testPeriodicBC.c 20.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
/*******************************************************************************
 * This file is part of SWIFT.
 * Copyright (C) 2015 Matthieu Schaller (matthieu.schaller@durham.ac.uk).
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <fenv.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

/* Local headers. */
#include "swift.h"

#define ACC_THRESHOLD 1e-5

#if defined(WITH_VECTORIZATION)
36
#define DOSELF1 runner_doself1_branch_density
37
#define DOPAIR1 runner_dopair1_branch_density
38 39 40 41 42
#define DOSELF1_NAME "runner_doself1_density_vec"
#define DOPAIR1_NAME "runner_dopair1_density_vec"
#endif

#ifndef DOSELF1
43
#define DOSELF1 runner_doself1_branch_density
44 45 46 47
#define DOSELF1_NAME "runner_doself1_density"
#endif

#ifndef DOPAIR1
48
#define DOPAIR1 runner_dopair1_branch_density
49 50 51
#define DOPAIR1_NAME "runner_dopair1_density"
#endif

52
#define NODE_ID 0
53

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
enum velocity_types {
  velocity_zero,
  velocity_random,
  velocity_divergent,
  velocity_rotating
};

/**
 * @brief Constructs a cell and all of its particle in a valid state prior to
 * a DOPAIR or DOSELF calcuation.
 *
 * @param n The cube root of the number of particles.
 * @param offset The position of the cell offset from (0,0,0).
 * @param size The cell size.
 * @param h The smoothing length of the particles in units of the inter-particle
 *separation.
 * @param density The density of the fluid.
 * @param partId The running counter of IDs.
 * @param pert The perturbation to apply to the particles in the cell in units
 *of the inter-particle separation.
 * @param vel The type of velocity field (0, random, divergent, rotating)
 */
struct cell *make_cell(size_t n, double *offset, double size, double h,
77 78
                       double density, long long *partId, double pert,
                       enum velocity_types vel) {
79 80
  const size_t count = n * n * n;
  const double volume = size * size * size;
81 82 83 84
  struct cell *cell = NULL;
  if (posix_memalign((void **)&cell, cell_align, sizeof(struct cell)) != 0) {
    error("couldn't allocate cell");
  }
85 86
  bzero(cell, sizeof(struct cell));

87
  if (posix_memalign((void **)&cell->hydro.parts, part_align,
88
                     count * sizeof(struct part)) != 0) {
89 90
    error("couldn't allocate particles, no. of particles: %d", (int)count);
  }
91
  bzero(cell->hydro.parts, count * sizeof(struct part));
92 93 94 95

  float h_max = 0.f;

  /* Construct the parts */
96
  struct part *part = cell->hydro.parts;
97 98 99 100
  for (size_t x = 0; x < n; ++x) {
    for (size_t y = 0; y < n; ++y) {
      for (size_t z = 0; z < n; ++z) {
        part->x[0] =
101 102
            offset[0] +
            size * (x + 0.5 + random_uniform(-0.5, 0.5) * pert) / (float)n;
103
        part->x[1] =
104 105
            offset[1] +
            size * (y + 0.5 + random_uniform(-0.5, 0.5) * pert) / (float)n;
106
        part->x[2] =
107 108
            offset[2] +
            size * (z + 0.5 + random_uniform(-0.5, 0.5) * pert) / (float)n;
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
        switch (vel) {
          case velocity_zero:
            part->v[0] = 0.f;
            part->v[1] = 0.f;
            part->v[2] = 0.f;
            break;
          case velocity_random:
            part->v[0] = random_uniform(-0.05, 0.05);
            part->v[1] = random_uniform(-0.05, 0.05);
            part->v[2] = random_uniform(-0.05, 0.05);
            break;
          case velocity_divergent:
            part->v[0] = part->x[0] - 1.5 * size;
            part->v[1] = part->x[1] - 1.5 * size;
            part->v[2] = part->x[2] - 1.5 * size;
            break;
          case velocity_rotating:
            part->v[0] = part->x[1];
            part->v[1] = -part->x[0];
            part->v[2] = 0.f;
            break;
        }
        part->h = size * h / (float)n;
        h_max = fmax(h_max, part->h);
        part->id = ++(*partId);

135
#if defined(GIZMO_MFV_SPH) || defined(SHADOWFAX_SPH)
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
        part->conserved.mass = density * volume / count;

#ifdef SHADOWFAX_SPH
        double anchor[3] = {0., 0., 0.};
        double side[3] = {1., 1., 1.};
        voronoi_cell_init(&part->cell, part->x, anchor, side);
#endif

