diff --git a/theory/Star_Formation/bibliography.bib b/theory/Star_Formation/bibliography.bib index 55cff65e37c2be82b807bec92cbc9ef28ab06940..95a3678d868a3229075bb98db1f1f6db3d9b05c3 100644 --- a/theory/Star_Formation/bibliography.bib +++ b/theory/Star_Formation/bibliography.bib @@ -59,3 +59,28 @@ archivePrefix = "arXiv", adsurl = {http://adsabs.harvard.edu/abs/2012MNRAS.426..140D}, adsnote = {Provided by the SAO/NASA Astrophysics Data System} } + + +@ARTICLE{schaye2015, + author = {{Schaye}, J. and {Crain}, R.~A. and {Bower}, R.~G. and {Furlong}, M. and + {Schaller}, M. and {Theuns}, T. and {Dalla Vecchia}, C. and + {Frenk}, C.~S. and {McCarthy}, I.~G. and {Helly}, J.~C. and + {Jenkins}, A. and {Rosas-Guevara}, Y.~M. and {White}, S.~D.~M. and + {Baes}, M. and {Booth}, C.~M. and {Camps}, P. and {Navarro}, J.~F. and + {Qu}, Y. and {Rahmati}, A. and {Sawala}, T. and {Thomas}, P.~A. and + {Trayford}, J.}, + title = "{The EAGLE project: simulating the evolution and assembly of galaxies and their environments}", + journal = {\mnras}, +archivePrefix = "arXiv", + eprint = {1407.7040}, + keywords = {methods: numerical, galaxies: evolution, galaxies: formation, cosmology: theory}, + year = 2015, + month = jan, + volume = 446, + pages = {521-554}, + doi = {10.1093/mnras/stu2058}, + adsurl = {http://adsabs.harvard.edu/abs/2015MNRAS.446..521S}, + adsnote = {Provided by the SAO/NASA Astrophysics Data System} +} + + diff --git a/theory/Star_Formation/starformation.tex b/theory/Star_Formation/starformation.tex index 517343e98a2873502afa5e1c69d5547d0d708d59..75311f51f477929107e6f161743cb855122a631f 100644 --- a/theory/Star_Formation/starformation.tex +++ b/theory/Star_Formation/starformation.tex @@ -46,8 +46,8 @@ converted to a star particle: \end{align} \noindent In general we use $A=1.515 \cdot 10^{-4}~\text{M}_\odot ~\text{yr}^{-1} ~\text{kpc}^{-2}$ -and $n=1.4$. In the case of high densities ($n_\text{H} > 10^3 ~\text{cm}^{-3}$), -the power law will be steaper and have a value of $n=2$. This will also adjust +and $n=1.4$. In the case of high densities ($n_\text{H,thresh} > 10^3 ~\text{cm}^{-3}$), +the power law will be steaper and have a value of $n=2$ \citep{schaye2015}. This will also adjust the normalization of the star formation law, both need to be equal at the pressure with a corresponding density. This means we have: \begin{align} @@ -74,7 +74,8 @@ In which $n_\text{H,norm}$ is the normalization of the metallicity dependent star formation law, $Z$ the metallicity, $Z_0$ the normalization metallicity, and $n_Z$ the power law of the metallicity dependence on density. standard values we take for the EAGLE are $n_\text{H,norm} = 0.1 ~\text{cm}^{-3}$, -$n_Z=-0.64$ and $Z_0 = 0.002$. +$n_Z=-0.64$ and $Z_0 = 0.002$. Also we impose that the density threshold cannot +exceed the maximum value of $n_\text{H,max,norm}$ \citep{schaye2015}. For the initial pressure determination the EAGLE code uses (Explanation needed): \begin{align} @@ -93,7 +94,24 @@ Besides this we also use the more extended temperature criteria proposed by \log_{10} T < \log_{10} T_\text{eos} + 0.5. \end{align} - +\begin{table} +\begin{tabular}{l|l|l|l} +Variable & Parameter file name & Default value & unit \\ \hline +$A$ & SchmidtLawCoeff\_MSUNpYRpKPC2 & $1.515\cdot10^{-4}$ & $M_\odot ~yr^{-1} ~kpc^{-2}$ \\ +$n$ & SchmidtLawExponent & $1.4$ & none \\ +$\gamma$ & gamma & $\frac{5}{3}$ & none \\ +$G$ & No, in constants & - & - \\ +$f_g$ & fg & $1.$ & none \\ +$n_{high}$ & SchmidtLawHighDensExponent & $2.0$ & none \\ +$n_{H,thresh}$ & SchmidtLawHighDens\_thresh\_HpCM3 & $10^3$ & $cm^{-3}$ \\ +$n_{H,norm}$ & thresh\_norm\_HpCM3 & $.1$ & $cm^{-3}$ \\ +$Z_0$ & MetDep\_Z0 & $0.002$ & none \\ +$n_Z$ & MetDep\_SFthresh\_Slope & $-0.64$ & none \\ +$\Delta$ & thresh\_MinOverDens & $57.7$ & none \\ +$T_{crit}$ & thresh\_temp & $10^5$ & $K$ \\ +$n_{H,max,norm}$ & thresh\_max\_norm\_HpCM3 & 10.0 & $cm^{-3}$ +\end{tabular} +\end{table}