space.c 36.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
/*******************************************************************************
* This file is part of SWIFT.
* Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program.  If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
Pedro Gonnet's avatar
Pedro Gonnet committed
19
20
21
22
23
24
25
26

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <float.h>
#include <limits.h>
#include <math.h>
27
#include <string.h>
28
#include <stdlib.h>
Pedro Gonnet's avatar
Pedro Gonnet committed
29

30
31
/* MPI headers. */
#ifdef WITH_MPI
32
#include <mpi.h>
33
34
#endif

35
36
37
/* This object's header. */
#include "space.h"

Pedro Gonnet's avatar
Pedro Gonnet committed
38
/* Local headers. */
39
#include "atomic.h"
40
#include "engine.h"
41
#include "error.h"
42
43
#include "kernel.h"
#include "lock.h"
44
#include "minmax.h"
45
#include "runner.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
46

47
48
49
/* Shared sort structure. */
struct parallel_sort space_sort_struct;

Pedro Gonnet's avatar
Pedro Gonnet committed
50
51
/* Split size. */
int space_splitsize = space_splitsize_default;
52
int space_subsize = space_subsize_default;
53
int space_maxsize = space_maxsize_default;
Pedro Gonnet's avatar
Pedro Gonnet committed
54
55
56

/* Map shift vector to sortlist. */
const int sortlistID[27] = {
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
    /* ( -1 , -1 , -1 ) */ 0,
    /* ( -1 , -1 ,  0 ) */ 1,
    /* ( -1 , -1 ,  1 ) */ 2,
    /* ( -1 ,  0 , -1 ) */ 3,
    /* ( -1 ,  0 ,  0 ) */ 4,
    /* ( -1 ,  0 ,  1 ) */ 5,
    /* ( -1 ,  1 , -1 ) */ 6,
    /* ( -1 ,  1 ,  0 ) */ 7,
    /* ( -1 ,  1 ,  1 ) */ 8,
    /* (  0 , -1 , -1 ) */ 9,
    /* (  0 , -1 ,  0 ) */ 10,
    /* (  0 , -1 ,  1 ) */ 11,
    /* (  0 ,  0 , -1 ) */ 12,
    /* (  0 ,  0 ,  0 ) */ 0,
    /* (  0 ,  0 ,  1 ) */ 12,
    /* (  0 ,  1 , -1 ) */ 11,
    /* (  0 ,  1 ,  0 ) */ 10,
    /* (  0 ,  1 ,  1 ) */ 9,
    /* (  1 , -1 , -1 ) */ 8,
    /* (  1 , -1 ,  0 ) */ 7,
    /* (  1 , -1 ,  1 ) */ 6,
    /* (  1 ,  0 , -1 ) */ 5,
    /* (  1 ,  0 ,  0 ) */ 4,
    /* (  1 ,  0 ,  1 ) */ 3,
    /* (  1 ,  1 , -1 ) */ 2,
    /* (  1 ,  1 ,  0 ) */ 1,
    /* (  1 ,  1 ,  1 ) */ 0};

85
86
87
88
89
90
91
92
93
94
95
96
/**
 * @brief Get the shift-id of the given pair of cells, swapping them
 *      if need be.
 *
 * @param s The space
 * @param ci Pointer to first #cell.
 * @param cj Pointer second #cell.
 * @param shift Vector from ci to cj.
 *
 * @return The shift ID and set shift, may or may not swap ci and cj.
 */

97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
int space_getsid(struct space *s, struct cell **ci, struct cell **cj,
                 double *shift) {

  int k, sid = 0, periodic = s->periodic;
  struct cell *temp;
  double dx[3];

  /* Get the relative distance between the pairs, wrapping. */
  for (k = 0; k < 3; k++) {
    dx[k] = (*cj)->loc[k] - (*ci)->loc[k];
    if (periodic && dx[k] < -s->dim[k] / 2)
      shift[k] = s->dim[k];
    else if (periodic && dx[k] > s->dim[k] / 2)
      shift[k] = -s->dim[k];
    else
      shift[k] = 0.0;
    dx[k] += shift[k];
  }

  /* Get the sorting index. */
  for (k = 0; k < 3; k++)
    sid = 3 * sid + ((dx[k] < 0.0) ? 0 : ((dx[k] > 0.0) ? 2 : 1));

  /* Switch the cells around? */
  if (runner_flip[sid]) {
    temp = *ci;
    *ci = *cj;
    *cj = temp;
    for (k = 0; k < 3; k++) shift[k] = -shift[k];
  }
  sid = sortlistID[sid];

  /* Return the sort ID. */
  return sid;
}
132

133
/**
134
 * @brief Recursively dismantle a cell tree.
135
136
 *
 */
137
138
139
140
141
142
143
144
145
146
147
148
149
150

void space_rebuild_recycle(struct space *s, struct cell *c) {

  int k;

  if (c->split)
    for (k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) {
        space_rebuild_recycle(s, c->progeny[k]);
        space_recycle(s, c->progeny[k]);
        c->progeny[k] = NULL;
      }
}

151
/**
152
 * @brief Re-build the cell grid.
153
 *
154
155
 * @param s The #space.
 * @param cell_max Maximum cell edge length.
156
 * @param verbose Print messages to stdout or not.
157
 */
158

159
void space_regrid(struct space *s, double cell_max, int verbose) {
160
161
162
163

  float h_max = s->cell_min / kernel_gamma / space_stretch, dmin;
  int i, j, k, cdim[3], nr_parts = s->nr_parts;
  struct cell *restrict c;
164
  ticks tic = getticks();
165
166
167
168
169
170