#else
        part->mass = density * volume / count;
#endif

#if defined(HOPKINS_PE_SPH)
        part->entropy = 1.f;
        part->entropy_one_over_gamma = 1.f;
#endif

        part->time_bin = 1;

#ifdef SWIFT_DEBUG_CHECKS
        part->ti_drift = 8;
        part->ti_kick = 8;
#endif

        ++part;
      }
    }
  }

  /* Cell properties */
  cell->split = 0;
167 168
  cell->hydro.h_max = h_max;
  cell->hydro.count = count;
169
  cell->hydro.dx_max_part = 0.;
170
  cell->hydro.dx_max_sort = 0.;
171 172 173 174 175 176 177
  cell->width[0] = size;
  cell->width[1] = size;
  cell->width[2] = size;
  cell->loc[0] = offset[0];
  cell->loc[1] = offset[1];
  cell->loc[2] = offset[2];

178
  cell->hydro.ti_old_part = 8;
179 180
  cell->hydro.ti_end_min = 8;
  cell->hydro.ti_end_max = 8;
181
  cell->nodeID = NODE_ID;
182

183
  shuffle_particles(cell->hydro.parts, cell->hydro.count);
184

185
  cell->hydro.sorted = 0;
186
  cell->hydro.sort = NULL;
187 188 189 190 191

  return cell;
}

void clean_up(struct cell *ci) {
192
  free(ci->hydro.parts);
193
  free(ci->hydro.sort);
194 195 196 197 198 199 200
  free(ci);
}

/**
 * @brief Initializes all particles field to be ready for a density calculation
 */
void zero_particle_fields(struct cell *c) {
201 202
  for (int pid = 0; pid < c->hydro.count; pid++) {
    hydro_init_part(&c->hydro.parts[pid], NULL);
203 204 205 206 207 208
  }
}

/**
 * @brief Ends the loop by adding the appropriate coefficients
 */
209
void end_calculation(struct cell *c, const struct cosmology *cosmo) {
210 211
  for (int pid = 0; pid < c->hydro.count; pid++) {
    hydro_end_density(&c->hydro.parts[pid], cosmo);
212 213 214 215 216 217
  }
}

/**
 * @brief Dump all the particles to a file
 */
Matthieu Schaller's avatar
Matthieu Schaller committed
218 219
void dump_particle_fields(char *fileName, struct cell *main_cell, int i, int j,
                          int k) {
220
  FILE *file = fopen(fileName, "a");
221 222 223

  /* Write header */
  fprintf(file,
224 225 226 227
          "# %4s %10s %10s %10s %10s %10s %10s %13s %13s %13s %13s %13s "
          "%13s %13s %13s\n",
          "ID", "pos_x", "pos_y", "pos_z", "v_x", "v_y", "v_z", "rho", "rho_dh",
          "wcount", "wcount_dh", "div_v", "curl_vx", "curl_vy", "curl_vz");
228

Matthieu Schaller's avatar
Matthieu Schaller committed
229 230
  fprintf(file, "# Centre cell at (i,j,k)=(%d, %d, %d) ---------------------\n",
          i, j, k);
231 232

  /* Write main cell */
233
  for (int pid = 0; pid < main_cell->hydro.count; pid++) {
234
    fprintf(file,
235 236
            "%6llu %10f %10f %10f %10f %10f %10f %13e %13e %13e %13e %13e "
            "%13e %13e %13e\n",
237 238 239 240 241
            main_cell->hydro.parts[pid].id, main_cell->hydro.parts[pid].x[0],
            main_cell->hydro.parts[pid].x[1], main_cell->hydro.parts[pid].x[2],
            main_cell->hydro.parts[pid].v[0], main_cell->hydro.parts[pid].v[1],
            main_cell->hydro.parts[pid].v[2],
            hydro_get_comoving_density(&main_cell->hydro.parts[pid]),
242
#if defined(GIZMO_MFV_SPH) || defined(SHADOWFAX_SPH)
243
            0.f,
244
#else
245
            main_cell->hydro.parts[pid].density.rho_dh,
246
#endif
247 248
            main_cell->hydro.parts[pid].density.wcount,
            main_cell->hydro.parts[pid].density.wcount_dh,
249
#if defined(GADGET2_SPH) || defined(HOPKINS_PE_SPH)
250 251 252 253
            main_cell->hydro.parts[pid].density.div_v,
            main_cell->hydro.parts[pid].density.rot_v[0],
            main_cell->hydro.parts[pid].density.rot_v[1],
            main_cell->hydro.parts[pid].density.rot_v[2]
Josh Borrow's avatar
Josh Borrow committed
254
#elif defined(PHANTOM_SPH) || defined(ANARCHY_PU_SPH) || defined(SPHENIX_SPH)
255 256 257 258
            main_cell->hydro.parts[pid].viscosity.div_v,
            main_cell->hydro.parts[pid].density.rot_v[0],
            main_cell->hydro.parts[pid].density.rot_v[1],
            main_cell->hydro.parts[pid].density.rot_v[2]
259
#else
260
            0., 0., 0., 0.
261
#endif
262
    );
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
  }
  fclose(file);
}

