cell.c 77.7 KB
Newer Older
1
/*******************************************************************************
2
 * This file is part of SWIFT.
3
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
5
6
7
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
 *               2015 Peter W. Draper (p.w.draper@durham.ac.uk)
 *               2016 John A. Regan (john.a.regan@durham.ac.uk)
 *                    Tom Theuns (tom.theuns@durham.ac.uk)
8
 *
9
10
11
12
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
13
 *
14
15
16
17
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
18
 *
19
20
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21
 *
22
23
24
25
26
27
28
29
30
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <float.h>
#include <limits.h>
#include <math.h>
31
32
33
34
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
35

36
37
/* MPI headers. */
#ifdef WITH_MPI
38
#include <mpi.h>
39
40
#endif

41
42
/* Switch off timers. */
#ifdef TIMER
43
#undef TIMER
44
45
#endif

46
47
48
/* This object's header. */
#include "cell.h"

49
/* Local headers. */
50
#include "active.h"
51
#include "atomic.h"
52
#include "drift.h"
53
#include "error.h"
54
#include "gravity.h"
55
#include "hydro.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
56
#include "hydro_properties.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
57
#include "memswap.h"
58
#include "minmax.h"
59
#include "scheduler.h"
60
61
#include "space.h"
#include "timers.h"
62

63
64
65
/* Global variables. */
int cell_next_tag = 0;

66
67
68
69
70
/**
 * @brief Get the size of the cell subtree.
 *
 * @param c The #cell.
 */
71
int cell_getsize(struct cell *c) {
72

Pedro Gonnet's avatar
Pedro Gonnet committed
73
74
  /* Number of cells in this subtree. */
  int count = 1;
75

76
77
  /* Sum up the progeny if split. */
  if (c->split)
Pedro Gonnet's avatar
Pedro Gonnet committed
78
    for (int k = 0; k < 8; k++)
79
80
81
82
83
84
      if (c->progeny[k] != NULL) count += cell_getsize(c->progeny[k]);

  /* Return the final count. */
  return count;
}

85
/**
86
 * @brief Link the cells recursively to the given #part array.
87
88
89
90
91
92
 *
 * @param c The #cell.
 * @param parts The #part array.
 *
 * @return The number of particles linked.
 */
93
int cell_link_parts(struct cell *c, struct part *parts) {
94

95
96
97
  c->parts = parts;

  /* Fill the progeny recursively, depth-first. */
Pedro Gonnet's avatar
Pedro Gonnet committed
98
99
100
101
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
102
        offset += cell_link_parts(c->progeny[k], &parts[offset]);
Pedro Gonnet's avatar
Pedro Gonnet committed
103
104
    }
  }
105

106
  /* Return the total number of linked particles. */
107
108
  return c->count;
}
109

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
/**
 * @brief Link the cells recursively to the given #gpart array.
 *
 * @param c The #cell.
 * @param gparts The #gpart array.
 *
 * @return The number of particles linked.
 */
int cell_link_gparts(struct cell *c, struct gpart *gparts) {

  c->gparts = gparts;

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_gparts(c->progeny[k], &gparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
  return c->gcount;
}

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
/**
 * @brief Link the cells recursively to the given #spart array.
 *
 * @param c The #cell.
 * @param sparts The #spart array.
 *
 * @return The number of particles linked.
 */
int cell_link_sparts(struct cell *c, struct spart *sparts) {

  c->sparts = sparts;

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_sparts(c->progeny[k], &sparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
  return c->scount;
}

160
161
162
163
164
165
166
167
168
/**
 * @brief Pack the data of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pc Pointer to an array of packed cells in which the
 *      cells will be packed.
 *
 * @return The number of packed cells.
 */
169
int cell_pack(struct cell *restrict c, struct pcell *restrict pc) {
170

171
172
#ifdef WITH_MPI

173
174
  /* Start by packing the data of the current cell. */
  pc->h_max = c->h_max;
175
176
  pc->ti_end_min = c->ti_end_min;
  pc->ti_end_max = c->ti_end_max;
177
178
  pc->ti_old_part = c->ti_old_part;
  pc->ti_old_gpart = c->ti_old_gpart;
179
  pc->count = c->count;
180
  pc->gcount = c->gcount;
181
  pc->scount = c->scount;
182
183
184
  c->tag = pc->tag = atomic_inc(&cell_next_tag) % cell_max_tag;

  /* Fill in the progeny, depth-first recursion. */
Pedro Gonnet's avatar
Pedro Gonnet committed
185
186
  int count = 1;
  for (int k = 0; k < 8; k++)
187
188
189
190
191
192
193
    if (c->progeny[k] != NULL) {
      pc->progeny[k] = count;
      count += cell_pack(c->progeny[k], &pc[count]);
    } else
      pc->progeny[k] = -1;

  /* Return the number of packed cells used. */
194
195
  c->pcell_size = count;
  return count;
196
197
198
199
200

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
201
202
}

203
204
205
206
207
208
209
210
211
/**
 * @brief Unpack the data of a given cell and its sub-cells.
 *
 * @param pc An array of packed #pcell.
 * @param c The #cell in which to unpack the #pcell.
 * @param s The #space in which the cells are created.
 *
 * @return The number of cells created.
 */
Matthieu Schaller's avatar
Matthieu Schaller committed
212
213
int cell_unpack(struct pcell *restrict pc, struct cell *restrict c,
                struct space *restrict s) {
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