  /* Run through the parts and get the current h_max. */
  // tic = getticks();
  if (s->cells != NULL) {
    for (k = 0; k < s->nr_cells; k++) {
      if (s->cells[k].h_max > h_max) h_max = s->cells[k].h_max;
171
    }
172
173
174
175
176
177
178
179
180
181
182
183
184
185
  } else {
    for (k = 0; k < nr_parts; k++) {
      if (s->parts[k].h > h_max) h_max = s->parts[k].h;
    }
    s->h_max = h_max;
  }

/* If we are running in parallel, make sure everybody agrees on
   how large the largest cell should be. */
#ifdef WITH_MPI
  {
    float buff;
    if (MPI_Allreduce(&h_max, &buff, 1, MPI_FLOAT, MPI_MAX, MPI_COMM_WORLD) !=
        MPI_SUCCESS)
186
      error("Failed to aggregate the rebuild flag across nodes.");
187
188
189
    h_max = buff;
  }
#endif
190
  if (verbose) message("h_max is %.3e (cell_max=%.3e).", h_max, cell_max);
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257

  /* Get the new putative cell dimensions. */
  for (k = 0; k < 3; k++)
    cdim[k] =
        floor(s->dim[k] / fmax(h_max * kernel_gamma * space_stretch, cell_max));

  /* Check if we have enough cells for periodicity. */
  if (s->periodic && (cdim[0] < 3 || cdim[1] < 3 || cdim[2] < 3))
    error(
        "Must have at least 3 cells in each spatial dimension when periodicity "
        "is switched on.");

/* In MPI-Land, we're not allowed to change the top-level cell size. */
#ifdef WITH_MPI
  if (cdim[0] < s->cdim[0] || cdim[1] < s->cdim[1] || cdim[2] < s->cdim[2])
    error("Root-level change of cell size not allowed.");
#endif

  /* Do we need to re-build the upper-level cells? */
  // tic = getticks();
  if (s->cells == NULL || cdim[0] < s->cdim[0] || cdim[1] < s->cdim[1] ||
      cdim[2] < s->cdim[2]) {

    /* Free the old cells, if they were allocated. */
    if (s->cells != NULL) {
      for (k = 0; k < s->nr_cells; k++) {
        space_rebuild_recycle(s, &s->cells[k]);
        if (s->cells[k].sort != NULL) free(s->cells[k].sort);
      }
      free(s->cells);
      s->maxdepth = 0;
    }

    /* Set the new cell dimensions only if smaller. */
    for (k = 0; k < 3; k++) {
      s->cdim[k] = cdim[k];
      s->h[k] = s->dim[k] / cdim[k];
      s->ih[k] = 1.0 / s->h[k];
    }
    dmin = fminf(s->h[0], fminf(s->h[1], s->h[2]));

    /* Allocate the highest level of cells. */
    s->tot_cells = s->nr_cells = cdim[0] * cdim[1] * cdim[2];
    if (posix_memalign((void *)&s->cells, 64,
                       s->nr_cells * sizeof(struct cell)) != 0)
      error("Failed to allocate cells.");
    bzero(s->cells, s->nr_cells * sizeof(struct cell));
    for (k = 0; k < s->nr_cells; k++)
      if (lock_init(&s->cells[k].lock) != 0) error("Failed to init spinlock.");

    /* Set the cell location and sizes. */
    for (i = 0; i < cdim[0]; i++)
      for (j = 0; j < cdim[1]; j++)
        for (k = 0; k < cdim[2]; k++) {
          c = &s->cells[cell_getid(cdim, i, j, k)];
          c->loc[0] = i * s->h[0];
          c->loc[1] = j * s->h[1];
          c->loc[2] = k * s->h[2];
          c->h[0] = s->h[0];
          c->h[1] = s->h[1];
          c->h[2] = s->h[2];
          c->dmin = dmin;
          c->depth = 0;
          c->count = 0;
          c->gcount = 0;
          c->super = c;
          lock_init(&c->lock);
Pedro Gonnet's avatar
Pedro Gonnet committed
258
        }
259
260

    /* Be verbose about the change. */
261
262
263
    if (verbose)
      message("set cell dimensions to [ %i %i %i ].", cdim[0], cdim[1],
              cdim[2]);
264
265
266
    fflush(stdout);

  } /* re-build upper-level cells? */
267
268
  // message( "rebuilding upper-level cells took %.3f %s." ,
  // clocks_from_ticks(double)(getticks() - tic), clocks_getunit());
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

  /* Otherwise, just clean up the cells. */
  else {

    /* Free the old cells, if they were allocated. */
    for (k = 0; k < s->nr_cells; k++) {
      space_rebuild_recycle(s, &s->cells[k]);
      s->cells[k].sorts = NULL;
      s->cells[k].nr_tasks = 0;
      s->cells[k].nr_density = 0;
      s->cells[k].nr_force = 0;
      s->cells[k].density = NULL;
      s->cells[k].force = NULL;
      s->cells[k].dx_max = 0.0f;
      s->cells[k].sorted = 0;
      s->cells[k].count = 0;
      s->cells[k].gcount = 0;
Matthieu Schaller's avatar
Matthieu Schaller committed
286
      s->cells[k].init = NULL;
Matthieu Schaller's avatar
Matthieu Schaller committed
287
      s->cells[k].ghost = NULL;
Matthieu Schaller's avatar
Matthieu Schaller committed
288
289
      s->cells[k].drift = NULL;
      s->cells[k].kick = NULL;
290
      s->cells[k].super = &s->cells[k];
291
    }
292
293
    s->maxdepth = 0;
  }
294
295
296
297

  if (verbose)
    message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
            clocks_getunit());
298
}
299
300
301
302
303
304

/**
 * @brief Re-build the cells as well as the tasks.
 *
 * @param s The #space in which to update the cells.
 * @param cell_max Maximal cell size.
305
 * @param verbose Print messages to stdout or not
306
307
 *
 */
308