/**
 * @brief Compares the vectorised result against
 * the serial result of the interaction.
 *
 * @param serial_parts Particle array that has been interacted serially
 * @param vec_parts Particle array to be interacted using vectors
 * @param count No. of particles that have been interacted
 * @param threshold Level of accuracy needed
 *
 * @return Non-zero value if difference found, 0 otherwise
 */
int check_results(struct part *serial_parts, struct part *vec_parts, int count,
279
                  double threshold) {
280 281 282
  int result = 0;

  for (int i = 0; i < count; i++)
283
    result += compare_particles(&serial_parts[i], &vec_parts[i], threshold);
284 285 286 287 288 289 290

  return result;
}

/* Just a forward declaration... */
void runner_doself1_density(struct runner *r, struct cell *ci);
void runner_doself1_density_vec(struct runner *r, struct cell *ci);
291 292
void runner_dopair1_branch_density(struct runner *r, struct cell *ci,
                                   struct cell *cj);
293
void runner_doself1_branch_density(struct runner *r, struct cell *c);
294

295
void test_boundary_conditions(struct cell **cells, struct runner *runner,
296 297 298
                              const int loc_i, const int loc_j, const int loc_k,
                              const int dim, char *swiftOutputFileName,
                              char *bruteForceOutputFileName) {
299 300

  /* Store the main cell for future use */
301
  struct cell *main_cell = cells[loc_i * (dim * dim) + loc_j * dim + loc_k];
302 303

  /* Zero the fields */
James Willis's avatar
James Willis committed
304
  for (int j = 0; j < dim * dim * dim; ++j) zero_particle_fields(cells[j]);
305

306
/* Run all the pairs */
307
#ifdef WITH_VECTORIZATION
308 309 310 311
  runner->ci_cache.count = 0;
  cache_init(&runner->ci_cache, 512);
  runner->cj_cache.count = 0;
  cache_init(&runner->cj_cache, 512);
312 313
#endif

314
  /* Now loop over all the neighbours of this cell
315 316 317 318 319 320 321 322 323 324 325 326
   * and perform the pair interactions. */
  for (int ii = -1; ii < 2; ii++) {
    int iii = loc_i + ii;
    iii = (iii + dim) % dim;
    for (int jj = -1; jj < 2; jj++) {
      int jjj = loc_j + jj;
      jjj = (jjj + dim) % dim;
      for (int kk = -1; kk < 2; kk++) {
        int kkk = loc_k + kk;
        kkk = (kkk + dim) % dim;

        /* Get the neighbouring cell */
327
        struct cell *cj = cells[iii * (dim * dim) + jjj * dim + kkk];
328

329
        if (cj != main_cell) DOPAIR1(runner, main_cell, cj);
330 331 332 333 334 335
      }
    }
  }

  /* And now the self-interaction */

336
  DOSELF1(runner, main_cell);
337 338

  /* Let's get physical ! */
339
  end_calculation(main_cell, runner->e->cosmology);
340 341

  /* Dump particles from the main cell. */
342
  dump_particle_fields(swiftOutputFileName, main_cell, loc_i, loc_j, loc_k);
343 344 345 346

  /* Now perform a brute-force version for accuracy tests */

  /* Zero the fields */
James Willis's avatar
James Willis committed
347
  for (int i = 0; i < dim * dim * dim; ++i) zero_particle_fields(cells[i]);
348

349
  /* Now loop over all the neighbours of this cell
350 351 352 353 354 355 356 357 358 359 360 361
   * and perform the pair interactions. */
  for (int ii = -1; ii < 2; ii++) {
    int iii = loc_i + ii;
    iii = (iii + dim) % dim;
    for (int jj = -1; jj < 2; jj++) {
      int jjj = loc_j + jj;
      jjj = (jjj + dim) % dim;
      for (int kk = -1; kk < 2; kk++) {
        int kkk = loc_k + kk;
        kkk = (kkk + dim) % dim;