#ifdef WITH_MPI

  /* Unpack the current pcell. */
  c->h_max = pc->h_max;
  c->ti_end_min = pc->ti_end_min;
  c->ti_end_max = pc->ti_end_max;
  c->ti_old_part = pc->ti_old_part;
  c->ti_old_gpart = pc->ti_old_gpart;
  c->count = pc->count;
  c->gcount = pc->gcount;
  c->scount = pc->scount;
  c->tag = pc->tag;

  /* Number of new cells created. */
  int count = 1;

  /* Fill the progeny recursively, depth-first. */
  for (int k = 0; k < 8; k++)
    if (pc->progeny[k] >= 0) {
      struct cell *temp;
      space_getcells(s, 1, &temp);
      temp->count = 0;
      temp->gcount = 0;
      temp->scount = 0;
      temp->loc[0] = c->loc[0];
      temp->loc[1] = c->loc[1];
      temp->loc[2] = c->loc[2];
      temp->width[0] = c->width[0] / 2;
      temp->width[1] = c->width[1] / 2;
      temp->width[2] = c->width[2] / 2;
      temp->dmin = c->dmin / 2;
      if (k & 4) temp->loc[0] += temp->width[0];
      if (k & 2) temp->loc[1] += temp->width[1];
      if (k & 1) temp->loc[2] += temp->width[2];
      temp->depth = c->depth + 1;
      temp->split = 0;
      temp->dx_max_part = 0.f;
      temp->dx_max_gpart = 0.f;
      temp->dx_max_sort = 0.f;
      temp->nodeID = c->nodeID;
      temp->parent = c;
      c->progeny[k] = temp;
      c->split = 1;
      count += cell_unpack(&pc[pc->progeny[k]], temp, s);
    }

  /* Return the total number of unpacked cells. */
  c->pcell_size = count;
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

271
272
273
274
/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
275
 * @param pcells (output) The end-of-timestep information we pack into
276
277
278
 *
 * @return The number of packed cells.
 */
Matthieu Schaller's avatar
Matthieu Schaller committed
279
280
int cell_pack_end_step(struct cell *restrict c,
                       struct pcell_step *restrict pcells) {
281

282
283
#ifdef WITH_MPI

284
  /* Pack this cell's data. */
285
286
287
  pcells[0].ti_end_min = c->ti_end_min;
  pcells[0].dx_max_part = c->dx_max_part;
  pcells[0].dx_max_gpart = c->dx_max_gpart;
288

289
290
291
292
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
293
      count += cell_pack_end_step(c->progeny[k], &pcells[count]);
294
295
296
297
    }

  /* Return the number of packed values. */
  return count;
298
299
300
301
302

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
303
304
}

305
306
307
308
/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
309
 * @param pcells The end-of-timestep information to unpack
310
311
312
 *
 * @return The number of cells created.
 */
Matthieu Schaller's avatar
Matthieu Schaller committed
313
314
int cell_unpack_end_step(struct cell *restrict c,
                         struct pcell_step *restrict pcells) {
315

316
317
#ifdef WITH_MPI

318
  /* Unpack this cell's data. */
Matthieu Schaller's avatar
Matthieu Schaller committed
319
  c->ti_end_min = pcells[0].ti_end_min;
320
321
  c->dx_max_part = pcells[0].dx_max_part;
  c->dx_max_gpart = pcells[0].dx_max_gpart;
322

323
324
325
326
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
327
      count += cell_unpack_end_step(c->progeny[k], &pcells[count]);
328
329
330
    }

  /* Return the number of packed values. */
331
  return count;
332
333
334
335
336

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
337
}
338

339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
/**
 * @brief Pack the multipole information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pcells (output) The multipole information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_multipoles(struct cell *restrict c,
			 struct gravity_tensors *restrict pcells) {

#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0] = *c->multipole;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_multipoles(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the multipole information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The multipole information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_multipoles(struct cell *restrict c,
			   struct gravity_tensors *restrict pcells) {

#ifdef WITH_MPI

  /* Unpack this cell's data. */
  *c->multipole = pcells[0];

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_multipoles(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}


404
/**
405
 * @brief Lock a cell for access to its array of #part and hold its parents.
406
407
 *
 * @param c The #cell.
408
 * @return 0 on success, 1 on failure
409
 */
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
int cell_locktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
  if (c->hold || lock_trylock(&c->lock) != 0) {
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
  if (c->hold) {

    /* Unlock this cell. */
    if (lock_unlock(&c->lock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
432
  struct cell *finger;
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
    if (lock_trylock(&finger->lock) != 0) break;

    /* Increment the hold. */
    atomic_inc(&finger->hold);

    /* Unlock the cell. */
    if (lock_unlock(&finger->lock) != 0) error("Failed to unlock cell.");
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
455
456
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
457
      atomic_dec(&finger2->hold);
458
459
460
461
462
463
464
465
466
467

    /* Unlock this cell. */
    if (lock_unlock(&c->lock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

