testRiemannExact.c 11.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*******************************************************************************
 * This file is part of SWIFT.
 * Copyright (C) 2016 Bert Vandenbroucke (bert.vandenbroucke@gmail.com).
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 ******************************************************************************/
19
#include "../config.h"
20

21 22 23
/* Some standard headers. */
#include <fenv.h>
#include <stdio.h>
24
#include <string.h>
25

26 27 28 29 30 31
/* Force use of exact Riemann solver */
#undef RIEMANN_SOLVER_TRRS
#undef RIEMANN_SOLVER_HLLC
#undef RIEMANN_SOLVER_EXACT
#define RIEMANN_SOLVER_EXACT 1

32
/* Local headers. */
33
#include "riemann/riemann_exact.h"
34
#include "swift.h"
35

36 37 38 39 40 41 42 43 44 45 46 47 48
const float max_abs_error = 1e-3f;
const float max_rel_error = 1e-2f;
const float min_threshold = 1e-2f;

/**
 * @brief Checks whether two numbers are opposite of each others.
 */
int are_symmetric(float a, float b) {

  /* Check that the signs are different */
  if ((a * b) > 0.f) {
    message("Identical signs a=%.8e b=%.8e", a, b);
    return 0;
49
  }
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

  const float abs_a = fabsf(a);
  const float abs_b = fabsf(b);

  const float abs_error = fabsf(abs_a - abs_b);

  /* Avoid FPEs... */
  if (fabsf(abs_a + abs_b) == 0.f) {
    return 1;
  }

  /* Avoid things close to 0 */
  if ((abs_a < min_threshold) || (abs_b < min_threshold)) {
    return 1;
  }

  const float rel_error = 0.5f * abs_error / fabsf(abs_a + abs_b);

  /* Check that we do not breach the relative error limit */
  if (rel_error > max_rel_error) {
    message("Relative error too large a=%.8e b=%.8e rel=%.8e", a, b, rel_error);
    return 0;
  }

  /* All good */
  return 1;
76 77 78
}

int equal(float a, float b) {
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

  const float abs_error = fabsf(a - b);

  /* Avoid FPEs... */
  if (fabsf(a + b) == 0.f) {
    return 1;
  }

  /* Avoid things close to 0 */
  if ((fabsf(a) < min_threshold) || (fabsf(b) < min_threshold)) {
    return 1;
  }

  const float rel_error = 0.5f * abs_error / fabsf(a + b);

  /* Check that we do not breach the relative error limit */
  if (rel_error > max_rel_error) {
    message("Relative error too large a=%.8e b=%.8e rel=%.8e", a, b, rel_error);
    return 0;
98
  }
99 100 101

  /* All good */
  return 1;
102 103
}

104 105 106 107 108 109 110 111
/**
 * @brief Check that a and b are consistent (up to some error)
 *
 * @param a First value
 * @param b Second value
 * @param s String used to identify this check in messages
 */
void check_value(float a, float b, const char* s) {
112 113
  if (fabsf(a + b) != 0.f && fabsf(a - b) / fabsf(a + b) > max_rel_error &&
      fabsf(a - b) > max_abs_error) {
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
    error("Values are inconsistent: %g %g (%s)!", a, b, s);
  } else {
    message("Values are consistent: %g %g (%s).", a, b, s);
  }
}

struct riemann_statevector {
  /*! @brief Density */
  float rho;

  /*! @brief Fluid velocity */
  float v;

  /*! @brief Pressure */
  float P;
};

/**
 * @brief Check that the solution to the Riemann problem with given left and
 * right state is consistent with the given expected solution
 *
 * @param WL Left state
 * @param WR Right state
 * @param Whalf Expected solution
 * @param s String used to identify this check in messages
 */
void check_riemann_solution(struct riemann_statevector* WL,
                            struct riemann_statevector* WR,
                            struct riemann_statevector* Whalf, const char* s) {
  float WLarr[5], WRarr[5], Whalfarr[5], n_unit[3];

  n_unit[0] = 1.0f;
  n_unit[1] = 0.0f;
  n_unit[2] = 0.0f;

  WLarr[0] = WL->rho;
  WLarr[1] = WL->v;
  WLarr[2] = 0.0f;
  WLarr[3] = 0.0f;
  WLarr[4] = WL->P;