        /* Get the neighbouring cell */
362
        struct cell *cj = cells[iii * (dim * dim) + jjj * dim + kkk];
363

364
        if (cj != main_cell) pairs_all_density(runner, main_cell, cj);
365 366 367 368 369
      }
    }
  }

  /* And now the self-interaction */
370
  self_all_density(runner, main_cell);
371 372

  /* Let's get physical ! */
373
  end_calculation(main_cell, runner->e->cosmology);
374 375

  /* Dump */
Matthieu Schaller's avatar
Matthieu Schaller committed
376 377
  dump_particle_fields(bruteForceOutputFileName, main_cell, loc_i, loc_j,
                       loc_k);
378 379
}

380 381 382
/* And go... */
int main(int argc, char *argv[]) {

383
#ifdef HAVE_SETAFFINITY
384
  engine_pin();
385 386
#endif

387 388 389 390
  size_t runs = 0, particles = 0;
  double h = 1.23485, size = 1., rho = 1.;
  double perturbation = 0.;
  double threshold = ACC_THRESHOLD;
391
  char outputFileNameExtension[100] = "";
392 393
  char swiftOutputFileName[200] = "";
  char bruteForceOutputFileName[200] = "";
394 395 396 397 398 399
  enum velocity_types vel = velocity_zero;

  /* Initialize CPU frequency, this also starts time. */
  unsigned long long cpufreq = 0;
  clocks_set_cpufreq(cpufreq);

400 401
/* Choke on FP-exceptions */
#ifdef HAVE_FE_ENABLE_EXCEPT
402
  feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
403
#endif
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477

  /* Get some randomness going */
  srand(0);

  char c;
  while ((c = getopt(argc, argv, "m:s:h:n:r:t:d:f:v:a:")) != -1) {
    switch (c) {
      case 'h':
        sscanf(optarg, "%lf", &h);
        break;
      case 's':
        sscanf(optarg, "%lf", &size);
        break;
      case 'n':
        sscanf(optarg, "%zu", &particles);
        break;
      case 'r':
        sscanf(optarg, "%zu", &runs);
        break;
      case 'd':
        sscanf(optarg, "%lf", &perturbation);
        break;
      case 'm':
        sscanf(optarg, "%lf", &rho);
        break;
      case 'f':
        strcpy(outputFileNameExtension, optarg);
        break;
      case 'v':
        sscanf(optarg, "%d", (int *)&vel);
        break;
      case 'a':
        sscanf(optarg, "%lf", &threshold);
        break;
      case '?':
        error("Unknown option.");
        break;
    }
  }

  if (h < 0 || particles == 0 || runs == 0) {
    printf(
        "\nUsage: %s -n PARTICLES_PER_AXIS -r NUMBER_OF_RUNS [OPTIONS...]\n"
        "\nGenerates 27 cells, filled with particles on a Cartesian grid."
        "\nThese are then interacted using runner_dopair1_density() and "
        "runner_doself1_density()."
        "\n\nOptions:"
        "\n-h DISTANCE=1.2348 - Smoothing length in units of <x>"
        "\n-m rho             - Physical density in the cell"
        "\n-s size            - Physical size of the cell"
        "\n-d pert            - Perturbation to apply to the particles [0,1["
        "\n-v type (0,1,2,3)  - Velocity field: (zero, random, divergent, "
        "rotating)"
        "\n-f fileName        - Part of the file name used to save the dumps\n",
        argv[0]);
    exit(1);
  }

  /* Help users... */
  message("DOSELF1 function called: %s", DOSELF1_NAME);
  message("DOPAIR1 function called: %s", DOPAIR1_NAME);
  message("Vector size: %d", VEC_SIZE);
  message("Adiabatic index: ga = %f", hydro_gamma);
  message("Hydro implementation: %s", SPH_IMPLEMENTATION);
  message("Smoothing length: h = %f", h * size);
  message("Kernel:               %s", kernel_name);
  message("Neighbour target: N = %f", pow_dimension(h) * kernel_norm);
  message("Density target: rho = %f", rho);
  message("div_v target:   div = %f", vel == 2 ? 3.f : 0.f);
  message("curl_v target: curl = [0., 0., %f]", vel == 3 ? -2.f : 0.f);

  printf("\n");

