testRandom.c 11.7 KB
Newer Older
1 2 3
/*******************************************************************************
 * This file is part of SWIFT.
 * Copyright (C) 2019 Matthieu Schaller (schaller@strw.leidenuniv.nl)
Folkert Nobels's avatar
Folkert Nobels committed
4
 *               2019 Folkert Nobels    (nobels@strw.leidenuniv.nl)
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

#include <fenv.h>

/* Local headers. */
#include "swift.h"

29
/**
30 31 32 33
 * @brief Compute the Pearson correlation coefficient for two sets of numbers
 *
 * The pearson correlation coefficient between two sets of numbers can be
 * calculated as:
34
 *
35 36 37 38
 *           <x*y> - <x>*<y>
 * r_xy = ----------------------
 *         (var(x) * var(y))^.5
 *
39 40 41
 * In the case that both sets are purely uncorrelated the value of the
 * Pearson correlation function is expected to be close to 0. In the case that
 * there is positive correlation r_xy > 0 and in the case of negative
42 43 44 45 46 47 48
 * correlation, the function has r_xy < 0.
 *
 * @param mean1 average of first series of numbers
 * @param mean2 average of second series of numbers
 * @param total12 sum of x_i * y_i of both series of numbers
 * @param var1 variance of the first series of numbers
 * @param var2 variance of the second series of numbers
49
 * @param counter number of elements in both series
50
 * @return the Pearson correlation coefficient
51
 * */
52 53 54
double pearsonfunc(double mean1, double mean2, double total12, double var1,
                   double var2, int counter) {

55
  const double mean12 = total12 / (double)counter;
56 57
  const double correlation = (mean12 - mean1 * mean2) / sqrt(var1 * var2);
  return fabs(correlation);
58 59
}

60 61 62 63 64 65
/**
 * @brief Test to check that the pseodo-random numbers in SWIFT are random
 * enough for our purpose.
 *
 * The test initializes with the current time and than creates 20 ID numbers
 * it runs the test using these 20 ID numbers. Using these 20 ID numbers it
66
 * Checks 4 different things:
67 68 69
 * 1. The mean and variance are correct for random numbers generated by this
 *    ID number.
 * 2. The random numbers from this ID number do not cause correlation in time.
70 71
 *    Correlation is checked using the Pearson correlation coefficient which
 *    should be sufficiently close to zero.
72 73 74
 * 3. A small offset in ID number of 2, doesn't cause correlation between
 *    the two sets of random numbers (again with the Pearson correlation
 *    coefficient) and the mean and variance of this set is
75
 *    also correct.
76
 * 4. Different physical processes in random.h are also uncorrelated and
77
 *    produce the correct mean and variance as expected. Again the correlation
78
 *    is calculated using the Pearson correlation coefficient.
79
 *
80
 * More information about the Pearson correlation coefficient can be found in
81
 * the function pearsonfunc above this function.
82
 *
83 84
 * @param argc Unused
 * @param argv Unused
85
 * @return 0 if everything is fine, 1 if random numbers are not random enough.
86
 */
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
int main(int argc, char* argv[]) {

  /* Initialize CPU frequency, this also starts time. */
  unsigned long long cpufreq = 0;
  clocks_set_cpufreq(cpufreq);

/* Choke on FPEs */
#ifdef HAVE_FE_ENABLE_EXCEPT
  feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
#endif

  /* Get some randomness going */
  const int seed = time(NULL);
  message("Seed = %d", seed);
  srand(seed);

  /* Time-step size */
  const int time_bin = 29;

  /* Try a few different values for the ID */
  for (int i = 0; i < 20; ++i) {

    const long long id = rand() * (1LL << 31) + rand();
    const integertime_t increment = (1LL << time_bin);
111
    const long long idoffset = id + 2;
112 113 114 115 116 117

    message("Testing id=%lld time_bin=%d", id, time_bin);

    double total = 0., total2 = 0.;
    int count = 0;

118
    /* Pearson correlation variables for different times */
119 120
    double sum_previous_current = 0.;
    double previous = 0.;
121 122 123 124 125

    /* Pearson correlation for two different IDs */
    double pearsonIDs = 0.;
    double totalID = 0.;
    double total2ID = 0.;
126

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    /* Pearson correlation for different processes */
    double pearson_star_sf = 0.;
    double pearson_star_se = 0.;
    double pearson_star_bh = 0.;
    double pearson_sf_se = 0.;
    double pearson_sf_bh = 0.;
    double pearson_se_bh = 0.;