468
469
470
471
472
473
/**
 * @brief Lock a cell for access to its array of #gpart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
int cell_glocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
  if (c->ghold || lock_trylock(&c->glock) != 0) {
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
  if (c->ghold) {

    /* Unlock this cell. */
    if (lock_unlock(&c->glock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
496
  struct cell *finger;
497
498
499
500
501
502
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
    if (lock_trylock(&finger->glock) != 0) break;

    /* Increment the hold. */
503
    atomic_inc(&finger->ghold);
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518

    /* Unlock the cell. */
    if (lock_unlock(&finger->glock) != 0) error("Failed to unlock cell.");
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
519
520
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
521
      atomic_dec(&finger2->ghold);
522
523
524
525
526
527
528
529
530

    /* Unlock this cell. */
    if (lock_unlock(&c->glock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}
531

532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
/**
 * @brief Lock a cell for access to its #multipole and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
int cell_mlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
  if (c->mhold || lock_trylock(&c->mlock) != 0) {
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
  if (c->mhold) {

    /* Unlock this cell. */
    if (lock_unlock(&c->mlock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
  struct cell *finger;
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
    if (lock_trylock(&finger->mlock) != 0) break;

    /* Increment the hold. */
    atomic_inc(&finger->mhold);

    /* Unlock the cell. */
    if (lock_unlock(&finger->mlock) != 0) error("Failed to unlock cell.");
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
      atomic_dec(&finger2->mhold);

    /* Unlock this cell. */
    if (lock_unlock(&c->mlock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
/**
 * @brief Lock a cell for access to its array of #spart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
int cell_slocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
  if (c->shold || lock_trylock(&c->slock) != 0) {
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
  if (c->shold) {

    /* Unlock this cell. */
    if (lock_unlock(&c->slock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
  struct cell *finger;
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
    if (lock_trylock(&finger->slock) != 0) break;

    /* Increment the hold. */
    atomic_inc(&finger->shold);

    /* Unlock the cell. */
    if (lock_unlock(&finger->slock) != 0) error("Failed to unlock cell.");
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
      atomic_dec(&finger2->shold);

    /* Unlock this cell. */
    if (lock_unlock(&c->slock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

660
/**
661
 * @brief Unlock a cell's parents for access to #part array.
662
663
664
 *
 * @param c The #cell.
 */
665
666
667
668
669
670
671
672
void cell_unlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
  if (lock_unlock(&c->lock) != 0) error("Failed to unlock cell.");

  /* Climb up the tree and unhold the parents. */
Pedro Gonnet's avatar
Pedro Gonnet committed
673
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
674
    atomic_dec(&finger->hold);
675
676
677
678

  TIMER_TOC(timer_locktree);
}

679
680
681
682
683
/**
 * @brief Unlock a cell's parents for access to #gpart array.
 *
 * @param c The #cell.
 */
684
685
686
687
688
689
690
691
void cell_gunlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
  if (lock_unlock(&c->glock) != 0) error("Failed to unlock cell.");

  /* Climb up the tree and unhold the parents. */
Pedro Gonnet's avatar
Pedro Gonnet committed
692
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
693
    atomic_dec(&finger->ghold);
694
695
696
697

  TIMER_TOC(timer_locktree);
}

698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
/**
 * @brief Unlock a cell's parents for access to its #multipole.
 *
 * @param c The #cell.
 */
void cell_munlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
  if (lock_unlock(&c->mlock) != 0) error("Failed to unlock cell.");

  /* Climb up the tree and unhold the parents. */
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
    atomic_dec(&finger->mhold);

  TIMER_TOC(timer_locktree);
}

717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
/**
 * @brief Unlock a cell's parents for access to #spart array.
 *
 * @param c The #cell.
 */
void cell_sunlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
  if (lock_unlock(&c->slock) != 0) error("Failed to unlock cell.");

  /* Climb up the tree and unhold the parents. */
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
    atomic_dec(&finger->shold);

  TIMER_TOC(timer_locktree);
}

736
737
738
739
/**
 * @brief Sort the parts into eight bins along the given pivots.
 *
 * @param c The #cell array to be sorted.
740
741
 * @param parts_offset Offset of the cell parts array relative to the
 *        space's parts array, i.e. c->parts - s->parts.
742
743
 * @param sparts_offset Offset of the cell sparts array relative to the
 *        space's sparts array, i.e. c->sparts - s->sparts.
744
745
 * @param buff A buffer with at least max(c->count, c->gcount) entries,
 *        used for sorting indices.
746
747
 * @param sbuff A buffer with at least max(c->scount, c->gcount) entries,
 *        used for sorting indices for the sparts.
Peter W. Draper's avatar
Peter W. Draper committed
748
749
 * @param gbuff A buffer with at least max(c->count, c->gcount) entries,
 *        used for sorting indices for the gparts.
750
 */
751
752
void cell_split(struct cell *c, ptrdiff_t parts_offset, ptrdiff_t sparts_offset,
                struct cell_buff *buff, struct cell_buff *sbuff,
753
                struct cell_buff *gbuff) {
754