309
void space_rebuild(struct space *s, double cell_max, int verbose) {
310

311
  int j, k, cdim[3], nr_parts = s->nr_parts, nr_gparts = s->nr_gparts;
312
  struct cell *restrict c, *restrict cells;
313
  struct part *restrict p;
314
  int *ind;
315
  double ih[3], dim[3];
316
  ticks tic = getticks();
317
318
319
320
321

  /* Be verbose about this. */
  // message( "re)building space..." ); fflush(stdout);

  /* Re-grid if necessary, or just re-set the cell data. */
322
  space_regrid(s, cell_max, verbose);
323
324
325
326
  cells = s->cells;

  /* Run through the particles and get their cell index. */
  // tic = getticks();
327
  const size_t ind_size = s->size_parts;
328
  if ((ind = (int *)malloc(sizeof(int) * ind_size)) == NULL)
329
330
331
332
333
334
335
336
337
338
    error("Failed to allocate temporary particle indices.");
  ih[0] = s->ih[0];
  ih[1] = s->ih[1];
  ih[2] = s->ih[2];
  dim[0] = s->dim[0];
  dim[1] = s->dim[1];
  dim[2] = s->dim[2];
  cdim[0] = s->cdim[0];
  cdim[1] = s->cdim[1];
  cdim[2] = s->cdim[2];
339
  for (k = 0; k < nr_parts; k++) {
340
    p = &s->parts[k];
341
342
343
344
345
    for (j = 0; j < 3; j++)
      if (p->x[j] < 0.0)
        p->x[j] += dim[j];
      else if (p->x[j] >= dim[j])
        p->x[j] -= dim[j];
346
    ind[k] =
347
        cell_getid(cdim, p->x[0] * ih[0], p->x[1] * ih[1], p->x[2] * ih[2]);
348
    cells[ind[k]].count++;
349
  }
Matthieu Schaller's avatar
Matthieu Schaller committed
350
351
// message( "getting particle indices took %.3f %s." ,
// clocks_from_ticks(getticks() - tic), clocks_getunit()):
352
353
354
355

#ifdef WITH_MPI
  /* Move non-local parts to the end of the list. */
  int nodeID = s->e->nodeID;
356
357
358
359
  for (k = 0; k < nr_parts; k++)
    if (cells[ind[k]].nodeID != nodeID) {
      cells[ind[k]].count -= 1;
      nr_parts -= 1;
360
361
362
363
364
365
      struct part tp = s->parts[k];
      s->parts[k] = s->parts[nr_parts];
      s->parts[nr_parts] = tp;
      struct xpart txp = s->xparts[k];
      s->xparts[k] = s->xparts[nr_parts];
      s->xparts[nr_parts] = txp;
366
367
368
      int t = ind[k];
      ind[k] = ind[nr_parts];
      ind[nr_parts] = t;
369
370
    }

371
372
  /* Exchange the strays, note that this potentially re-allocates
     the parts arrays. */
373
374
375
376
377
378
379
  /* TODO: This function also exchanges gparts, but this is shorted-out
     until they are fully implemented. */
  size_t nr_parts_exchanged = s->nr_parts - nr_parts;
  size_t nr_gparts_exchanged = 0;
  engine_exchange_strays(s->e, nr_parts, &ind[nr_parts],
                         &nr_parts_exchanged, 0, NULL, &nr_gparts_exchanged);
  s->nr_parts = nr_parts + nr_parts_exchanged;
380
381

  /* Re-allocate the index array if needed.. */
382
  if (s->nr_parts > ind_size) {
383
384
    int *ind_new;
    if ((ind_new = (int *)malloc(sizeof(int) * s->nr_parts)) == NULL)
385
      error("Failed to allocate temporary particle indices.");
386
    memcpy(ind_new, ind, sizeof(size_t) * nr_parts);
387
388
    free(ind);
    ind = ind_new;
389
390
391
  }

  /* Assign each particle to its cell. */
392
  for (k = nr_parts; k < s->nr_parts; k++) {
393
    p = &s->parts[k];
394
    ind[k] =
395
        cell_getid(cdim, p->x[0] * ih[0], p->x[1] * ih[1], p->x[2] * ih[2]);
396
397
398
399
    cells[ind[k]].count += 1;
    /* if ( cells[ ind[k] ].nodeID != nodeID )
        error( "Received part that does not belong to me (nodeID=%i)." , cells[
       ind[k] ].nodeID ); */
400
  }
401
  nr_parts = s->nr_parts;
402
403
404
#endif

  /* Sort the parts according to their cells. */
405
  space_parts_sort(s, ind, nr_parts, 0, s->nr_cells - 1, verbose);
406
407

  /* Re-link the gparts. */
408
  for (k = 0; k < nr_parts; k++)
409
    if (s->parts[k].gpart != NULL) s->parts[k].gpart->part = &s->parts[k];
410

411
  /* Verify space_sort_struct. */
412
  /* for ( k = 1 ; k < nr_parts ; k++ ) {
413
      if ( ind[k-1] > ind[k] ) {
414
415
          error( "Sort failed!" );
          }
416
      else if ( ind[k] != cell_getid( cdim , parts[k].x[0]*ih[0] ,
417
418
419
420
421
     parts[k].x[1]*ih[1] , parts[k].x[2]*ih[2] ) )
          error( "Incorrect indices!" );
      } */