  WRarr[0] = WR->rho;
  WRarr[1] = WR->v;
  WRarr[2] = 0.0f;
  WRarr[3] = 0.0f;
  WRarr[4] = WR->P;

  riemann_solver_solve(WLarr, WRarr, Whalfarr, n_unit);

  message("Checking %s...", s);
  check_value(Whalfarr[0], Whalf->rho, "rho");
  check_value(Whalfarr[1], Whalf->v, "v");
  check_value(Whalfarr[4], Whalf->P, "P");
}

/**
 * @brief Check the exact Riemann solver on the Toro test problems
 */
172
void check_riemann_exact(void) {
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
  struct riemann_statevector WL, WR, Whalf;

  /* Test 1 */
  WL.rho = 1.0f;
  WL.v = 0.0f;
  WL.P = 1.0f;
  WR.rho = 0.125f;
  WR.v = 0.0f;
  WR.P = 0.1f;
#if defined(HYDRO_GAMMA_5_3)
  Whalf.rho = 0.47969f;
  Whalf.v = 0.841194f;
  Whalf.P = 0.293945f;
#elif defined(HYDRO_GAMMA_4_3)
  Whalf.rho = 0.411437f;
  Whalf.v = 0.953205f;
  Whalf.P = 0.306011f;
#elif defined(HYDRO_GAMMA_2_1)
  Whalf.rho = 0.534767f;
  Whalf.v = 0.760062f;
  Whalf.P = 0.285975f;
#else
#error "Unsupported adiabatic index!"
#endif
  check_riemann_solution(&WL, &WR, &Whalf, "Test 1");

  /* Test 2 */
  WL.rho = 1.0f;
  WL.v = -2.0f;
  WL.P = 0.4f;
  WR.rho = 1.0f;
  WR.v = 2.0f;
  WR.P = 0.4f;
#if defined(HYDRO_GAMMA_5_3)
  Whalf.rho = 0.00617903f;
  Whalf.v = 0.0f;
  Whalf.P = 8.32249e-5f;
#elif defined(HYDRO_GAMMA_4_3)
  Whalf.rho = 0.0257933f;
  Whalf.v = 0.0f;
  Whalf.P = 0.00304838f;
#elif defined(HYDRO_GAMMA_2_1)
  Whalf.rho = 0.0f;
  Whalf.v = 0.0f;
  Whalf.P = 0.0f;
#else
#error "Unsupported adiabatic index!"
#endif
  check_riemann_solution(&WL, &WR, &Whalf, "Test 2");

  /* Test 3 */
  WL.rho = 1.0f;
  WL.v = 0.0f;
  WL.P = 1000.0f;
  WR.rho = 1.0f;
  WR.v = 0.0f;
  WR.P = 0.01f;
#if defined(HYDRO_GAMMA_5_3)
  Whalf.rho = 0.615719f;
  Whalf.v = 18.2812f;
  Whalf.P = 445.626f;
#elif defined(HYDRO_GAMMA_4_3)
  Whalf.rho = 0.563517f;
  Whalf.v = 19.9735f;
  Whalf.P = 465.453f;
#elif defined(HYDRO_GAMMA_2_1)
  Whalf.rho = 0.656768f;
  Whalf.v = 16.9572f;
  Whalf.P = 431.345f;
#else
#error "Unsupported adiabatic index!"
#endif
  check_riemann_solution(&WL, &WR, &Whalf, "Test 3");

  /* Test 4 */
  WL.rho = 1.0f;
  WL.v = 0.0f;
  WL.P = 0.01f;
  WR.rho = 1.0f;
  WR.v = 0.0f;
  WR.P = 100.0f;
#if defined(HYDRO_GAMMA_5_3)
  Whalf.rho = 0.61577f;
  Whalf.v = -5.78022f;
  Whalf.P = 44.5687f;
#elif defined(HYDRO_GAMMA_4_3)
  Whalf.rho = 0.563567f;
  Whalf.v = -6.31525f;
  Whalf.P = 46.5508f;
#elif defined(HYDRO_GAMMA_2_1)
  Whalf.rho = 0.656819f;
  Whalf.v = -5.36146f;
  Whalf.P = 43.1412f;
#else
#error "Unsupported adiabatic index!"
#endif
  check_riemann_solution(&WL, &WR, &Whalf, "Test 4");