755
  const int count = c->count, gcount = c->gcount, scount = c->scount;
756
757
758
  struct part *parts = c->parts;
  struct xpart *xparts = c->xparts;
  struct gpart *gparts = c->gparts;
Matthieu Schaller's avatar
Matthieu Schaller committed
759
  struct spart *sparts = c->sparts;
760
761
762
763
764
765
  const double pivot[3] = {c->loc[0] + c->width[0] / 2,
                           c->loc[1] + c->width[1] / 2,
                           c->loc[2] + c->width[2] / 2};
  int bucket_count[8] = {0, 0, 0, 0, 0, 0, 0, 0};
  int bucket_offset[9];

766
767
768
#ifdef SWIFT_DEBUG_CHECKS
  /* Check that the buffs are OK. */
  for (int k = 0; k < count; k++) {
769
    if (buff[k].x[0] != parts[k].x[0] || buff[k].x[1] != parts[k].x[1] ||
770
        buff[k].x[2] != parts[k].x[2])
771
772
      error("Inconsistent buff contents.");
  }
773
774
775
776
777
778
779
780
781
782
  for (int k = 0; k < gcount; k++) {
    if (gbuff[k].x[0] != gparts[k].x[0] || gbuff[k].x[1] != gparts[k].x[1] ||
        gbuff[k].x[2] != gparts[k].x[2])
      error("Inconsistent gbuff contents.");
  }
  for (int k = 0; k < scount; k++) {
    if (sbuff[k].x[0] != sparts[k].x[0] || sbuff[k].x[1] != sparts[k].x[1] ||
        sbuff[k].x[2] != sparts[k].x[2])
      error("Inconsistent sbuff contents.");
  }
783
#endif /* SWIFT_DEBUG_CHECKS */
784
785
786

  /* Fill the buffer with the indices. */
  for (int k = 0; k < count; k++) {
787
788
    const int bid = (buff[k].x[0] > pivot[0]) * 4 +
                    (buff[k].x[1] > pivot[1]) * 2 + (buff[k].x[2] > pivot[2]);
789
    bucket_count[bid]++;
Matthieu Schaller's avatar
Matthieu Schaller committed
790
    buff[k].ind = bid;
791
  }
792

793
794
795
796
797
  /* Set the buffer offsets. */
  bucket_offset[0] = 0;
  for (int k = 1; k <= 8; k++) {
    bucket_offset[k] = bucket_offset[k - 1] + bucket_count[k - 1];
    bucket_count[k - 1] = 0;
798
799
  }

800
801
802
803
  /* Run through the buckets, and swap particles to their correct spot. */
  for (int bucket = 0; bucket < 8; bucket++) {
    for (int k = bucket_offset[bucket] + bucket_count[bucket];
         k < bucket_offset[bucket + 1]; k++) {
Matthieu Schaller's avatar
Matthieu Schaller committed
804
      int bid = buff[k].ind;
805
806
807
      if (bid != bucket) {
        struct part part = parts[k];
        struct xpart xpart = xparts[k];
808
        struct cell_buff temp_buff = buff[k];
809
810
        while (bid != bucket) {
          int j = bucket_offset[bid] + bucket_count[bid]++;
Matthieu Schaller's avatar
Matthieu Schaller committed
811
          while (buff[j].ind == bid) {
812
813
814
            j++;
            bucket_count[bid]++;
          }
Pedro Gonnet's avatar
Pedro Gonnet committed
815
816
          memswap(&parts[j], &part, sizeof(struct part));
          memswap(&xparts[j], &xpart, sizeof(struct xpart));
817
818
          memswap(&buff[j], &temp_buff, sizeof(struct cell_buff));
          bid = temp_buff.ind;
819
820
821
        }
        parts[k] = part;
        xparts[k] = xpart;
822
        buff[k] = temp_buff;
823
      }
824
      bucket_count[bid]++;
825
826
827
828
    }
  }

  /* Store the counts and offsets. */
Pedro Gonnet's avatar
Pedro Gonnet committed
829
  for (int k = 0; k < 8; k++) {
830
831
832
    c->progeny[k]->count = bucket_count[k];
    c->progeny[k]->parts = &c->parts[bucket_offset[k]];
    c->progeny[k]->xparts = &c->xparts[bucket_offset[k]];
833
834
835
  }

  /* Re-link the gparts. */
836
837
  if (count > 0 && gcount > 0)
    part_relink_gparts_to_parts(parts, count, parts_offset);
838

839
#ifdef SWIFT_DEBUG_CHECKS
840
841
842
843
844
845
846
847
  /* Check that the buffs are OK. */
  for (int k = 1; k < count; k++) {
    if (buff[k].ind < buff[k - 1].ind) error("Buff not sorted.");
    if (buff[k].x[0] != parts[k].x[0] || buff[k].x[1] != parts[k].x[1] ||
        buff[k].x[2] != parts[k].x[2])
      error("Inconsistent buff contents (k=%i).", k);
  }

848
  /* Verify that _all_ the parts have been assigned to a cell. */
849
850
851
852
853
854
855
856
  for (int k = 1; k < 8; k++)
    if (&c->progeny[k - 1]->parts[c->progeny[k - 1]->count] !=
        c->progeny[k]->parts)
      error("Particle sorting failed (internal consistency).");
  if (c->progeny[0]->parts != c->parts)
    error("Particle sorting failed (left edge).");
  if (&c->progeny[7]->parts[c->progeny[7]->count] != &c->parts[count])
    error("Particle sorting failed (right edge).");
857
858