  /* We no longer need the indices as of here. */
422
  free(ind);
423
424
425

  /* Run through the gravity particles and get their cell index. */
  // tic = getticks();
426
  if ((ind = (int *)malloc(sizeof(int) * s->size_gparts)) == NULL)
427
428
    error("Failed to allocate temporary particle indices.");
  for (k = 0; k < nr_gparts; k++) {
429
    struct gpart *gp = &s->gparts[k];
430
431
432
433
434
    for (j = 0; j < 3; j++)
      if (gp->x[j] < 0.0)
        gp->x[j] += dim[j];
      else if (gp->x[j] >= dim[j])
        gp->x[j] -= dim[j];
435
    ind[k] =
436
        cell_getid(cdim, gp->x[0] * ih[0], gp->x[1] * ih[1], gp->x[2] * ih[2]);
437
    cells[ind[k]].gcount++;
438
  }
439
  // message( "getting particle indices took %.3f %s." ,
Matthieu Schaller's avatar
Matthieu Schaller committed
440
  // clocks_from_ticks(getticks() - tic), clocks_getunit());
441
442
443
444

  /* TODO: Here we should exchange the gparts as well! */

  /* Sort the parts according to their cells. */
445
  space_gparts_sort(s->gparts, ind, nr_gparts, 0, s->nr_cells - 1);
446
447
448

  /* Re-link the parts. */
  for (k = 0; k < nr_gparts; k++)
449
    if (s->gparts[k].id > 0) s->gparts[k].part->gpart = &s->gparts[k];
450
451

  /* We no longer need the indices as of here. */
452
  free(ind);
453
454
455

  /* Hook the cells up to the parts. */
  // tic = getticks();
456
457
458
  struct part *finger = s->parts;
  struct xpart *xfinger = s->xparts;
  struct gpart *gfinger = s->gparts;
459
460
461
462
463
464
465
466
467
  for (k = 0; k < s->nr_cells; k++) {
    c = &cells[k];
    c->parts = finger;
    c->xparts = xfinger;
    c->gparts = gfinger;
    finger = &finger[c->count];
    xfinger = &xfinger[c->count];
    gfinger = &gfinger[c->gcount];
  }
468
  // message( "hooking up cells took %.3f %s." ,
Matthieu Schaller's avatar
Matthieu Schaller committed
469
  // clocks_from_ticks(getticks() - tic), clocks_getunit());
470
471
472

  /* At this point, we have the upper-level cells, old or new. Now make
     sure that the parts in each cell are ok. */
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
  space_split(s, cells, verbose);

  if (verbose)
    message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
            clocks_getunit());
}

/**
 * @brief Split particles between cells of a hierarchy
 *
 * @param s The #space.
 * @param cells The cell hierarchy
 * @param verbose Are we talkative ?
 */
void space_split(struct space *s, struct cell *cells, int verbose) {

  ticks tic = getticks();

  for (int k = 0; k < s->nr_cells; k++)
492
493
    scheduler_addtask(&s->e->sched, task_type_split_cell, task_subtype_none, k,
                      0, &cells[k], NULL, 0);
494
  engine_launch(s->e, s->e->nr_threads, 1 << task_type_split_cell, 0);
495

496
497
498
  if (verbose)
    message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
            clocks_getunit());
499
}
500

501
/**
502
503
 * @brief Sort the particles and condensed particles according to the given
 *indices.
504
 *
Matthieu Schaller's avatar
Matthieu Schaller committed
505
 * @param s The #space.
506
507
508
509
 * @param ind The indices with respect to which the parts are sorted.
 * @param N The number of parts
 * @param min Lowest index.
 * @param max highest index.
510
 * @param verbose Are we talkative ?
511
 */
512

513
void space_parts_sort(struct space *s, int *ind, size_t N, int min, int max,
514
515
516
517
518
                      int verbose) {

  ticks tic = getticks();

  /*Populate the global parallel_sort structure with the input data */
519
520
521
  space_sort_struct.parts = s->parts;
  space_sort_struct.xparts = s->xparts;
  space_sort_struct.ind = ind;
522
  space_sort_struct.stack_size = 2 * (max - min + 1) + 10 + s->e->nr_threads;
523
524
525
526
527
528
  if ((space_sort_struct.stack = malloc(sizeof(struct qstack) *
                                        space_sort_struct.stack_size)) == NULL)
    error("Failed to allocate sorting stack.");
  for (int i = 0; i < space_sort_struct.stack_size; i++)
    space_sort_struct.stack[i].ready = 0;

529
  /* Add the first interval. */
530
531
532
533
534
535
536
537
538
  space_sort_struct.stack[0].i = 0;
  space_sort_struct.stack[0].j = N - 1;
  space_sort_struct.stack[0].min = min;
  space_sort_struct.stack[0].max = max;
  space_sort_struct.stack[0].ready = 1;
  space_sort_struct.first = 0;
  space_sort_struct.last = 1;
  space_sort_struct.waiting = 1;

539
  /* Launch the sorting tasks. */
540
  engine_launch(s->e, s->e->nr_threads, (1 << task_type_psort), 0);
541
542

  /* Verify space_sort_struct. */
543
  /* for (int i = 1; i < N; i++)
544
    if (ind[i - 1] > ind[i])
545
546
      error("Sorting failed (ind[%i]=%i,ind[%i]=%i), min=%i, max=%i.", i - 1,
  ind[i - 1], i,
547
548
            ind[i], min, max);
  message("Sorting succeeded."); */
549

550
  /* Clean up. */
551
  free(space_sort_struct.stack);
552
553
554
555

  if (verbose)
    message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
            clocks_getunit());
556
}
557

558
void space_do_parts_sort() {
559

560
  /* Pointers to the sorting data. */
561
  int *ind = space_sort_struct.ind;
562
563
  struct part *parts = space_sort_struct.parts;
  struct xpart *xparts = space_sort_struct.xparts;
564