    /* Calculate the mean and <x^2> for these processes */
    double total_sf = 0.;
    double total_se = 0.;
    double total_bh = 0.;

    double total2_sf = 0.;
    double total2_se = 0.;
    double total2_bh = 0.;

144 145 146 147 148 149 150 151 152
    /* Check that the numbers are uniform over the full-range of useful
     * time-steps */
    for (integertime_t ti_current = 0LL; ti_current < max_nr_timesteps;
         ti_current += increment) {

      ti_current += increment;

      const double r =
          random_unit_interval(id, ti_current, random_number_star_formation);
Pedro Gonnet's avatar
Pedro Gonnet committed
153 154 155
      if (r < 0.0 || r >= 1.0) {
        error("Generated random vlaue %f is not in [0, 1).", r);
      }
156 157 158 159

      total += r;
      total2 += r * r;
      count++;
160

161 162
      /* Calculate for correlation between time.
       * For this we use the pearson correlation of time i and i-1 */
163 164
      sum_previous_current += r * previous;
      previous = r;
165

166 167 168
      /* Calculate if there is a correlation between different ids */
      const double r_2ndid = random_unit_interval(idoffset, ti_current,
                                                  random_number_star_formation);
Pedro Gonnet's avatar
Pedro Gonnet committed
169 170 171
      if (r_2ndid < 0.0 || r_2ndid >= 1.0) {
        error("Generated random vlaue %f is not in [0, 1).", r_2ndid);
      }
172

173 174 175 176
      /* Pearson correlation for small different IDs */
      pearsonIDs += r * r_2ndid;
      totalID += r_2ndid;
      total2ID += r_2ndid * r_2ndid;
177 178 179

      /* Calculate random numbers for the different processes and check
       * that they are uncorrelated */
180 181

      const double r_sf =
182
          random_unit_interval(id, ti_current, random_number_stellar_feedback);
Pedro Gonnet's avatar
Pedro Gonnet committed
183 184 185
      if (r_sf < 0.0 || r_sf >= 1.0) {
        error("Generated random vlaue %f is not in [0, 1).", r_sf);
      }
186

187 188
      const double r_se = random_unit_interval(
          id, ti_current, random_number_stellar_enrichment);
Pedro Gonnet's avatar
Pedro Gonnet committed
189 190 191
      if (r_se < 0.0 || r_se >= 1.0) {
        error("Generated random vlaue %f is not in [0, 1).", r_se);
      }
192

193
      const double r_bh =
194
          random_unit_interval(id, ti_current, random_number_BH_feedback);
Pedro Gonnet's avatar
Pedro Gonnet committed
195 196 197
      if (r_bh < 0.0 || r_bh >= 1.0) {
        error("Generated random vlaue %f is not in [0, 1).", r_bh);
      }
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213

      /* Calculate the correlation between the different processes */
      total_sf += r_sf;
      total_se += r_se;
      total_bh += r_bh;

      total2_sf += r_sf * r_sf;
      total2_se += r_se * r_se;
      total2_bh += r_bh * r_bh;

      pearson_star_sf += r * r_sf;
      pearson_star_se += r * r_se;
      pearson_star_bh += r * r_bh;
      pearson_sf_se += r_sf * r_se;
      pearson_sf_bh += r_sf * r_bh;
      pearson_se_bh += r_se * r_bh;
214 215 216 217 218
    }

    const double mean = total / (double)count;
    const double var = total2 / (double)count - mean * mean;

219
    /* Pearson correlation calculation for different times */
220 221 222 223
    // const double mean_xy = sum_previous_current / ((double)count - 1.f);
    // const double correlation = (mean_xy - mean * mean) / var;
    const double correlation =
        pearsonfunc(mean, mean, sum_previous_current, var, var, count - 1);
Folkert Nobels's avatar
Folkert Nobels committed
224

225
    /* Mean for different IDs */
226 227 228
    const double meanID = totalID / (double)count;
    const double varID = total2ID / (double)count - meanID * meanID;

229
    /* Pearson correlation between different IDs*/
230 231
    const double correlationID =
        pearsonfunc(mean, meanID, pearsonIDs, var, varID, count);
232

233 234 235 236
    /* Mean and <x^2> for different processes */
    const double mean_sf = total_sf / (double)count;
    const double mean_se = total_se / (double)count;
    const double mean_bh = total_bh / (double)count;
237

238 239 240 241 242
    const double var_sf = total2_sf / (double)count - mean_sf * mean_sf;
    const double var_se = total2_se / (double)count - mean_se * mean_se;
    const double var_bh = total2_bh / (double)count - mean_bh * mean_bh;