  /* Verify a few sub-cells. */
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
  for (int k = 0; k < c->progeny[0]->count; k++)
    if (c->progeny[0]->parts[k].x[0] > pivot[0] ||
        c->progeny[0]->parts[k].x[1] > pivot[1] ||
        c->progeny[0]->parts[k].x[2] > pivot[2])
      error("Sorting failed (progeny=0).");
  for (int k = 0; k < c->progeny[1]->count; k++)
    if (c->progeny[1]->parts[k].x[0] > pivot[0] ||
        c->progeny[1]->parts[k].x[1] > pivot[1] ||
        c->progeny[1]->parts[k].x[2] <= pivot[2])
      error("Sorting failed (progeny=1).");
  for (int k = 0; k < c->progeny[2]->count; k++)
    if (c->progeny[2]->parts[k].x[0] > pivot[0] ||
        c->progeny[2]->parts[k].x[1] <= pivot[1] ||
        c->progeny[2]->parts[k].x[2] > pivot[2])
      error("Sorting failed (progeny=2).");
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
  for (int k = 0; k < c->progeny[3]->count; k++)
    if (c->progeny[3]->parts[k].x[0] > pivot[0] ||
        c->progeny[3]->parts[k].x[1] <= pivot[1] ||
        c->progeny[3]->parts[k].x[2] <= pivot[2])
      error("Sorting failed (progeny=3).");
  for (int k = 0; k < c->progeny[4]->count; k++)
    if (c->progeny[4]->parts[k].x[0] <= pivot[0] ||
        c->progeny[4]->parts[k].x[1] > pivot[1] ||
        c->progeny[4]->parts[k].x[2] > pivot[2])
      error("Sorting failed (progeny=4).");
  for (int k = 0; k < c->progeny[5]->count; k++)
    if (c->progeny[5]->parts[k].x[0] <= pivot[0] ||
        c->progeny[5]->parts[k].x[1] > pivot[1] ||
        c->progeny[5]->parts[k].x[2] <= pivot[2])
      error("Sorting failed (progeny=5).");
  for (int k = 0; k < c->progeny[6]->count; k++)
    if (c->progeny[6]->parts[k].x[0] <= pivot[0] ||
        c->progeny[6]->parts[k].x[1] <= pivot[1] ||
        c->progeny[6]->parts[k].x[2] > pivot[2])
      error("Sorting failed (progeny=6).");
  for (int k = 0; k < c->progeny[7]->count; k++)
    if (c->progeny[7]->parts[k].x[0] <= pivot[0] ||
        c->progeny[7]->parts[k].x[1] <= pivot[1] ||
        c->progeny[7]->parts[k].x[2] <= pivot[2])
      error("Sorting failed (progeny=7).");
899
#endif
900

901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
  /* Now do the same song and dance for the sparts. */
  for (int k = 0; k < 8; k++) bucket_count[k] = 0;

  /* Fill the buffer with the indices. */
  for (int k = 0; k < scount; k++) {
    const int bid = (sbuff[k].x[0] > pivot[0]) * 4 +
                    (sbuff[k].x[1] > pivot[1]) * 2 + (sbuff[k].x[2] > pivot[2]);
    bucket_count[bid]++;
    sbuff[k].ind = bid;
  }

  /* Set the buffer offsets. */
  bucket_offset[0] = 0;
  for (int k = 1; k <= 8; k++) {
    bucket_offset[k] = bucket_offset[k - 1] + bucket_count[k - 1];
    bucket_count[k - 1] = 0;
  }

  /* Run through the buckets, and swap particles to their correct spot. */
  for (int bucket = 0; bucket < 8; bucket++) {
    for (int k = bucket_offset[bucket] + bucket_count[bucket];
         k < bucket_offset[bucket + 1]; k++) {
      int bid = sbuff[k].ind;
      if (bid != bucket) {
        struct spart spart = sparts[k];
        struct cell_buff temp_buff = sbuff[k];
        while (bid != bucket) {
          int j = bucket_offset[bid] + bucket_count[bid]++;
          while (sbuff[j].ind == bid) {
            j++;
            bucket_count[bid]++;
          }
          memswap(&sparts[j], &spart, sizeof(struct spart));
          memswap(&sbuff[j], &temp_buff, sizeof(struct cell_buff));
          bid = temp_buff.ind;
        }
        sparts[k] = spart;
        sbuff[k] = temp_buff;
      }
      bucket_count[bid]++;
    }
  }

  /* Store the counts and offsets. */
  for (int k = 0; k < 8; k++) {
    c->progeny[k]->scount = bucket_count[k];
    c->progeny[k]->sparts = &c->sparts[bucket_offset[k]];
  }

  /* Re-link the gparts. */
  if (scount > 0 && gcount > 0)
952
    part_relink_gparts_to_sparts(sparts, scount, sparts_offset);
953
954

  /* Finally, do the same song and dance for the gparts. */
955
956
957
958
  for (int k = 0; k < 8; k++) bucket_count[k] = 0;