565
  /* Main loop. */
566
  while (space_sort_struct.waiting) {
567

568
    /* Grab an interval off the queue. */
569
570
    int qid =
        atomic_inc(&space_sort_struct.first) % space_sort_struct.stack_size;
571

572
    /* Wait for the entry to be ready, or for the sorting do be done. */
573
574
    while (!space_sort_struct.stack[qid].ready)
      if (!space_sort_struct.waiting) return;
575

576
    /* Get the stack entry. */
577
578
    ptrdiff_t i = space_sort_struct.stack[qid].i;
    ptrdiff_t j = space_sort_struct.stack[qid].j;
579
580
    int min = space_sort_struct.stack[qid].min;
    int max = space_sort_struct.stack[qid].max;
581
    space_sort_struct.stack[qid].ready = 0;
582

583
584
    /* Loop over sub-intervals. */
    while (1) {
585

586
      /* Bring beer. */
587
      const int pivot = (min + max) / 2;
588
589
      /* message("Working on interval [%i,%i] with min=%i, max=%i, pivot=%i.",
              i, j, min, max, pivot); */
590
591

      /* One pass of QuickSort's partitioning. */
592
593
      ptrdiff_t ii = i;
      ptrdiff_t jj = j;
594
595
596
597
      while (ii < jj) {
        while (ii <= j && ind[ii] <= pivot) ii++;
        while (jj >= i && ind[jj] > pivot) jj--;
        if (ii < jj) {
598
          size_t temp_i = ind[ii];
599
600
          ind[ii] = ind[jj];
          ind[jj] = temp_i;
601
          struct part temp_p = parts[ii];
602
603
          parts[ii] = parts[jj];
          parts[jj] = temp_p;
604
          struct xpart temp_xp = xparts[ii];
605
606
607
608
          xparts[ii] = xparts[jj];
          xparts[jj] = temp_xp;
        }
      }
609

610
      /* Verify space_sort_struct. */
611
612
613
614
615
616
617
618
619
620
621
622
      /* for (int k = i; k <= jj; k++)
        if (ind[k] > pivot) {
          message("sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i.", k,
                  ind[k], pivot, i, j);
          error("Partition failed (<=pivot).");
        }
      for (int k = jj + 1; k <= j; k++)
        if (ind[k] <= pivot) {
          message("sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i.", k,
                  ind[k], pivot, i, j);
          error("Partition failed (>pivot).");
        } */
623
624
625
626
627
628

      /* Split-off largest interval. */
      if (jj - i > j - jj + 1) {

        /* Recurse on the left? */
        if (jj > i && pivot > min) {
629
630
          qid = atomic_inc(&space_sort_struct.last) %
                space_sort_struct.stack_size;
631
632
          while (space_sort_struct.stack[qid].ready)
            ;
633
634
635
636
637
638
639
          space_sort_struct.stack[qid].i = i;
          space_sort_struct.stack[qid].j = jj;
          space_sort_struct.stack[qid].min = min;
          space_sort_struct.stack[qid].max = pivot;
          if (atomic_inc(&space_sort_struct.waiting) >=
              space_sort_struct.stack_size)
            error("Qstack overflow.");
640
          space_sort_struct.stack[qid].ready = 1;
641
        }
642

643
644
645
646
647
648
649
650
651
652
        /* Recurse on the right? */
        if (jj + 1 < j && pivot + 1 < max) {
          i = jj + 1;
          min = pivot + 1;
        } else
          break;

      } else {

        /* Recurse on the right? */
653
        if (pivot + 1 < max) {
654
655
          qid = atomic_inc(&space_sort_struct.last) %
                space_sort_struct.stack_size;
656
657
          while (space_sort_struct.stack[qid].ready)
            ;
658
659
660
661
662
663
664
          space_sort_struct.stack[qid].i = jj + 1;
          space_sort_struct.stack[qid].j = j;
          space_sort_struct.stack[qid].min = pivot + 1;
          space_sort_struct.stack[qid].max = max;
          if (atomic_inc(&space_sort_struct.waiting) >=
              space_sort_struct.stack_size)
            error("Qstack overflow.");
665
          space_sort_struct.stack[qid].ready = 1;
666
        }
667

668
669
670
671
672
673
674
        /* Recurse on the left? */
        if (jj > i && pivot > min) {
          j = jj;
          max = pivot;
        } else
          break;
      }
675

676
677
    } /* loop over sub-intervals. */

678
    atomic_dec(&space_sort_struct.waiting);
679
680

  } /* main loop. */
681
682
}

683
void space_gparts_sort(struct gpart *gparts, int *ind, size_t N, int min,
684
                       int max) {
685
686

  struct qstack {
687
688
    volatile size_t i, j;
    volatile int min, max;
689
690
691
692
693
694
695
    volatile int ready;
  };
  struct qstack *qstack;
  int qstack_size = 2 * (max - min) + 10;
  volatile unsigned int first, last, waiting;

  int pivot;
696
  ptrdiff_t i, ii, j, jj, temp_i;
697
  int qid;
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
  struct gpart temp_p;

  /* for ( int k = 0 ; k < N ; k++ )
      if ( ind[k] > max || ind[k] < min )
          error( "ind[%i]=%i is not in [%i,%i]." , k , ind[k] , min , max ); */

  /* Allocate the stack. */
  if ((qstack = malloc(sizeof(struct qstack) * qstack_size)) == NULL)
    error("Failed to allocate qstack.");

  /* Init the interval stack. */
  qstack[0].i = 0;
  qstack[0].j = N - 1;
  qstack[0].min = min;
  qstack[0].max = max;
  qstack[0].ready = 1;
  for (i = 1; i < qstack_size; i++) qstack[i].ready = 0;
  first = 0;
  last = 1;
  waiting = 1;