  /* Test 5 */
  WL.rho = 5.99924f;
  WL.v = 19.5975f;
  WL.P = 460.894f;
  WR.rho = 5.99242f;
  WR.v = -6.19633f;
  WR.P = 46.0950f;
#if defined(HYDRO_GAMMA_5_3)
  Whalf.rho = 12.743f;
  Whalf.v = 8.56045f;
  Whalf.P = 1841.82f;
#elif defined(HYDRO_GAMMA_4_3)
  Whalf.rho = 5.99924f;
  Whalf.v = 19.5975f;
  Whalf.P = 460.894f;
#elif defined(HYDRO_GAMMA_2_1)
  Whalf.rho = 11.5089f;
  Whalf.v = 8.42099f;
  Whalf.P = 2026.27f;
#else
#error "Unsupported adiabatic index!"
#endif
  check_riemann_solution(&WL, &WR, &Whalf, "Test 5");
}

296 297 298
/**
 * @brief Check the symmetry of the TRRS Riemann solver
 */
299
void check_riemann_symmetry(void) {
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
  float WL[5], WR[5], Whalf1[5], Whalf2[5], n_unit1[3], n_unit2[3], n_norm,
      vij[3], totflux1[5], totflux2[5];

  WL[0] = random_uniform(0.1f, 1.0f);
  WL[1] = random_uniform(-10.0f, 10.0f);
  WL[2] = random_uniform(-10.0f, 10.0f);
  WL[3] = random_uniform(-10.0f, 10.0f);
  WL[4] = random_uniform(0.1f, 1.0f);
  WR[0] = random_uniform(0.1f, 1.0f);
  WR[1] = random_uniform(-10.0f, 10.0f);
  WR[2] = random_uniform(-10.0f, 10.0f);
  WR[3] = random_uniform(-10.0f, 10.0f);
  WR[4] = random_uniform(0.1f, 1.0f);

  n_unit1[0] = random_uniform(-1.0f, 1.0f);
  n_unit1[1] = random_uniform(-1.0f, 1.0f);
  n_unit1[2] = random_uniform(-1.0f, 1.0f);

  n_norm = sqrtf(n_unit1[0] * n_unit1[0] + n_unit1[1] * n_unit1[1] +
                 n_unit1[2] * n_unit1[2]);
  n_unit1[0] /= n_norm;
  n_unit1[1] /= n_norm;
  n_unit1[2] /= n_norm;

  n_unit2[0] = -n_unit1[0];
  n_unit2[1] = -n_unit1[1];
  n_unit2[2] = -n_unit1[2];

  riemann_solver_solve(WL, WR, Whalf1, n_unit1);
  riemann_solver_solve(WR, WL, Whalf2, n_unit2);

331 332 333
  if (!equal(Whalf1[0], Whalf2[0]) || !equal(Whalf1[1], Whalf2[1]) ||
      !equal(Whalf1[2], Whalf2[2]) || !equal(Whalf1[3], Whalf2[3]) ||
      !equal(Whalf1[4], Whalf2[4])) {
334 335 336 337 338 339 340 341 342 343 344 345 346 347
    message(
        "Solver asymmetric: [%.3e,%.3e,%.3e,%.3e,%.3e] == "
        "[%.3e,%.3e,%.3e,%.3e,%.3e]\n",
        Whalf1[0], Whalf1[1], Whalf1[2], Whalf1[3], Whalf1[4], Whalf2[0],
        Whalf2[1], Whalf2[2], Whalf2[3], Whalf2[4]);
    message("Asymmetry in solution!\n");
    /* This asymmetry is to be expected, since we do an iteration. Are the
       results at least consistent? */
    check_value(Whalf1[0], Whalf2[0], "Rho solution");
    check_value(Whalf1[1], Whalf2[1], "V[0] solution");
    check_value(Whalf1[2], Whalf2[2], "V[1] solution");
    check_value(Whalf1[3], Whalf2[3], "V[2] solution");
    check_value(Whalf1[4], Whalf2[4], "Pressure solution");
  } else {
348 349 350 351 352
    /* message( */
    /*     "Solver symmetric: [%.3e,%.3e,%.3e,%.3e,%.3e] == " */
    /*     "[%.3e,%.3e,%.3e,%.3e,%.3e]\n", */
    /*     Whalf1[0], Whalf1[1], Whalf1[2], Whalf1[3], Whalf1[4], Whalf2[0], */
    /*     Whalf2[1], Whalf2[2], Whalf2[3], Whalf2[4]); */
353 354 355 356 357 358 359 360 361
  }