  /* Fill the buffer with the indices. */
  for (int k = 0; k < gcount; k++) {
959
960
    const int bid = (gbuff[k].x[0] > pivot[0]) * 4 +
                    (gbuff[k].x[1] > pivot[1]) * 2 + (gbuff[k].x[2] > pivot[2]);
961
    bucket_count[bid]++;
962
    gbuff[k].ind = bid;
963
  }
964
965
966
967
968
969

  /* Set the buffer offsets. */
  bucket_offset[0] = 0;
  for (int k = 1; k <= 8; k++) {
    bucket_offset[k] = bucket_offset[k - 1] + bucket_count[k - 1];
    bucket_count[k - 1] = 0;
970
971
  }

972
973
974
975
  /* Run through the buckets, and swap particles to their correct spot. */
  for (int bucket = 0; bucket < 8; bucket++) {
    for (int k = bucket_offset[bucket] + bucket_count[bucket];
         k < bucket_offset[bucket + 1]; k++) {
976
      int bid = gbuff[k].ind;
977
978
      if (bid != bucket) {
        struct gpart gpart = gparts[k];
979
        struct cell_buff temp_buff = gbuff[k];
980
981
        while (bid != bucket) {
          int j = bucket_offset[bid] + bucket_count[bid]++;
982
          while (gbuff[j].ind == bid) {
983
984
985
            j++;
            bucket_count[bid]++;
          }
Pedro Gonnet's avatar
Pedro Gonnet committed
986
          memswap(&gparts[j], &gpart, sizeof(struct gpart));
987
988
          memswap(&gbuff[j], &temp_buff, sizeof(struct cell_buff));
          bid = temp_buff.ind;
989
990
        }
        gparts[k] = gpart;
991
        gbuff[k] = temp_buff;
992
      }
993
      bucket_count[bid]++;
994
995
996
997
    }
  }

  /* Store the counts and offsets. */
Pedro Gonnet's avatar
Pedro Gonnet committed
998
  for (int k = 0; k < 8; k++) {
999
1000
    c->progeny[k]->gcount = bucket_count[k];
    c->progeny[k]->gparts = &c->gparts[bucket_offset[k]];
1001
1002
1003
  }

  /* Re-link the parts. */
1004
  if (count > 0 && gcount > 0)
1005
    part_relink_parts_to_gparts(gparts, gcount, parts - parts_offset);
1006
1007
1008
1009

  /* Re-link the sparts. */
  if (scount > 0 && gcount > 0)
    part_relink_sparts_to_gparts(gparts, gcount, sparts - sparts_offset);
1010
}
1011

1012
1013
1014
1015
/**
 * @brief Sanitizes the smoothing length values of cells by setting large
 * outliers to more sensible values.
 *
1016
1017
 * Each cell with <1000 part will be processed. We limit h to be the size of
 * the cell and replace 0s with a good estimate.
1018
1019
 *
 * @param c The cell.
1020
 * @param treated Has the cell already been sanitized at this level ?
1021
 */
1022
void cell_sanitize(struct cell *c, int treated) {
1023
1024
1025

  const int count = c->count;
  struct part *parts = c->parts;
1026
  float h_max = 0.f;
1027

1028
1029
  /* Treat cells will <1000 particles */
  if (count < 1000 && !treated) {
1030

1031
1032
    /* Get an upper bound on h */
    const float upper_h_max = c->dmin / (1.2f * kernel_gamma);
1033

1034
1035
1036
1037
1038
1039
    /* Apply it */
    for (int i = 0; i < count; ++i) {
      if (parts[i].h == 0.f || parts[i].h > upper_h_max)
        parts[i].h = upper_h_max;
    }
  }
1040

1041
1042
  /* Recurse and gather the new h_max values */
  if (c->split) {
1043

1044
1045
    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
1046

1047
1048
        /* Recurse */
        cell_sanitize(c->progeny[k], (count < 1000));
1049

1050
1051
1052
1053
        /* And collect */
        h_max = max(h_max, c->progeny[k]->h_max);
      }
    }
1054
1055
  } else {

1056
1057
    /* Get the new value of h_max */
    for (int i = 0; i < count; ++i) h_max = max(h_max, parts[i].h);
1058
  }
1059
1060
1061

  /* Record the change */
  c->h_max = h_max;
1062
1063
}

1064
/**
1065
 * @brief Converts hydro quantities to a valid state after the initial density
1066
 * calculation
1067
1068
1069
1070
1071
1072
1073
 *
 * @param c Cell to act upon
 * @param data Unused parameter
 */
void cell_convert_hydro(struct cell *c, void *data) {

  struct part *p = c->parts;
1074
  struct xpart *xp = c->xparts;
1075
1076

  for (int i = 0; i < c->count; ++i) {
1077
    hydro_convert_quantities(&p[i], &xp[i]);
1078
1079
1080
  }
}

Matthieu Schaller's avatar
Matthieu Schaller committed
1081
1082
1083
1084
1085
1086
/**
 * @brief Cleans the links in a given cell.
 *
 * @param c Cell to act upon
 * @param data Unused parameter
 */
1087
void cell_clean_links(struct cell *c, void *data) {
Matthieu Schaller's avatar
Matthieu Schaller committed
1088
  c->density = NULL;
1089
  c->gradient = NULL;
Matthieu Schaller's avatar
Matthieu Schaller committed
1090
  c->force = NULL;
1091
  c->grav = NULL;
Matthieu Schaller's avatar
Matthieu Schaller committed
1092
}
1093