719
720
  /* Main loop. */
  while (waiting > 0) {
721

722
723
    /* Grab an interval off the queue. */
    qid = (first++) % qstack_size;
724

725
726
727
728
729
730
731
732
733
    /* Get the stack entry. */
    i = qstack[qid].i;
    j = qstack[qid].j;
    min = qstack[qid].min;
    max = qstack[qid].max;
    qstack[qid].ready = 0;

    /* Loop over sub-intervals. */
    while (1) {
734

735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
      /* Bring beer. */
      pivot = (min + max) / 2;

      /* One pass of QuickSort's partitioning. */
      ii = i;
      jj = j;
      while (ii < jj) {
        while (ii <= j && ind[ii] <= pivot) ii++;
        while (jj >= i && ind[jj] > pivot) jj--;
        if (ii < jj) {
          temp_i = ind[ii];
          ind[ii] = ind[jj];
          ind[jj] = temp_i;
          temp_p = gparts[ii];
          gparts[ii] = gparts[jj];
          gparts[jj] = temp_p;
        }
      }
753

754
      /* Verify space_sort_struct. */
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
      /* for ( int k = i ; k <= jj ; k++ )
         if ( ind[k] > pivot ) {
         message( "sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i,
         N=%i." , k , ind[k] , pivot , i , j , N );
         error( "Partition failed (<=pivot)." );
         }
         for ( int k = jj+1 ; k <= j ; k++ )
         if ( ind[k] <= pivot ) {
         message( "sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i,
         N=%i." , k , ind[k] , pivot , i , j , N );
         error( "Partition failed (>pivot)." );
         } */

      /* Split-off largest interval. */
      if (jj - i > j - jj + 1) {

        /* Recurse on the left? */
        if (jj > i && pivot > min) {
          qid = (last++) % qstack_size;
          qstack[qid].i = i;
          qstack[qid].j = jj;
          qstack[qid].min = min;
          qstack[qid].max = pivot;
          qstack[qid].ready = 1;
          if ((waiting++) >= qstack_size) error("Qstack overflow.");
        }
781

782
783
784
785
786
787
        /* Recurse on the right? */
        if (jj + 1 < j && pivot + 1 < max) {
          i = jj + 1;
          min = pivot + 1;
        } else
          break;
788

789
790
791
      } else {

        /* Recurse on the right? */
792
        if (pivot + 1 < max) {
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
          qid = (last++) % qstack_size;
          qstack[qid].i = jj + 1;
          qstack[qid].j = j;
          qstack[qid].min = pivot + 1;
          qstack[qid].max = max;
          qstack[qid].ready = 1;
          if ((waiting++) >= qstack_size) error("Qstack overflow.");
        }

        /* Recurse on the left? */
        if (jj > i && pivot > min) {
          j = jj;
          max = pivot;
        } else
          break;
      }

    } /* loop over sub-intervals. */

    waiting--;

  } /* main loop. */
815

816
  /* Verify space_sort_struct. */
817
818
819
820
821
822
823
824
  /* for ( i = 1 ; i < N ; i++ )
      if ( ind[i-1] > ind[i] )
          error( "Sorting failed (ind[%i]=%i,ind[%i]=%i)." , i-1 , ind[i-1] , i
     , ind[i] ); */

  /* Clean up. */
  free(qstack);
}
825

Pedro Gonnet's avatar
Pedro Gonnet committed
826
/**
827
 * @brief Mapping function to free the sorted indices buffers.
Pedro Gonnet's avatar
Pedro Gonnet committed
828
829
 */

830
void space_map_clearsort(struct cell *c, void *data) {
Pedro Gonnet's avatar
Pedro Gonnet committed
831

832
833
834
835
836
  if (c->sort != NULL) {
    free(c->sort);
    c->sort = NULL;
  }
}
Pedro Gonnet's avatar
Pedro Gonnet committed
837

838
839
840
/**
 * @brief Map a function to all particles in a cell recursively.
 *
841
 * @param c The #cell we are working in.
842
843
844
845
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
 */

Pedro Gonnet's avatar
Pedro Gonnet committed
846
847
848
849
static void rec_map_parts(struct cell *c,
                          void (*fun)(struct part *p, struct cell *c,
                                      void *data),
                          void *data) {
850
851
852
853
854
855

  int k;

  /* No progeny? */
  if (!c->split)
    for (k = 0; k < c->count; k++) fun(&c->parts[k], c, data);
Pedro Gonnet's avatar
Pedro Gonnet committed
856

857
858
859
860
861
862
  /* Otherwise, recurse. */
  else
    for (k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) rec_map_parts(c->progeny[k], fun, data);
}

Pedro Gonnet's avatar
Pedro Gonnet committed
863
/**
864
 * @brief Map a function to all particles in a space.
Pedro Gonnet's avatar
Pedro Gonnet committed
865
866
 *
 * @param s The #space we are working in.
867
868
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
Pedro Gonnet's avatar
Pedro Gonnet committed
869
870
 */

871
872
873
void space_map_parts(struct space *s,
                     void (*fun)(struct part *p, struct cell *c, void *data),
                     void *data) {
Pedro Gonnet's avatar
Pedro Gonnet committed
874

875
876
  int cid = 0;

877
  /* Call the recursive function on all higher-level cells. */
Pedro Gonnet's avatar
Pedro Gonnet committed
878
879
  for (cid = 0; cid < s->nr_cells; cid++)
    rec_map_parts(&s->cells[cid], fun, data);
880
}
881

882
883
884
885
886
887
888
889
/**
 * @brief Map a function to all particles in a cell recursively.
 *
 * @param c The #cell we are working in.
 * @param fun Function pointer to apply on the cells.
 */

static void rec_map_parts_xparts(struct cell *c,
890
891
                                 void (*fun)(struct part *p, struct xpart *xp,
                                             struct cell *c)) {
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912

  int k;