  vij[0] = random_uniform(-10.0f, 10.0f);
  vij[1] = random_uniform(-10.0f, 10.0f);
  vij[2] = random_uniform(-10.0f, 10.0f);

  riemann_solve_for_flux(WL, WR, n_unit1, vij, totflux1);
  riemann_solve_for_flux(WR, WL, n_unit2, vij, totflux2);

362 363 364 365 366 367 368 369 370 371 372
  if (!are_symmetric(totflux1[0], totflux2[0]) ||
      !are_symmetric(totflux1[1], totflux2[1]) ||
      !are_symmetric(totflux1[2], totflux2[2]) ||
      !are_symmetric(totflux1[3], totflux2[3]) ||
      !are_symmetric(totflux1[4], totflux2[4])) {
    message("WL=[%.8e, %.8e, %.8e, %.8e, %.8e]", WL[0], WL[1], WL[2], WL[3],
            WL[4]);
    message("WR=[%.8e, %.8e, %.8e, %.8e, %.8e]", WR[0], WR[1], WR[2], WR[3],
            WR[4]);
    message("n_unit1=[%.8e, %.8e, %.8e]", n_unit1[0], n_unit1[1], n_unit1[2]);
    message("vij=[%.8e, %.8e, %.8e]\n", vij[0], vij[1], vij[2]);
373 374 375 376 377 378 379 380 381 382 383 384
    message(
        "Flux solver asymmetric: [%.3e,%.3e,%.3e,%.3e,%.3e] == "
        "[%.3e,%.3e,%.3e,%.3e,%.3e]\n",
        totflux1[0], totflux1[1], totflux1[2], totflux1[3], totflux1[4],
        totflux2[0], totflux2[1], totflux2[2], totflux2[3], totflux2[4]);
    /* This asymmetry is to be expected, since we do an iteration. Are the
       results at least consistent? */
    check_value(totflux1[0], totflux2[0], "Mass flux");
    check_value(totflux1[1], totflux2[1], "Momentum[0] flux");
    check_value(totflux1[2], totflux2[2], "Momentum[1] flux");
    check_value(totflux1[3], totflux2[3], "Momentum[2] flux");
    check_value(totflux1[4], totflux2[4], "Energy flux");
385
    error("Asymmetry in flux solution!");
386
  } else {
387 388 389 390 391
    /* message( */
    /*     "Flux solver symmetric: [%.3e,%.3e,%.3e,%.3e,%.3e] == " */
    /*     "[%.3e,%.3e,%.3e,%.3e,%.3e]\n", */
    /*     totflux1[0], totflux1[1], totflux1[2], totflux1[3], totflux1[4], */
    /*     totflux2[0], totflux2[1], totflux2[2], totflux2[3], totflux2[4]); */
392 393 394
  }
}

395
/**
396
 * @brief Check the exact Riemann solver
397
 */
398
int main(int argc, char* argv[]) {
399

400 401 402 403 404 405 406 407 408 409 410 411 412 413
  /* Initialize CPU frequency, this also starts time. */
  unsigned long long cpufreq = 0;
  clocks_set_cpufreq(cpufreq);

/* Choke on FP-exceptions */
#ifdef HAVE_FE_ENABLE_EXCEPT
  feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
#endif

  /* Get some randomness going */
  const int seed = time(NULL);
  message("Seed = %d", seed);
  srand(seed);

414
  /* check the exact Riemann solver */
415
  check_riemann_exact();
416

417
  /* symmetry test */
418 419 420
  for (int i = 0; i < 100000; ++i) {
    check_riemann_symmetry();
  }
421

422 423
  return 0;
}