    /* Correlation between different processes */
243 244 245 246 247 248 249 250 251 252 253 254 255
    const double corr_star_sf =
        pearsonfunc(mean, mean_sf, pearson_star_sf, var, var_sf, count);
    const double corr_star_se =
        pearsonfunc(mean, mean_se, pearson_star_se, var, var_se, count);
    const double corr_star_bh =
        pearsonfunc(mean, mean_bh, pearson_star_bh, var, var_bh, count);
    const double corr_sf_se =
        pearsonfunc(mean_sf, mean_se, pearson_sf_se, var_sf, var_se, count);
    const double corr_sf_bh =
        pearsonfunc(mean_sf, mean_bh, pearson_sf_bh, var_sf, var_bh, count);
    const double corr_se_bh =
        pearsonfunc(mean_se, mean_bh, pearson_se_bh, var_se, var_bh, count);

256 257
    /* Verify that the mean and variance match the expected values for a uniform
     * distribution */
258 259
    const double tolmean = 2e-4;
    const double tolvar = 1e-3;
260
    const double tolcorr = 4e-4;
261 262 263 264 265

    if ((fabs(mean - 0.5) / 0.5 > tolmean) ||
        (fabs(var - 1. / 12.) / (1. / 12.) > tolvar) ||
        (correlation > tolcorr) || (correlationID > tolcorr) ||
        (fabs(meanID - 0.5) / 0.5 > tolmean) ||
266
        (fabs(varID - 1. / 12.) / (1. / 12.) > tolvar) ||
267 268
        (corr_star_sf > tolcorr) || (corr_star_se > tolcorr) ||
        (corr_star_bh > tolcorr) || (corr_sf_se > tolcorr) ||
269
        (corr_sf_bh > tolcorr) || (corr_se_bh > tolcorr) ||
270 271 272
        (fabs(mean_sf - 0.5) / 0.5 > tolmean) ||
        (fabs(mean_se - 0.5) / 0.5 > tolmean) ||
        (fabs(mean_bh - 0.5) / 0.5 > tolmean) ||
273 274
        (fabs(var_sf - 1. / 12.) / (1. / 12.) > tolvar) ||
        (fabs(var_se - 1. / 12.) / (1. / 12.) > tolvar) ||
275
        (fabs(var_bh - 1. / 12.) / (1. / 12.) > tolvar)) {
276
      message("Test failed!");
277
      message("Global result:");
278 279 280 281 282
      message("Result:    count=%d mean=%f var=%f, correlation=%f", count, mean,
              var, correlation);
      message("Expected:  count=%d mean=%f var=%f, correlation=%f", count, 0.5f,
              1. / 12., 0.);
      message("ID part");
Folkert Nobels's avatar
Folkert Nobels committed
283
      message(
Pedro Gonnet's avatar
Pedro Gonnet committed
284
          "Result:    count=%d mean=%f var=%f"
285 286
          " correlation=%f",
          count, meanID, varID, correlationID);
Folkert Nobels's avatar
Folkert Nobels committed
287
      message(
Pedro Gonnet's avatar
Pedro Gonnet committed
288
          "Expected:  count=%d mean=%f var=%f"
289 290
          " correlation=%f",
          count, .5f, 1. / 12., 0.);
291
      message("Different physical processes:");
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
      message(
          "Means:    stars=%f stellar feedback=%f stellar "
          " enrichement=%f black holes=%f",
          mean, mean_sf, mean_se, mean_bh);
      message(
          "Expected: stars=%f stellar feedback=%f stellar "
          " enrichement=%f black holes=%f",
          .5f, .5f, .5f, .5f);
      message(
          "Var:      stars=%f stellar feedback=%f stellar "
          " enrichement=%f black holes=%f",
          var, var_sf, var_se, var_bh);
      message(
          "Expected: stars=%f stellar feedback=%f stellar "
          " enrichement=%f black holes=%f",
          1. / 12., 1. / 12., 1 / 12., 1. / 12.);
      message(
Pedro Gonnet's avatar
Pedro Gonnet committed
309
          "Correlation: stars-sf=%f stars-se=%f stars-bh=%f "
310 311 312 313
          "sf-se=%f sf-bh=%f se-bh=%f",
          corr_star_sf, corr_star_se, corr_star_bh, corr_sf_se, corr_sf_bh,
          corr_se_bh);
      message(
Pedro Gonnet's avatar
Pedro Gonnet committed
314
          "Expected:    stars-sf=%f stars-se=%f stars-bh=%f "
315 316
          "sf-se=%f sf-bh=%f se-bh=%f",
          0., 0., 0., 0., 0., 0.);
317 318 319 320 321 322
      return 1;
    }
  }

  return 0;
}