1094
/**
1095
 * @brief Checks that the #part in a cell are at the
1096
 * current point in time
1097
1098
1099
1100
1101
1102
 *
 * Calls error() if the cell is not at the current time.
 *
 * @param c Cell to act upon
 * @param data The current time on the integer time-line
 */
1103
void cell_check_part_drift_point(struct cell *c, void *data) {
1104

1105
1106
#ifdef SWIFT_DEBUG_CHECKS

1107
  const integertime_t ti_drift = *(integertime_t *)data;
1108

1109
  /* Only check local cells */
1110
  if (c->nodeID != engine_rank) return;
1111

1112
1113
1114
  if (c->ti_old_part != ti_drift)
    error("Cell in an incorrect time-zone! c->ti_old_part=%lld ti_drift=%lld",
          c->ti_old_part, ti_drift);
1115

1116
1117
  for (int i = 0; i < c->count; ++i)
    if (c->parts[i].ti_drift != ti_drift)
1118
      error("part in an incorrect time-zone! p->ti_drift=%lld ti_drift=%lld",
1119
            c->parts[i].ti_drift, ti_drift);
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
#else
  error("Calling debugging code without debugging flag activated.");
#endif
}

/**
 * @brief Checks that the #gpart and #spart in a cell are at the
 * current point in time
 *
 * Calls error() if the cell is not at the current time.
 *
 * @param c Cell to act upon
 * @param data The current time on the integer time-line
 */
void cell_check_gpart_drift_point(struct cell *c, void *data) {

#ifdef SWIFT_DEBUG_CHECKS

  const integertime_t ti_drift = *(integertime_t *)data;

  /* Only check local cells */
  if (c->nodeID != engine_rank) return;

  if (c->ti_old_gpart != ti_drift)
    error("Cell in an incorrect time-zone! c->ti_old_gpart=%lld ti_drift=%lld",
          c->ti_old_gpart, ti_drift);
1146

1147
1148
  for (int i = 0; i < c->gcount; ++i)
    if (c->gparts[i].ti_drift != ti_drift)
1149
      error("g-part in an incorrect time-zone! gp->ti_drift=%lld ti_drift=%lld",
1150
            c->gparts[i].ti_drift, ti_drift);
1151

1152
1153
1154
1155
  for (int i = 0; i < c->scount; ++i)
    if (c->sparts[i].ti_drift != ti_drift)
      error("s-part in an incorrect time-zone! sp->ti_drift=%lld ti_drift=%lld",
            c->sparts[i].ti_drift, ti_drift);
1156
1157
1158
#else
  error("Calling debugging code without debugging flag activated.");
#endif
1159
1160
}

1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
/**
 * @brief Checks that the multipole of a cell is at the current point in time
 *
 * Calls error() if the cell is not at the current time.
 *
 * @param c Cell to act upon
 * @param data The current time on the integer time-line
 */
void cell_check_multipole_drift_point(struct cell *c, void *data) {

#ifdef SWIFT_DEBUG_CHECKS

  const integertime_t ti_drift = *(integertime_t *)data;

  if (c->ti_old_multipole != ti_drift)
    error(
        "Cell multipole in an incorrect time-zone! c->ti_old_multipole=%lld "
1178
1179
        "ti_drift=%lld (depth=%d)",
        c->ti_old_multipole, ti_drift, c->depth);
1180
1181
1182
1183
1184
1185

#else
  error("Calling debugging code without debugging flag activated.");
#endif
}

1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
/**
 * @brief Resets all the individual cell task counters to 0.
 *
 * Should only be used for debugging purposes.
 *
 * @param c The #cell to reset.
 */
void cell_reset_task_counters(struct cell *c) {

#ifdef SWIFT_DEBUG_CHECKS
  for (int t = 0; t < task_type_count; ++t) c->tasks_executed[t] = 0;
  for (int t = 0; t < task_subtype_count; ++t) c->subtasks_executed[t] = 0;
#else
  error("Calling debugging code without debugging flag activated.");
#endif
}

1203
1204
1205
1206
/**
 * @brief Recursively construct all the multipoles in a cell hierarchy.
 *
 * @param c The #cell.
Matthieu Schaller's avatar
Matthieu Schaller committed
1207
 * @param ti_current The current integer time.
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
 */
void cell_make_multipoles(struct cell *c, integertime_t ti_current) {

  /* Reset everything */
  gravity_reset(c->multipole);

  if (c->split) {

    /* Compute CoM of all progenies */
    double CoM[3] = {0., 0., 0.};
    double mass = 0.;

    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
        const struct gravity_tensors *m = c->progeny[k]->multipole;
        CoM[0] += m->CoM[0] * m->m_pole.M_000;
        CoM[1] += m->CoM[1] * m->m_pole.M_000;
        CoM[2] += m->CoM[2] * m->m_pole.M_000;
        mass += m->m_pole.M_000;
      }
    }
    c->multipole->CoM[0] = CoM[0] / mass;
    c->multipole->CoM[1] = CoM[1] / mass;
    c->multipole->CoM[2] = CoM[2] / mass;

