - if x_s[i] <= x_12: - rho_s[i] = rho_L - P_s[i] = P_L - v_s[i] = v_L - if x_s[i] >= x_12 and x_s[i] < x_23: - if shock_L: - rho_s[i] = rho_L*(Gama + P_3/P_L)/(1. + Gama * P_3/P_L) - P_s[i] = P_3 - v_s[i] = v_3 - else: - rho_s[i] = rho_L*(Gama * (0. - x_s[i])/(c_L * t) + Gama * v_L/c_L + (1.-Gama))**(2./(gamma-1.)) - P_s[i] = P_L*(rho_s[i] / rho_L)**gamma - v_s[i] = (1.-Gama)*(c_L -(0. - x_s[i]) / t) + Gama*v_L - if x_s[i] >= x_23 and x_s[i] < x_34: - if shock_L: - rho_s[i] = rho_L*(Gama + P_3/P_L)/(1+Gama * P_3/p_L) - else: - rho_s[i] = rho_L*(P_3 / P_L)**(1./gamma) - P_s[i] = P_3 - v_s[i] = v_3 - if x_s[i] >= x_34 and x_s[i] < x_45: - if shock_R: - rho_s[i] = rho_R*(Gama + P_3/P_R)/(1. + Gama * P_3/P_R) - else: - rho_s[i] = rho_R*(P_3 / P_R)**(1./gamma) - P_s[i] = P_3 - v_s[i] = v_3 - if x_s[i] >= x_45 and x_s[i] < x_56: - if shock_R: - rho_s[i] = rho_R - P_s[i] = P_R - v_s[i] = v_R - else: - rho_s[i] = rho_R*(Gama*(x_s[i])/(c_R*t) - Gama*v_R/c_R + (1.-Gama))**(2./(gamma-1.)) - P_s[i] = p_R*(rho_s[i]/rho_R)**gamma - v_s[i] = (1.-Gama)*(-c_R - (-x_s[i])/t) + Gama*v_R - if x_s[i] >= x_56: - rho_s[i] = rho_R - P_s[i] = P_R - v_s[i] = v_R - - -# Additional arrays -u_s = P_s / (rho_s * (gamma - 1.)) #internal energy -s_s = P_s / rho_s**gamma # entropic function - -#--------------------------------------------------------------- -# Print arrays - -savetxt("rho.dat", column_stack((x_s, rho_s))) -savetxt("P.dat", column_stack((x_s, P_s))) -savetxt("v.dat", column_stack((x_s, v_s))) -savetxt("u.dat", column_stack((x_s, u_s))) -savetxt("s.dat", column_stack((x_s, s_s)))