  /* No progeny? */
  if (!c->split)
    for (k = 0; k < c->count; k++) fun(&c->parts[k], &c->xparts[k], c);

  /* Otherwise, recurse. */
  else
    for (k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) rec_map_parts_xparts(c->progeny[k], fun);
}

/**
 * @brief Map a function to all particles (#part and #xpart) in a space.
 *
 * @param s The #space we are working in.
 * @param fun Function pointer to apply on the particles in the cells.
 */

void space_map_parts_xparts(struct space *s,
913
914
                            void (*fun)(struct part *p, struct xpart *xp,
                                        struct cell *c)) {
915
916
917
918
919
920
921
922

  int cid = 0;

  /* Call the recursive function on all higher-level cells. */
  for (cid = 0; cid < s->nr_cells; cid++)
    rec_map_parts_xparts(&s->cells[cid], fun);
}

923
924
925
/**
 * @brief Map a function to all particles in a cell recursively.
 *
926
 * @param c The #cell we are working in.
927
928
929
930
 * @param full Map to all cells, including cells with sub-cells.
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
 */
931

Pedro Gonnet's avatar
Pedro Gonnet committed
932
933
934
static void rec_map_cells_post(struct cell *c, int full,
                               void (*fun)(struct cell *c, void *data),
                               void *data) {
935

936
937
938
939
940
  int k;

  /* Recurse. */
  if (c->split)
    for (k = 0; k < 8; k++)
Pedro Gonnet's avatar
Pedro Gonnet committed
941
942
943
      if (c->progeny[k] != NULL)
        rec_map_cells_post(c->progeny[k], full, fun, data);

944
945
  /* No progeny? */
  if (full || !c->split) fun(c, data);
946
}
Pedro Gonnet's avatar
Pedro Gonnet committed
947
948

/**
949
 * @brief Map a function to all particles in a aspace.
Pedro Gonnet's avatar
Pedro Gonnet committed
950
951
 *
 * @param s The #space we are working in.
952
 * @param full Map to all cells, including cells with sub-cells.
953
954
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
Pedro Gonnet's avatar
Pedro Gonnet committed
955
 */
956

957
void space_map_cells_post(struct space *s, int full,
Pedro Gonnet's avatar
Pedro Gonnet committed
958
                          void (*fun)(struct cell *c, void *data), void *data) {
959

960
  int cid = 0;
961

962
  /* Call the recursive function on all higher-level cells. */
Pedro Gonnet's avatar
Pedro Gonnet committed
963
964
  for (cid = 0; cid < s->nr_cells; cid++)
    rec_map_cells_post(&s->cells[cid], full, fun, data);
965
}
966

Pedro Gonnet's avatar
Pedro Gonnet committed
967
968
969
static void rec_map_cells_pre(struct cell *c, int full,
                              void (*fun)(struct cell *c, void *data),
                              void *data) {
970

971
  int k;
Pedro Gonnet's avatar
Pedro Gonnet committed
972

973
974
  /* No progeny? */
  if (full || !c->split) fun(c, data);
Pedro Gonnet's avatar
Pedro Gonnet committed
975

976
977
978
  /* Recurse. */
  if (c->split)
    for (k = 0; k < 8; k++)
Pedro Gonnet's avatar
Pedro Gonnet committed
979
980
      if (c->progeny[k] != NULL)
        rec_map_cells_pre(c->progeny[k], full, fun, data);
981
}
Pedro Gonnet's avatar
Pedro Gonnet committed
982

983
984
985
986
987
988
989
990
/**
 * @brief Calls function fun on the cells in the space s
 *
 * @param s The #space
 * @param full If true calls the function on all cells and not just on leaves
 * @param fun The function to call.
 * @param data Additional data passed to fun() when called
 */
991
void space_map_cells_pre(struct space *s, int full,
Pedro Gonnet's avatar
Pedro Gonnet committed
992
                         void (*fun)(struct cell *c, void *data), void *data) {
993

994
  int cid = 0;
995
996

  /* Call the recursive function on all higher-level cells. */
Pedro Gonnet's avatar
Pedro Gonnet committed
997
998
  for (cid = 0; cid < s->nr_cells; cid++)
    rec_map_cells_pre(&s->cells[cid], full, fun, data);
999
}
Pedro Gonnet's avatar
Pedro Gonnet committed
1000
1001
1002
1003
1004
1005
1006

/**
 * @brief Split cells that contain too many particles.
 *
 * @param s The #space we are working in.
 * @param c The #cell under consideration.
 */
1007

1008
void space_do_split(struct space *s, struct cell *c) {
1009
1010

  int k, count = c->count, gcount = c->gcount, maxdepth = 0;
1011
1012
  float h, h_max = 0.0f;
  int ti_end_min = max_nr_timesteps, ti_end_max = 0, ti_end;
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
  struct cell *temp;
  struct part *p, *parts = c->parts;
  struct xpart *xp, *xparts = c->xparts;

  /* Check the depth. */
  if (c->depth > s->maxdepth) s->maxdepth = c->depth;

  /* Split or let it be? */
  if (count > space_splitsize || gcount > space_splitsize) {

    /* No longer just a leaf. */
    c->split = 1;

    /* Create the cell's progeny. */
    for (k = 0; k < 8; k++) {
      temp = space_getcell(s);
      temp->count = 0;
      temp->gcount = 0;
      temp->loc[0] = c->loc[0];
      temp->loc[1] = c->loc[1];
      temp->loc[2] = c->loc[2];
      temp->h[0] = c->h[0] / 2;
      temp->h[1] = c->h[1] / 2;
      temp->h[2] = c->h[2] / 2;
      temp->dmin = c->dmin / 2;
      if (k & 4) temp->loc[0] += temp->h[0];
      if (k & 2) temp->loc[1] += temp->h[1];
      if (k & 1) temp->loc[2] += temp->h[2];
      temp->depth = c->depth + 1;
      temp->split = 0;
      temp->h_max = 0.0;
      temp->dx_max = 0.0;
      temp->nodeID = c->nodeID;
      temp->parent = c;
      c->progeny[k] = temp;
    }