    /* Now shift progeny multipoles and add them up */
    struct multipole temp;
    double r_max = 0.;
    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
        const struct cell *cp = c->progeny[k];
        const struct multipole *m = &cp->multipole->m_pole;

        /* Contribution to multipole */
        gravity_M2M(&temp, m, c->multipole->CoM, cp->multipole->CoM);
        gravity_multipole_add(&c->multipole->m_pole, &temp);

        /* Upper limit of max CoM<->gpart distance */
        const double dx = c->multipole->CoM[0] - cp->multipole->CoM[0];
        const double dy = c->multipole->CoM[1] - cp->multipole->CoM[1];
        const double dz = c->multipole->CoM[2] - cp->multipole->CoM[2];
        const double r2 = dx * dx + dy * dy + dz * dz;
        r_max = max(r_max, cp->multipole->r_max + sqrt(r2));
      }
    }
    /* Alternative upper limit of max CoM<->gpart distance */
    const double dx = c->multipole->CoM[0] > c->loc[0] + c->width[0] / 2.
                          ? c->multipole->CoM[0] - c->loc[0]
                          : c->loc[0] + c->width[0] - c->multipole->CoM[0];
    const double dy = c->multipole->CoM[1] > c->loc[1] + c->width[1] / 2.
                          ? c->multipole->CoM[1] - c->loc[1]
                          : c->loc[1] + c->width[1] - c->multipole->CoM[1];
    const double dz = c->multipole->CoM[2] > c->loc[2] + c->width[2] / 2.
                          ? c->multipole->CoM[2] - c->loc[2]
                          : c->loc[2] + c->width[2] - c->multipole->CoM[2];

    /* Take minimum of both limits */
    c->multipole->r_max = min(r_max, sqrt(dx * dx + dy * dy + dz * dz));

  } else {

    if (c->gcount > 0) {
      gravity_P2M(c->multipole, c->gparts, c->gcount);
      const double dx = c->multipole->CoM[0] > c->loc[0] + c->width[0] / 2.
                            ? c->multipole->CoM[0] - c->loc[0]
                            : c->loc[0] + c->width[0] - c->multipole->CoM[0];
      const double dy = c->multipole->CoM[1] > c->loc[1] + c->width[1] / 2.
                            ? c->multipole->CoM[1] - c->loc[1]
                            : c->loc[1] + c->width[1] - c->multipole->CoM[1];
      const double dz = c->multipole->CoM[2] > c->loc[2] + c->width[2] / 2.
                            ? c->multipole->CoM[2] - c->loc[2]
                            : c->loc[2] + c->width[2] - c->multipole->CoM[2];
      c->multipole->r_max = sqrt(dx * dx + dy * dy + dz * dz);
    } else {
      gravity_multipole_init(&c->multipole->m_pole);
      c->multipole->CoM[0] = c->loc[0] + c->width[0] / 2.;
      c->multipole->CoM[1] = c->loc[1] + c->width[1] / 2.;
      c->multipole->CoM[2] = c->loc[2] + c->width[2] / 2.;
      c->multipole->r_max = 0.;
    }
  }

  c->ti_old_multipole = ti_current;
}

1293
1294
1295
1296
1297
1298
1299
1300
1301
/**
 * @brief Computes the multi-pole brutally and compare to the
 * recursively computed one.
 *
 * @param c Cell to act upon
 * @param data Unused parameter
 */
void cell_check_multipole(struct cell *c, void *data) {

1302
#ifdef SWIFT_DEBUG_CHECKS
1303
  struct gravity_tensors ma;
1304
  const double tolerance = 1e-3; /* Relative */
1305

1306
1307
  return;

1308
1309
1310
1311
  /* First recurse */
  if (c->split)
    for (int k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) cell_check_multipole(c->progeny[k], NULL);
1312
1313
1314
1315

  if (c->gcount > 0) {

    /* Brute-force calculation */
1316
    gravity_P2M(&ma, c->gparts, c->gcount);
1317
1318

    /* Now  compare the multipole expansion */
1319
    if (!gravity_multipole_equal(&ma, c->multipole, tolerance)) {
Matthieu Schaller's avatar
Matthieu Schaller committed
1320
1321
      message("Multipoles are not equal at depth=%d! tol=%f", c->depth,
              tolerance);
1322
      message("Correct answer:");
1323
      gravity_multipole_print(&ma.m_pole);
1324
      message("Recursive multipole:");
1325
      gravity_multipole_print(&c->multipole->m_pole);
1326
1327
      error("Aborting");
    }
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337

    /* Check that the upper limit of r_max is good enough */
    if (!(c->multipole->r_max >= ma.r_max)) {
      error("Upper-limit r_max=%e too small. Should be >=%e.",
            c->multipole->r_max, ma.r_max);
    } else if (c->multipole->r_max * c->multipole->r_max >
               3. * c->width[0] * c->width[0]) {
      error("r_max=%e larger than cell diagonal %e.", c->multipole->r_max,
            sqrt(3. * c->width[0] * c->width[0]));
    }
1338
  }
1339
1340
1341
#else
  error("Calling debugging code without debugging flag activated.");
#endif
1342
1343
}

1344
/**