  /* Build the infrastructure */
478
  const int dim = 8;
479 480
  struct space space;
  space.periodic = 1;
481 482 483
  space.dim[0] = dim;
  space.dim[1] = dim;
  space.dim[2] = dim;
484 485 486 487 488 489 490 491 492 493

  struct hydro_props hp;
  hp.h_max = FLT_MAX;

  struct engine engine;
  engine.s = &space;
  engine.time = 0.1f;
  engine.ti_current = 8;
  engine.max_active_bin = num_time_bins;
  engine.hydro_properties = &hp;
494
  engine.nodeID = NODE_ID;
495

496 497 498
  struct runner real_runner;
  struct runner *runner = &real_runner;
  runner->e = &engine;
499

500 501 502 503
  struct cosmology cosmo;
  cosmology_init_no_cosmo(&cosmo);
  engine.cosmology = &cosmo;

504
  /* Construct some cells */
James Willis's avatar
James Willis committed
505
  struct cell *cells[dim * dim * dim];
506 507 508 509 510
  static long long partId = 0;
  for (int i = 0; i < dim; ++i) {
    for (int j = 0; j < dim; ++j) {
      for (int k = 0; k < dim; ++k) {
        double offset[3] = {i * size, j * size, k * size};
511 512
        cells[i * (dim * dim) + j * dim + k] = make_cell(
            particles, offset, size, h, rho, &partId, perturbation, vel);
513

514
        runner_do_drift_part(runner, cells[i * (dim * dim) + j * dim + k], 0);
515

516
        runner_do_hydro_sort(runner, cells[i * (dim * dim) + j * dim + k],
Loic Hausammann's avatar
Loic Hausammann committed
517
                             0x1FFF, 0, 0);
518 519 520 521
      }
    }
  }

522
  /* Create output file names. */
lhausamm's avatar
lhausamm committed
523
  sprintf(swiftOutputFileName, "swift_periodic_BC_%.150s.dat",
524
          outputFileNameExtension);
lhausamm's avatar
lhausamm committed
525
  sprintf(bruteForceOutputFileName, "brute_force_periodic_BC_%.150s.dat",
526
          outputFileNameExtension);
527

528 529 530
  /* Delete files if they already exist. */
  remove(swiftOutputFileName);
  remove(bruteForceOutputFileName);
531

532 533
  const int half_dim = (dim - 1) / 2;

James Willis's avatar
James Willis committed
534 535
  /* Test the periodic boundary conditions for each of the 8 corners. Interact
   * each corner with all of its 26 neighbours.*/
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
  test_boundary_conditions(cells, runner, 0, 0, 0, dim, swiftOutputFileName,
                           bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, dim - 1, 0, 0, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, dim - 1, 0, dim - 1, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, 0, 0, dim - 1, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, 0, dim - 1, 0, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, dim - 1, dim - 1, 0, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, 0, dim - 1, dim - 1, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, dim - 1, dim - 1, dim - 1, dim,
                           swiftOutputFileName, bruteForceOutputFileName);

  /* Test the boundary conditions for cells at the centre of each face of the
   * box. */
  test_boundary_conditions(cells, runner, half_dim, half_dim, 0, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, dim - 1, half_dim, half_dim, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, half_dim, half_dim, dim - 1, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, 0, half_dim, half_dim, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, half_dim, 0, half_dim, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, half_dim, dim - 1, half_dim, dim,
                           swiftOutputFileName, bruteForceOutputFileName);

  /* Test the boundary conditions for cells at the centre of each edge of the
   * box. */
  test_boundary_conditions(cells, runner, half_dim, dim - 1, 0, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, dim - 1, dim - 1, half_dim, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, half_dim, dim - 1, dim - 1, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, 0, dim - 1, half_dim, dim,
                           swiftOutputFileName, bruteForceOutputFileName);

  test_boundary_conditions(cells, runner, 0, half_dim, 0, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, dim - 1, half_dim, 0, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, dim - 1, half_dim, dim - 1, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, 0, half_dim, dim - 1, dim,
                           swiftOutputFileName, bruteForceOutputFileName);

  test_boundary_conditions(cells, runner, half_dim, 0, 0, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, dim - 1, 0, half_dim, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, half_dim, 0, dim - 1, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, 0, 0, half_dim, dim,
                           swiftOutputFileName, bruteForceOutputFileName);
596 597

  /* Clean things to make the sanitizer happy ... */
James Willis's avatar
James Willis committed
598
  for (int i = 0; i < dim * dim * dim; ++i) clean_up(cells[i]);
599 600 601

  return 0;
}