diff --git a/examples/HydrostaticHalo/radial_profile.py b/examples/HydrostaticHalo/radial_profile.py
new file mode 100644
index 0000000000000000000000000000000000000000..efb4a155c07d85b64fe709cefe3d788c13b34efa
--- /dev/null
+++ b/examples/HydrostaticHalo/radial_profile.py
@@ -0,0 +1,92 @@
+import numpy as np
+import h5py as h5
+import matplotlib.pyplot as plt
+import sys
+
+n_snaps = 11
+
+#for the plotting
+n_radial_bins = int(sys.argv[1])
+
+#some constants
+OMEGA = 0.3 # Cosmological matter fraction at z = 0
+PARSEC_IN_CGS = 3.0856776e18
+KM_PER_SEC_IN_CGS = 1.0e5
+CONST_G_CGS = 6.672e-8
+h = 0.67777 # hubble parameter
+gamma = 5./3.
+eta = 1.2349
+H_0_cgs = 100. * h * KM_PER_SEC_IN_CGS / (1.0e6 * PARSEC_IN_CGS)
+
+#read some header/parameter information from the first snapshot
+
+filename = "Hydrostatic_000.hdf5"
+f = h5.File(filename,'r')
+params = f["Parameters"]
+unit_mass_cgs = float(params.attrs["InternalUnitSystem:UnitMass_in_cgs"])
+unit_length_cgs = float(params.attrs["InternalUnitSystem:UnitLength_in_cgs"])
+unit_velocity_cgs = float(params.attrs["InternalUnitSystem:UnitVelocity_in_cgs"])
+unit_time_cgs = unit_length_cgs / unit_velocity_cgs
+v_c = float(params.attrs["IsothermalPotential:vrot"])
+v_c_cgs = v_c * unit_velocity_cgs
+header = f["Header"]
+N = header.attrs["NumPart_Total"][0]
+box_centre = np.array(header.attrs["BoxSize"])
+
+#calculate r_vir and M_vir from v_c
+r_vir_cgs = v_c_cgs / (10. * H_0_cgs * np.sqrt(OMEGA))
+M_vir_cgs = r_vir_cgs * v_c_cgs**2 / CONST_G_CGS
+
+for i in range(n_snaps):
+
+    filename = "Hydrostatic_%03d.hdf5" %i
+    f = h5.File(filename,'r')
+    coords_dset = f["PartType0/Coordinates"]
+    coords = np.array(coords_dset)
+#translate coords by centre of box
+    header = f["Header"]
+    snap_time = header.attrs["Time"]
+    snap_time_cgs = snap_time * unit_time_cgs
+    coords[:,0] -= box_centre[0]/2.
+    coords[:,1] -= box_centre[1]/2.
+    coords[:,2] -= box_centre[2]/2.
+    radius = np.sqrt(coords[:,0]**2 + coords[:,1]**2 + coords[:,2]**2)
+    radius_cgs = radius*unit_length_cgs
+    radius_over_virial_radius = radius_cgs / r_vir_cgs
+
+    r = radius_over_virial_radius
+
+    bin_width = 1./n_radial_bins
+    hist = np.histogram(r,bins = n_radial_bins)[0] # number of particles in each bin
+
+#find the mass in each radial bin
+
+    mass_dset = f["PartType0/Masses"]
+#mass of each particles should be equal
+    part_mass = np.array(mass_dset)[0]
+    part_mass_cgs = part_mass * unit_mass_cgs
+    part_mass_over_virial_mass = part_mass_cgs / M_vir_cgs 
+
+    mass_hist = hist * part_mass_over_virial_mass
+    radial_bin_mids = np.linspace(bin_width/2.,1 - bin_width/2.,n_radial_bins)
+#volume in each radial bin
+    volume = 4.*np.pi * radial_bin_mids**2 * bin_width
+
+#now divide hist by the volume so we have a density in each bin
+
+    density = mass_hist / volume
+
+    t = np.linspace(0.01,1.0,1000)
+    rho_analytic = t**(-2)/(4.*np.pi)
+
+    plt.plot(radial_bin_mids,density,'ko',label = "Numerical solution")
+    plt.plot(t,rho_analytic,label = "Analytic Solution")
+    plt.legend(loc = "upper right")
+    plt.xlabel(r"$r / r_{vir}$")
+    plt.ylabel(r"$\rho / (M_{vir} / r_{vir}^3)$")
+    plt.title(r"$\mathrm{Time}= %.3g \, s \, , \, %d \, \, \mathrm{particles} \,,\, v_c = %.1f \, \mathrm{km / s}$" %(snap_time_cgs,N,v_c))
+    plt.ylim((0.1,40))
+    plot_filename = "density_profile_%03d.png" %i
+    plt.savefig(plot_filename,format = "png")
+    plt.close()
+