    /* Split the cell data. */
    cell_split(c);

    /* Remove any progeny with zero parts. */
    for (k = 0; k < 8; k++)
      if (c->progeny[k]->count == 0 && c->progeny[k]->gcount == 0) {
        space_recycle(s, c->progeny[k]);
        c->progeny[k] = NULL;
      } else {
1059
        space_do_split(s, c->progeny[k]);
1060
        h_max = fmaxf(h_max, c->progeny[k]->h_max);
1061
1062
        ti_end_min = min(ti_end_min, c->progeny[k]->ti_end_min);
        ti_end_max = max(ti_end_max, c->progeny[k]->ti_end_max);
1063
1064
1065
1066
1067
1068
        if (c->progeny[k]->maxdepth > maxdepth)
          maxdepth = c->progeny[k]->maxdepth;
      }

    /* Set the values for this cell. */
    c->h_max = h_max;
1069
1070
    c->ti_end_min = ti_end_min;
    c->ti_end_max = ti_end_max;
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
    c->maxdepth = maxdepth;

  }

  /* Otherwise, collect the data for this cell. */
  else {

    /* Clear the progeny. */
    bzero(c->progeny, sizeof(struct cell *) * 8);
    c->split = 0;
    c->maxdepth = c->depth;

    /* Get dt_min/dt_max. */

    for (k = 0; k < count; k++) {
      p = &parts[k];
      xp = &xparts[k];
      xp->x_old[0] = p->x[0];
      xp->x_old[1] = p->x[1];
      xp->x_old[2] = p->x[2];
      h = p->h;
1092
      ti_end = p->ti_end;
1093
      if (h > h_max) h_max = h;
1094
1095
      if (ti_end < ti_end_min) ti_end_min = ti_end;
      if (ti_end > ti_end_max) ti_end_max = ti_end;
1096
    }
1097
    c->h_max = h_max;
1098
1099
    c->ti_end_min = ti_end_min;
    c->ti_end_max = ti_end_max;
1100
  }
1101

1102
  /* Set ownership according to the start of the parts array. */
1103
1104
  c->owner = ((c->parts - s->parts) % s->nr_parts) * s->nr_queues / s->nr_parts;
}
1105

Pedro Gonnet's avatar
Pedro Gonnet committed
1106
1107
1108
1109
1110
1111
1112
/**
 * @brief Return a used cell to the cell buffer.
 *
 * @param s The #space.
 * @param c The #cell.
 */

1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
void space_recycle(struct space *s, struct cell *c) {

  /* Lock the space. */
  lock_lock(&s->lock);

  /* Clear the cell. */
  if (lock_destroy(&c->lock) != 0) error("Failed to destroy spinlock.");

  /* Clear this cell's sort arrays. */
  if (c->sort != NULL) free(c->sort);

  /* Clear the cell data. */
  bzero(c, sizeof(struct cell));

  /* Hook this cell into the buffer. */
  c->next = s->cells_new;
  s->cells_new = c;
  s->tot_cells -= 1;

  /* Unlock the space. */
  lock_unlock_blind(&s->lock);
}
Pedro Gonnet's avatar
Pedro Gonnet committed
1135
1136
1137
1138
1139
1140
1141

/**
 * @brief Get a new empty cell.
 *
 * @param s The #space.
 */

1142
struct cell *space_getcell(struct space *s) {
Pedro Gonnet's avatar
Pedro Gonnet committed
1143

1144
1145
  struct cell *c;
  int k;
Pedro Gonnet's avatar
Pedro Gonnet committed
1146

1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
  /* Lock the space. */
  lock_lock(&s->lock);

  /* Is the buffer empty? */
  if (s->cells_new == NULL) {
    if (posix_memalign((void *)&s->cells_new, 64,
                       space_cellallocchunk * sizeof(struct cell)) != 0)
      error("Failed to allocate more cells.");
    bzero(s->cells_new, space_cellallocchunk * sizeof(struct cell));
    for (k = 0; k < space_cellallocchunk - 1; k++)
      s->cells_new[k].next = &s->cells_new[k + 1];
    s->cells_new[space_cellallocchunk - 1].next = NULL;
  }

  /* Pick off the next cell. */
  c = s->cells_new;
  s->cells_new = c->next;
  s->tot_cells += 1;
Pedro Gonnet's avatar
Pedro Gonnet committed
1165

1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
  /* Unlock the space. */
  lock_unlock_blind(&s->lock);

  /* Init some things in the cell. */
  bzero(c, sizeof(struct cell));
  c->nodeID = -1;
  if (lock_init(&c->lock) != 0 || lock_init(&c->glock) != 0)
    error("Failed to initialize cell spinlocks.");

  return c;
}
Pedro Gonnet's avatar
Pedro Gonnet committed
1177
1178
1179
1180

/**
 * @brief Split the space into cells given the array of particles.
 *
1181
 * @param s The #space to initialize.
Pedro Gonnet's avatar
Pedro Gonnet committed
1182
1183
1184
1185
 * @param dim Spatial dimensions of the domain.
 * @param parts Pointer to an array of #part.
 * @param N The number of parts in the space.
 * @param periodic flag whether the domain is periodic or not.
1186
 * @param h_max The maximal interaction radius.
1187
 * @param verbose Print messages to stdout or not